Graded Hopf algebras with basis¶
- class sage.categories.graded_hopf_algebras_with_basis.GradedHopfAlgebrasWithBasis(base_category)[source]¶
Bases:
GradedModulesCategory
The category of graded Hopf algebras with a distinguished basis.
EXAMPLES:
sage: C = GradedHopfAlgebrasWithBasis(ZZ); C Category of graded Hopf algebras with basis over Integer Ring sage: C.super_categories() [Category of filtered Hopf algebras with basis over Integer Ring, Category of graded algebras with basis over Integer Ring, Category of graded coalgebras with basis over Integer Ring] sage: C is HopfAlgebras(ZZ).WithBasis().Graded() True sage: C is HopfAlgebras(ZZ).Graded().WithBasis() False
>>> from sage.all import * >>> C = GradedHopfAlgebrasWithBasis(ZZ); C Category of graded Hopf algebras with basis over Integer Ring >>> C.super_categories() [Category of filtered Hopf algebras with basis over Integer Ring, Category of graded algebras with basis over Integer Ring, Category of graded coalgebras with basis over Integer Ring] >>> C is HopfAlgebras(ZZ).WithBasis().Graded() True >>> C is HopfAlgebras(ZZ).Graded().WithBasis() False
- class Connected(base_category)[source]¶
Bases:
CategoryWithAxiom_over_base_ring
- class ParentMethods[source]¶
Bases:
object
- antipode_on_basis(index)[source]¶
The antipode on the basis element indexed by
index
.INPUT:
index
– an element of the index set
For a graded connected Hopf algebra, we can define an antipode recursively by
\[S(x) := -\sum_{x^L \neq x} S(x^L) \times x^R\]when \(|x| > 0\), and by \(S(x) = x\) when \(|x| = 0\).
- counit_on_basis(i)[source]¶
The default counit of a graded connected Hopf algebra.
INPUT:
i
– an element of the index set
OUTPUT: an element of the base ring
\[\begin{split}c(i) := \begin{cases} 1 & \hbox{if $i$ indexes the $1$ of the algebra}\\ 0 & \hbox{otherwise}. \end{cases}\end{split}\]EXAMPLES:
sage: H = GradedHopfAlgebrasWithBasis(QQ).Connected().example() # needs sage.modules sage: H.monomial(4).counit() # indirect doctest # needs sage.modules 0 sage: H.monomial(0).counit() # indirect doctest # needs sage.modules 1
>>> from sage.all import * >>> H = GradedHopfAlgebrasWithBasis(QQ).Connected().example() # needs sage.modules >>> H.monomial(Integer(4)).counit() # indirect doctest # needs sage.modules 0 >>> H.monomial(Integer(0)).counit() # indirect doctest # needs sage.modules 1
- class WithRealizations(category, *args)[source]¶
Bases:
WithRealizationsCategory
- super_categories()[source]¶
EXAMPLES:
sage: GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories() [Join of Category of Hopf algebras over Rational Field and Category of graded algebras over Rational Field and Category of graded coalgebras over Rational Field]
>>> from sage.all import * >>> GradedHopfAlgebrasWithBasis(QQ).WithRealizations().super_categories() [Join of Category of Hopf algebras over Rational Field and Category of graded algebras over Rational Field and Category of graded coalgebras over Rational Field]