Modules With Basis

AUTHORS:

  • Nicolas M. Thiery (2008-2014): initial revision, axiomatization
  • Jason Bandlow and Florent Hivert (2010): Triangular Morphisms
  • Christian Stump (2010): trac ticket #9648 module_morphism’s to a wider class of codomains
class sage.categories.modules_with_basis.ModulesWithBasis(base_category)

Bases: sage.categories.category_with_axiom.CategoryWithAxiom_over_base_ring

The category of modules with a distinguished basis.

The elements are represented by expanding them in the distinguished basis. The morphisms are not required to respect the distinguished basis.

EXAMPLES:

sage: ModulesWithBasis(ZZ)
Category of modules with basis over Integer Ring
sage: ModulesWithBasis(ZZ).super_categories()
[Category of modules over Integer Ring]

If the base ring is actually a field, this constructs instead the category of vector spaces with basis:

sage: ModulesWithBasis(QQ)
Category of vector spaces with basis over Rational Field

sage: ModulesWithBasis(QQ).super_categories()
[Category of modules with basis over Rational Field,
 Category of vector spaces over Rational Field]

Let \(X\) and \(Y\) be two modules with basis. We can build \(Hom(X,Y)\):

sage: X = CombinatorialFreeModule(QQ, [1,2]); X.__custom_name = "X"
sage: Y = CombinatorialFreeModule(QQ, [3,4]); Y.__custom_name = "Y"
sage: H = Hom(X, Y); H
Set of Morphisms from X to Y in Category of finite dimensional vector spaces with basis over Rational Field

The simplest morphism is the zero map:

sage: H.zero()         # todo: move this test into module once we have an example
Generic morphism:
  From: X
  To:   Y

which we can apply to elements of \(X\):

sage: x = X.monomial(1) + 3 * X.monomial(2)
sage: H.zero()(x)
0

EXAMPLES:

We now construct a more interesting morphism by extending a function by linearity:

sage: phi = H(on_basis = lambda i: Y.monomial(i+2)); phi
Generic morphism:
  From: X
  To:   Y
sage: phi(x)
B[3] + 3*B[4]

We can retrieve the function acting on indices of the basis:

sage: f = phi.on_basis()
sage: f(1), f(2)
(B[3], B[4])

\(Hom(X,Y)\) has a natural module structure (except for the zero, the operations are not yet implemented though). However since the dimension is not necessarily finite, it is not a module with basis; but see FiniteDimensionalModulesWithBasis and GradedModulesWithBasis:

sage: H in ModulesWithBasis(QQ), H in Modules(QQ)
(False, True)

Some more playing around with categories and higher order homsets:

sage: H.category()
Category of homsets of modules with basis over Rational Field
sage: Hom(H, H).category()
Category of endsets of homsets of modules with basis over Rational Field

Todo

End(X) is an algebra.

Note

This category currently requires an implementation of an element method support. Once trac ticket #18066 is merged, an implementation of an items method will be required.

class CartesianProducts(category, *args)

Bases: sage.categories.cartesian_product.CartesianProductsCategory

The category of modules with basis constructed by Cartesian products of modules with basis.

class ParentMethods
extra_super_categories()

EXAMPLES:

sage: ModulesWithBasis(QQ).CartesianProducts().extra_super_categories()
[Category of vector spaces with basis over Rational Field]
sage: ModulesWithBasis(QQ).CartesianProducts().super_categories()
[Category of Cartesian products of modules with basis over Rational Field,
 Category of vector spaces with basis over Rational Field,
 Category of Cartesian products of vector spaces over Rational Field]
class DualObjects(category, *args)

Bases: sage.categories.dual.DualObjectsCategory

extra_super_categories()

EXAMPLES:

sage: ModulesWithBasis(ZZ).DualObjects().extra_super_categories()
[Category of modules over Integer Ring]
sage: ModulesWithBasis(QQ).DualObjects().super_categories()
[Category of duals of vector spaces over Rational Field, Category of duals of modules with basis over Rational Field]
class ElementMethods
coefficient(m)

Return the coefficient of m in self and raise an error if m is not in the basis indexing set.

INPUT:

  • m – a basis index of the parent of self

OUTPUT:

The B[m]-coordinate of self with respect to the basis B. Here, B denotes the given basis of the parent of self.

EXAMPLES:

sage: s = CombinatorialFreeModule(QQ, Partitions())
sage: z = s([4]) - 2*s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficient([4])
1
sage: z.coefficient([2,1])
-2
sage: z.coefficient(Partition([2,1]))
-2
sage: z.coefficient([1,2])
Traceback (most recent call last):
...
AssertionError: [1, 2] should be an element of Partitions
sage: z.coefficient(Composition([2,1]))
Traceback (most recent call last):
...
AssertionError: [2, 1] should be an element of Partitions

Test that coefficient also works for those parents that do not have an element_class:

sage: H = End(ZZ)
sage: F = CombinatorialFreeModule(QQ, H)
sage: hasattr(H, "element_class")
False
sage: h = H.an_element()
sage: (2*F.monomial(h)).coefficient(h)
2
coefficients(sort=True)

Return a list of the (non-zero) coefficients appearing on the basis elements in self (in an arbitrary order).

INPUT:

  • sort – (default: True) to sort the coefficients based upon the default ordering of the indexing set

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.coefficients()
[1, -3]
sage: f = B['c'] - 3*B['a']
sage: f.coefficients()
[-3, 1]
sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.coefficients()
[1, 1, 1, 1]
is_zero()

Return True if and only if self == 0.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.is_zero()
False
sage: F.zero().is_zero()
True
sage: s = SymmetricFunctions(QQ).schur()
sage: s([2,1]).is_zero()
False
sage: s(0).is_zero()
True
sage: (s([2,1]) - s([2,1])).is_zero()
True
leading_coefficient(*args, **kwds)

Return the leading coefficient of self.

This is the coefficient of the term whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x,y), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X")
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_coefficient()
1
sage: def key(x): return -x
sage: x.leading_coefficient(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_coefficient()
-5
leading_item(*args, **kwds)

Return the pair (k, c) where

\[c \cdot (\mbox{the basis element indexed by } k)\]

is the leading term of self.

Here ‘leading term’ means that the corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison function, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_item()
(3, 4)
sage: def key(x): return -x
sage: x.leading_item(key=key)
(1, 3)

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_item()
([3], -5)
leading_monomial(*args, **kwds)

Return the leading monomial of self.

This is the monomial whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_monomial()
B[3]
sage: def key(x): return -x
sage: x.leading_monomial(key=key)
B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_monomial()
s[3]
leading_support(*args, **kwds)

Return the maximal element of the support of self.

Note that this may not be the term which actually appears first when self is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3])
sage: X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.leading_support()
3
sage: def key(x): return -x
sage: x.leading_support(key=key)
1

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_support()
[3]
leading_term(*args, **kwds)

Return the leading term of self.

This is the term whose corresponding basis element is maximal. Note that this may not be the term which actually appears first when self is printed.

If the default term ordering is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.leading_term()
B[3]
sage: def key(x): return -x
sage: x.leading_term(key=key)
3*B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.leading_term()
-5*s[3]
length()

Return the number of basis elements whose coefficients in self are nonzero.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.length()
2
sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: z.length()
4
map_coefficients(f)

Mapping a function on coefficients.

INPUT:

  • f – an endofunction on the coefficient ring of the free module

Return a new element of self.parent() obtained by applying the function f to all of the coefficients of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: f.map_coefficients(lambda x: x+5)
6*B['a'] + 2*B['c']

Killed coefficients are handled properly:

sage: f.map_coefficients(lambda x: 0)
0
sage: list(f.map_coefficients(lambda x: 0))
[]
sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1])+2*s([3,2])
sage: a.map_coefficients(lambda x: x*2)
2*s[2, 1] + 4*s[3, 2]
map_item(f)

Mapping a function on items.

INPUT:

  • f – a function mapping pairs (index, coeff) to other such pairs

Return a new element of self.parent() obtained by applying the function \(f\) to all items (index, coeff) of self.

EXAMPLES:

sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_item(lambda i, c: (-i, 2*c))
6*B[-1] + 4*B[0] + 4*B[1]

f needs not be injective:

sage: x.map_item(lambda i, c: (1, 2*c))
14*B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = lambda m,c: (m.conjugate(), 2*c)
sage: a = s([2,1]) + s([1,1,1])
sage: a.map_item(f)
2*s[2, 1] + 2*s[3]
map_support(f)

Mapping a function on the support.

INPUT:

  • f – an endofunction on the indices of the free module

Return a new element of self.parent() obtained by applying the function f to all of the objects indexing the basis elements.

EXAMPLES:

sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support(lambda i: -i)
3*B[-1] + 2*B[0] + 2*B[1]

f needs not be injective:

sage: x.map_support(lambda i: 1)
7*B[1]

sage: s = SymmetricFunctions(QQ).schur()
sage: a = s([2,1])+2*s([3,2])
sage: a.map_support(lambda x: x.conjugate())
s[2, 1] + 2*s[2, 2, 1]
map_support_skip_none(f)

Mapping a function on the support.

INPUT:

  • f – an endofunction on the indices of the free module

Returns a new element of self.parent() obtained by applying the function \(f\) to all of the objects indexing the basis elements.

EXAMPLES:

sage: B = CombinatorialFreeModule(ZZ, [-1, 0, 1])
sage: x = B.an_element(); x
2*B[-1] + 2*B[0] + 3*B[1]
sage: x.map_support_skip_none(lambda i: -i if i else None)
3*B[-1] + 2*B[1]

f needs not be injective:

sage: x.map_support_skip_none(lambda i: 1 if i else None)
5*B[1]
monomial_coefficients(copy=True)

Return a dictionary whose keys are indices of basis elements in the support of self and whose values are the corresponding coefficients.

INPUT:

  • copy – (default: True) if self is internally represented by a dictionary d, then make a copy of d; if False, then this can cause undesired behavior by mutating d

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 3*B['c']
sage: d = f.monomial_coefficients()
sage: d['a']
1
sage: d['c']
3
monomials()

Return a list of the monomials of self (in an arbitrary order).

The monomials of an element \(a\) are defined to be the basis elements whose corresponding coefficients of \(a\) are non-zero.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.monomials()
[B['a'], B['c']]

sage: (F.zero()).monomials()
[]
support()

Return a list of the objects indexing the basis of self.parent() whose corresponding coefficients of self are non-zero.

This method returns these objects in an arbitrary order.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] - 3*B['c']
sage: sorted(f.support())
['a', 'c']
sage: s = SymmetricFunctions(QQ).schur()
sage: z = s([4]) + s([2,1]) + s([1,1,1]) + s([1])
sage: sorted(z.support())
[[1], [1, 1, 1], [2, 1], [4]]
support_of_term()

Return the support of self, where self is a monomial (possibly with coefficient).

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1,2,3,4]); X.rename("X")
sage: X.monomial(2).support_of_term()
2
sage: X.term(3, 2).support_of_term()
3

An exception is raised if self has more than one term:

sage: (X.monomial(2) + X.monomial(3)).support_of_term()
Traceback (most recent call last):
...
ValueError: B[2] + B[3] is not a single term
tensor(*elements)

Return the tensor product of its arguments, as an element of the tensor product of the parents of those elements.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example()
sage: (a,b,c) = A.algebra_generators()
sage: a.tensor(b, c)
B[word: a] # B[word: b] # B[word: c]

FIXME: is this a policy that we want to enforce on all parents?

terms()

Return a list of the (non-zero) terms of self (in an arbitrary order).

See also

monomials()

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: B = F.basis()
sage: f = B['a'] + 2*B['c']
sage: f.terms()
[B['a'], 2*B['c']]
trailing_coefficient(*args, **kwds)

Return the trailing coefficient of self.

This is the coefficient of the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_coefficient()
3
sage: def key(x): return -x
sage: x.trailing_coefficient(key=key)
1

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_coefficient()
2
trailing_item(*args, **kwds)

Return the pair (c, k) where c*self.parent().monomial(k) is the trailing term of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_item()
(1, 3)
sage: def key(x): return -x
sage: x.trailing_item(key=key)
(3, 1)

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_item()
([1], 2)
trailing_monomial(*args, **kwds)

Return the trailing monomial of self.

This is the monomial whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_monomial()
B[1]
sage: def key(x): return -x
sage: x.trailing_monomial(key=key)
B[3]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_monomial()
s[1]
trailing_support(*args, **kwds)

Return the minimal element of the support of self. Note that this may not be the term which actually appears last when self is printed.

If the default ordering of the basis elements is not what is desired, a comparison key, key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + 4*X.monomial(3)
sage: x.trailing_support()
1

sage: def key(x): return -x
sage: x.trailing_support(key=key)
3

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_support()
[1]
trailing_term(*args, **kwds)

Return the trailing term of self.

This is the term whose corresponding basis element is minimal. Note that this may not be the term which actually appears last when self is printed.

If the default term ordering is not what is desired, a comparison key key(x), can be provided.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1, 2, 3]); X.rename("X"); x = X.basis()
sage: x = 3*X.monomial(1) + 2*X.monomial(2) + X.monomial(3)
sage: x.trailing_term()
3*B[1]
sage: def key(x): return -x
sage: x.trailing_term(key=key)
B[3]

sage: s = SymmetricFunctions(QQ).schur()
sage: f = 2*s[1] + 3*s[2,1] - 5*s[3]
sage: f.trailing_term()
2*s[1]
Filtered

alias of sage.categories.filtered_modules_with_basis.FilteredModulesWithBasis

FiniteDimensional

alias of sage.categories.finite_dimensional_modules_with_basis.FiniteDimensionalModulesWithBasis

Graded

alias of sage.categories.graded_modules_with_basis.GradedModulesWithBasis

class Homsets(category, *args)

Bases: sage.categories.homsets.HomsetsCategory

class ParentMethods
class MorphismMethods
on_basis()

Return the action of this morphism on basis elements.

OUTPUT:

  • a function from the indices of the basis of the domain to the codomain

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, [1,2,3]);   X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: H = Hom(X, Y)
sage: x = X.basis()

sage: f = H(lambda x: Y.zero()).on_basis()
sage: f(2)
0

sage: f = lambda i: Y.monomial(i) + 2*Y.monomial(i+1)
sage: g = H(on_basis = f).on_basis()
sage: g(2)
B[2] + 2*B[3]
sage: g == f
True
class ParentMethods
basis()

Return the basis of self.

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: F.basis()
Finite family {'a': B['a'], 'b': B['b'], 'c': B['c']}
sage: QS3 = SymmetricGroupAlgebra(QQ,3)
sage: list(QS3.basis())
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 1, 2], [3, 2, 1]]
cardinality()

Return the cardinality of self.

EXAMPLES:

sage: S = SymmetricGroupAlgebra(QQ, 4)
sage: S.cardinality()
+Infinity
sage: S = SymmetricGroupAlgebra(GF(2), 4) # not tested -- MRO bug trac #15475
sage: S.cardinality() # not tested -- MRO bug trac #15475
16777216
sage: S.cardinality().factor() # not tested -- MRO bug trac #15475
2^24

sage: E.<x,y> = ExteriorAlgebra(QQ)
sage: E.cardinality()
+Infinity
sage: E.<x,y> = ExteriorAlgebra(GF(3))
sage: E.cardinality()
81

sage: s = SymmetricFunctions(GF(2)).s()
sage: s.cardinality()
+Infinity
dimension()

Return the dimension of self.

EXAMPLES:

sage: A.<x,y> = algebras.DifferentialWeyl(QQ)
sage: A.dimension()
+Infinity
echelon_form(elements, row_reduced=False)

Return a basis in echelon form of the subspace spanned by a finite set of elements.

INPUT:

  • elements – a list or finite iterable of elements of self
  • row_reduced – (default: False) whether to compute the basis for the row reduced echelon form

OUTPUT:

A list of elements of self whose expressions as vectors form a matrix in echelon form. If base_ring is specified, then the calculation is achieved in this base ring.

EXAMPLES:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: V = X.echelon_form([x[0]-x[1], x[0]-x[2],x[1]-x[2]]); V
[x[0] - x[2], x[1] - x[2]]
sage: matrix(list(map(vector, V)))
[ 1  0 -1]
[ 0  1 -1]
sage: F = CombinatorialFreeModule(ZZ, [1,2,3,4])
sage: B = F.basis()
sage: elements = [B[1]-17*B[2]+6*B[3], B[1]-17*B[2]+B[4]]
sage: F.echelon_form(elements)
[B[1] - 17*B[2] + B[4], 6*B[3] - B[4]]
sage: F = CombinatorialFreeModule(QQ, ['a','b','c'])
sage: a,b,c = F.basis()
sage: F.echelon_form([8*a+b+10*c, -3*a+b-c, a-b-c])
[B['a'] + B['c'], B['b'] + 2*B['c']]
sage: R.<x,y> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: C.echelon_form([x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]])
[x[0] - x[2], x[1] - x[2]]
is_finite()

Return whether self is finite.

This is true if and only if self.basis().keys() and self.base_ring() are both finite.

EXAMPLES:

sage: GroupAlgebra(SymmetricGroup(2), IntegerModRing(10)).is_finite()
True
sage: GroupAlgebra(SymmetricGroup(2)).is_finite()
False
sage: GroupAlgebra(AbelianGroup(1), IntegerModRing(10)).is_finite()
False
linear_combination(iter_of_elements_coeff, factor_on_left=True)

Return the linear combination \(\lambda_1 v_1 + \cdots + \lambda_k v_k\) (resp. the linear combination \(v_1 \lambda_1 + \cdots + v_k \lambda_k\)) where iter_of_elements_coeff iterates through the sequence \(((\lambda_1, v_1), ..., (\lambda_k, v_k))\).

INPUT:

  • iter_of_elements_coeff – iterator of pairs (element, coeff) with element in self and coeff in self.base_ring()
  • factor_on_left – (optional) if True, the coefficients are multiplied from the left; if False, the coefficients are multiplied from the right

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.linear_combination(((a+b, 1), (-2*b + c, -1)))
1 + (3, -1)
module_morphism(on_basis=None, matrix=None, function=None, diagonal=None, triangular=None, unitriangular=False, **keywords)

Construct a module morphism from self to codomain.

Let self be a module \(X\) with a basis indexed by \(I\). This constructs a morphism \(f: X \to Y\) by linearity from a map \(I \to Y\) which is to be its restriction to the basis \((x_i)_{i \in I}\) of \(X\). Some variants are possible too.

INPUT:

  • self – a parent \(X\) in ModulesWithBasis(R) with basis \(x=(x_i)_{i\in I}\).

Exactly one of the four following options must be specified in order to define the morphism:

  • on_basis – a function \(f\) from \(I\) to \(Y\)
  • diagonal – a function \(d\) from \(I\) to \(R\)
  • function – a function \(f\) from \(X\) to \(Y\)
  • matrix – a matrix of size \(\dim Y \times \dim X\) (if the keyword side is set to 'left') or \(\dim Y \times \dim X\) (if this keyword is 'right')

Further options include:

  • codomain – the codomain \(Y\) of the morphism (default: f.codomain() if it’s defined; otherwise it must be specified)
  • category – a category or None (default: \(None`\))
  • zero – the zero of the codomain (default: codomain.zero()); can be used (with care) to define affine maps. Only meaningful with on_basis.
  • position – a non-negative integer specifying which positional argument in used as the input of the function \(f\) (default: 0); this is currently only used with on_basis.
  • triangular – (default: None) "upper" or "lower" or None:
    • "upper" - if the leading_support() of the image of the basis vector \(x_i\) is \(i\), or
    • "lower" - if the trailing_support() of the image of the basis vector \(x_i\) is \(i\).
  • unitriangular – (default: False) a boolean. Only meaningful for a triangular morphism. As a shorthand, one may use unitriangular="lower" for triangular="lower", unitriangular=True.
  • side – “left” or “right” (default: “left”) Only meaningful for a morphism built from a matrix.

EXAMPLES:

With the on_basis option, this returns a function \(g\) obtained by extending \(f\) by linearity on the position-th positional argument. For example, for position == 1 and a ternary function \(f\), one has:

\[g\left( a,\ \sum_i \lambda_i x_i,\ c \right) = \sum_i \lambda_i f(a, i, c).\]
sage: X = CombinatorialFreeModule(QQ, [1,2,3]);   X.rename("X")
sage: Y = CombinatorialFreeModule(QQ, [1,2,3,4]); Y.rename("Y")
sage: phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1), codomain = Y)
sage: x = X.basis(); y = Y.basis()
sage: phi(x[1] + x[3])
B[1] + 2*B[2] + B[3] + 2*B[4]

sage: phi
Generic morphism:
From: X
To:   Y

By default, the category is the first of Modules(R).WithBasis().FiniteDimensional(), Modules(R).WithBasis(), Modules(R), and CommutativeAdditiveMonoids() that contains both the domain and the codomain:

sage: phi.category_for()
Category of finite dimensional vector spaces with basis over Rational Field

With the zero argument, one can define affine morphisms:

sage: phi = X.module_morphism(lambda i: Y.monomial(i) + 2*Y.monomial(i+1),
....:                         codomain = Y, zero = 10*y[1])
sage: phi(x[1] + x[3])
11*B[1] + 2*B[2] + B[3] + 2*B[4]

In this special case, the default category is Sets():

sage: phi.category_for()
Category of sets

One can construct morphisms with the base ring as codomain:

sage: X = CombinatorialFreeModule(ZZ,[1,-1])
sage: phi = X.module_morphism( on_basis=lambda i: i, codomain=ZZ )
sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )
-1
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (ZZ is currently not in Modules(ZZ))
Category of modules over Integer Ring

Or more generally any ring admitting a coercion map from the base ring:

sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=RR )
sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )
-1.00000000000000
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (RR is currently not in Modules(ZZ))
Category of modules over Integer Ring

sage: phi = X.module_morphism(on_basis=lambda i: i, codomain=Zmod(4) )
sage: phi( 2 * X.monomial(1) + 3 * X.monomial(-1) )
3

sage: phi = Y.module_morphism(on_basis=lambda i: i, codomain=Zmod(4) )
Traceback (most recent call last):
...
ValueError: codomain(=Ring of integers modulo 4) should be a module over the base ring of the domain(=Y)

On can also define module morphisms between free modules over different base rings; here we implement the natural map from \(X = \RR^2\) to \(Y = \CC\):

sage: X = CombinatorialFreeModule(RR,['x','y'])
sage: Y = CombinatorialFreeModule(CC,['z'])
sage: x = X.monomial('x')
sage: y = X.monomial('y')
sage: z = Y.monomial('z')
sage: def on_basis( a ):
....:     if a == 'x':
....:         return CC(1) * z
....:     elif a == 'y':
....:         return CC(I) * z
sage: phi = X.module_morphism( on_basis=on_basis, codomain=Y )
sage: v = 3 * x + 2 * y; v
3.00000000000000*B['x'] + 2.00000000000000*B['y']
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']
sage: phi.category_for()
Category of commutative additive semigroups
sage: phi.category_for() # todo: not implemented (CC is currently not in Modules(RR)!)
Category of vector spaces over Real Field with 53 bits of precision

sage: Y = CombinatorialFreeModule(CC['q'],['z'])
sage: z = Y.monomial('z')
sage: phi = X.module_morphism( on_basis=on_basis, codomain=Y )
sage: phi(v)
(3.00000000000000+2.00000000000000*I)*B['z']

Of course, there should be a coercion between the respective base rings of the domain and the codomain for this to be meaningful:

sage: Y = CombinatorialFreeModule(QQ,['z'])
sage: phi = X.module_morphism( on_basis=on_basis, codomain=Y )
Traceback (most recent call last):
...
ValueError: codomain(=Free module generated by {'z'} over Rational Field)
 should be a module over the base ring of the
 domain(=Free module generated by {'x', 'y'} over Real Field with 53 bits of precision)

sage: Y = CombinatorialFreeModule(RR['q'],['z'])
sage: phi = Y.module_morphism( on_basis=on_basis, codomain=X )
Traceback (most recent call last):
...
ValueError: codomain(=Free module generated by {'x', 'y'} over Real Field with 53 bits of precision)
 should be a module over the base ring of the
 domain(=Free module generated by {'z'} over Univariate Polynomial Ring in q over Real Field with 53 bits of precision)

With the diagonal=d argument, this constructs the module morphism \(g\) such that

\[`g(x_i) = d(i) y_i`.\]

This assumes that the respective bases \(x\) and \(y\) of \(X\) and \(Y\) have the same index set \(I\):

sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: phi = X.module_morphism(diagonal=factorial, codomain=X)
sage: x = X.basis()
sage: phi(x[1]), phi(x[2]), phi(x[3])
(B[1], 2*B[2], 6*B[3])

See also: sage.modules.with_basis.morphism.DiagonalModuleMorphism.

With the matrix=m argument, this constructs the module morphism whose matrix in the distinguished basis of \(X\) and \(Y\) is \(m\):

sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(ZZ, [3,4]); Y.rename("Y"); y = Y.basis()
sage: m = matrix([[0,1,2],[3,5,0]])
sage: phi = X.module_morphism(matrix=m, codomain=Y)
sage: phi(x[1])
3*B[4]
sage: phi(x[2])
B[3] + 5*B[4]

See also: sage.modules.with_basis.morphism.ModuleMorphismFromMatrix.

With triangular="upper", the constructed module morphism is assumed to be upper triangular; that is its matrix in the distinguished basis of \(X\) and \(Y\) would be upper triangular with invertible elements on its diagonal. This is used to compute preimages and to invert the morphism:

sage: I = list(range(1, 200))
sage: X = CombinatorialFreeModule(QQ, I); X.rename("X"); x = X.basis()
sage: Y = CombinatorialFreeModule(QQ, I); Y.rename("Y"); y = Y.basis()
sage: f = Y.sum_of_monomials * divisors
sage: phi = X.module_morphism(f, triangular="upper", codomain = Y)
sage: phi(x[2])
B[1] + B[2]
sage: phi(x[6])
B[1] + B[2] + B[3] + B[6]
sage: phi(x[30])
B[1] + B[2] + B[3] + B[5] + B[6] + B[10] + B[15] + B[30]
sage: phi.preimage(y[2])
-B[1] + B[2]
sage: phi.preimage(y[6])
B[1] - B[2] - B[3] + B[6]
sage: phi.preimage(y[30])
-B[1] + B[2] + B[3] + B[5] - B[6] - B[10] - B[15] + B[30]
sage: (phi^-1)(y[30])
-B[1] + B[2] + B[3] + B[5] - B[6] - B[10] - B[15] + B[30]

Since trac ticket #8678, one can also define a triangular morphism from a function:

sage: X = CombinatorialFreeModule(QQ, [0,1,2,3,4]); x = X.basis()
sage: from sage.modules.with_basis.morphism import TriangularModuleMorphismFromFunction
sage: def f(x): return x + X.term(0, sum(x.coefficients()))
sage: phi = X.module_morphism(function=f, codomain=X, triangular="upper")
sage: phi(x[2] + 3*x[4])
4*B[0] + B[2] + 3*B[4]
sage: phi.preimage(_)
B[2] + 3*B[4]

For details and further optional arguments, see sage.modules.with_basis.morphism.TriangularModuleMorphism.

Warning

As a temporary measure, until multivariate morphisms are implemented, the constructed morphism is in Hom(codomain, domain, category). This is only correct for unary functions.

Todo

  • Should codomain be self by default in the diagonal, triangular, and matrix cases?
  • Support for diagonal morphisms between modules not sharing the same index set
sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: phi = X.module_morphism(diagonal=factorial, matrix=matrix(), codomain=X)
Traceback (most recent call last):
...
ValueError: module_morphism() takes exactly one option
out of `matrix`, `on_basis`, `function`, `diagonal`
sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: phi = X.module_morphism(matrix=factorial, codomain=X)
Traceback (most recent call last):
...
ValueError: matrix (=factorial) should be a matrix
sage: X = CombinatorialFreeModule(ZZ, [1,2,3]); X.rename("X")
sage: phi = X.module_morphism(diagonal=3, codomain=X)
Traceback (most recent call last):
...
ValueError: diagonal (=3) should be a function
monomial(i)

Return the basis element indexed by i.

INPUT:

  • i – an element of the index set

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial('a')
B['a']

F.monomial is in fact (almost) a map:

sage: F.monomial
Term map from {'a', 'b', 'c'} to Free module generated by {'a', 'b', 'c'} over Rational Field
monomial_or_zero_if_none(i)

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.monomial_or_zero_if_none('a')
B['a']
sage: F.monomial_or_zero_if_none(None)
0
random_element(n=2)

Return a ‘random’ element of self.

INPUT:

  • n – integer (default: 2); number of summands

ALGORITHM:

Return a sum of n terms, each of which is formed by multiplying a random element of the base ring by a random element of the group.

EXAMPLES:

sage: DihedralGroup(6).algebra(QQ).random_element()
-1/95*() - 1/2*(1,4)(2,5)(3,6)

Note, this result can depend on the PRNG state in libgap in a way that depends on which packages are loaded, so we must re-seed GAP to ensure a consistent result for this example:

sage: libgap.set_seed(0)
0
sage: SU(2, 13).algebra(QQ).random_element(1)
1/2*[       1  9*a + 2]
[2*a + 12        2]
sage: CombinatorialFreeModule(ZZ, Partitions(4)).random_element() # random
2*B[[2, 1, 1]] + B[[2, 2]]
submodule(gens, check=True, already_echelonized=False, unitriangular=False, category=None)

The submodule spanned by a finite set of elements.

INPUT:

  • gens – a list or family of elements of self
  • check – (default: True) whether to verify that the
    elements of gens are in self
  • already_echelonized – (default: False) whether
    the elements of gens are already in (not necessarily reduced) echelon form
  • unitriangular – (default: False) whether the lift morphism is unitriangular

If already_echelonized is False, then the generators are put in reduced echelon form using echelonize(), and reindexed by \(0,1,...\).

Warning

At this point, this method only works for finite dimensional submodules and if matrices can be echelonized over the base ring.

If in addition unitriangular is True, then the generators are made such that the coefficients of the pivots are 1, so that lifting map is unitriangular.

The basis of the submodule uses the same index set as the generators, and the lifting map sends \(y_i\) to \(gens[i]\).

See also

EXAMPLES:

We construct a submodule of the free \(\QQ\)-module generated by \(x_0, x_1, x_2\). The submodule is spanned by \(y_0 = x_0 - x_1\) and \(y_1 - x_1 - x_2\), and its basis elements are indexed by \(0\) and \(1\):

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], x[1] - x[2]]; gens
[x[0] - x[1], x[1] - x[2]]
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {0, 1} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[1] - x[2]
sage: Y.retract(x[0]-x[2])
y[0] + y[1]
sage: Y.retract(x[0])
Traceback (most recent call last):
...
ValueError: x[0] is not in the image

By using a family to specify a basis of the submodule, we obtain a submodule whose index set coincides with the index set of the family:

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = Family({1 : x[0] - x[1], 3: x[1] - x[2]}); gens
Finite family {1: x[0] - x[1], 3: x[1] - x[2]}
sage: Y = X.submodule(gens, already_echelonized=True)
sage: Y.print_options(prefix='y'); Y
Free module generated by {1, 3} over Rational Field
sage: y = Y.basis()
sage: y[1]
y[1]
sage: y[1].lift()
x[0] - x[1]
sage: y[3].lift()
x[1] - x[2]
sage: Y.retract(x[0]-x[2])
y[1] + y[3]
sage: Y.retract(x[0])
Traceback (most recent call last):
...
ValueError: x[0] is not in the image

It is not necessary that the generators of the submodule form a basis (an explicit basis will be computed):

sage: X = CombinatorialFreeModule(QQ, range(3), prefix="x")
sage: x = X.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]; gens
[x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = X.submodule(gens, already_echelonized=False)
sage: Y.print_options(prefix='y')
sage: Y
Free module generated by {0, 1} over Rational Field
sage: [b.lift() for b in Y.basis()]
[x[0] - x[2], x[1] - x[2]]

We now implement by hand the center of the algebra of the symmetric group \(S_3\):

sage: S3 = SymmetricGroup(3)
sage: S3A = S3.algebra(QQ)
sage: basis = S3A.annihilator_basis(S3A.algebra_generators(), S3A.bracket)
sage: basis
((), (1,2,3) + (1,3,2), (2,3) + (1,2) + (1,3))
sage: center = S3A.submodule(basis,
....:                        category=AlgebrasWithBasis(QQ).Subobjects(),
....:                        already_echelonized=True)
sage: center
Free module generated by {0, 1, 2} over Rational Field
sage: center in Algebras
True
sage: center.print_options(prefix='c')
sage: c = center.basis()
sage: c[1].lift()
(1,2,3) + (1,3,2)
sage: c[0]^2
c[0]
sage: e = 1/6*(c[0]+c[1]+c[2])
sage: e.is_idempotent()
True

Of course, this center is best constructed using:

sage: center = S3A.center()

We can also automatically construct a basis such that the lift morphism is (lower) unitriangular:

sage: R.<a,b> = QQ[]
sage: C = CombinatorialFreeModule(R, range(3), prefix='x')
sage: x = C.basis()
sage: gens = [x[0] - x[1], 2*x[1] - 2*x[2], x[0] - x[2]]
sage: Y = C.submodule(gens, unitriangular=True)
sage: Y.lift.matrix()
[ 1  0]
[ 0  1]
[-1 -1]
sum_of_monomials()

Return the sum of the basis elements with indices in indices.

INPUT:

  • indices – an list (or iterable) of indices of basis elements

EXAMPLES:

sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c'])
sage: F.sum_of_monomials(['a', 'b'])
B['a'] + B['b']

sage: F.sum_of_monomials(['a', 'b', 'a'])
2*B['a'] + B['b']

F.sum_of_monomials is in fact (almost) a map:

sage: F.sum_of_monomials
A map to Free module generated by {'a', 'b', 'c'} over Rational Field
sum_of_terms(terms)

Construct a sum of terms of self.

INPUT:

  • terms – a list (or iterable) of pairs (index, coeff)

OUTPUT:

Sum of coeff * B[index] over all (index, coeff) in terms, where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.sum_of_terms([(0, 2), (2, -3)])
2 + (0, -3)
tensor(*parents)

Return the tensor product of the parents.

EXAMPLES:

sage: C = AlgebrasWithBasis(QQ)
sage: A = C.example(); A.rename("A")
sage: A.tensor(A,A)
A # A # A
sage: A.rename(None)
term(index, coeff=None)

Construct a term in self.

INPUT:

  • index – the index of a basis element
  • coeff – an element of the coefficient ring (default: one)

OUTPUT:

coeff * B[index], where B is the basis of self.

EXAMPLES:

sage: m = matrix([[0,1],[1,1]])
sage: J.<a,b,c> = JordanAlgebra(m)
sage: J.term(1, -2)
0 + (-2, 0)

Design: should this do coercion on the coefficient ring?

Super

alias of sage.categories.super_modules_with_basis.SuperModulesWithBasis

class TensorProducts(category, *args)

Bases: sage.categories.tensor.TensorProductsCategory

The category of modules with basis constructed by tensor product of modules with basis.

class ElementMethods

Implements operations on elements of tensor products of modules with basis.

apply_multilinear_morphism(f, codomain=None)

Return the result of applying the morphism induced by f to self.

INPUT:

  • f – a multilinear morphism from the component modules of the parent tensor product to any module
  • codomain – the codomain of f (optional)

By the universal property of the tensor product, f induces a linear morphism from \(self.parent()\) to the target module. Returns the result of applying that morphism to self.

The codomain is used for optimizations purposes only. If it’s not provided, it’s recovered by calling f on the zero input.

EXAMPLES:

We start with simple (admittedly not so interesting) examples, with two modules \(A\) and \(B\):

sage: A = CombinatorialFreeModule(ZZ, [1,2], prefix="A"); A.rename("A")
sage: B = CombinatorialFreeModule(ZZ, [3,4], prefix="B"); B.rename("B")

and \(f\) the bilinear morphism \((a,b) \mapsto b \otimes a\) from \(A \times B\) to \(B \otimes A\):

sage: def f(a,b):
....:     return tensor([b,a])

Now, calling applying \(f\) on \(a \otimes b\) returns the same as \(f(a,b)\):

sage: a = A.monomial(1) + 2 * A.monomial(2); a
A[1] + 2*A[2]
sage: b = B.monomial(3) - 2 * B.monomial(4); b
B[3] - 2*B[4]
sage: f(a,b)
B[3] # A[1] + 2*B[3] # A[2] - 2*B[4] # A[1] - 4*B[4] # A[2]
sage: tensor([a,b]).apply_multilinear_morphism(f)
B[3] # A[1] + 2*B[3] # A[2] - 2*B[4] # A[1] - 4*B[4] # A[2]

\(f\) may be a bilinear morphism to any module over the base ring of \(A\) and \(B\). Here the codomain is \(\ZZ\):

sage: def f(a,b):
....:     return sum(a.coefficients(), 0) * sum(b.coefficients(), 0)
sage: f(a,b)
-3
sage: tensor([a,b]).apply_multilinear_morphism(f)
-3

Mind the \(0\) in the sums above; otherwise \(f\) would not return \(0\) in \(\ZZ\):

sage: def f(a,b):
....:     return sum(a.coefficients()) * sum(b.coefficients())
sage: type(f(A.zero(), B.zero()))
<... 'int'>

Which would be wrong and break this method:

sage: tensor([a,b]).apply_multilinear_morphism(f)
Traceback (most recent call last):
...
AttributeError: 'int' object has no attribute 'parent'

Here we consider an example where the codomain is a module with basis with a different base ring:

   sage: C = CombinatorialFreeModule(QQ, [(1,3),(2,4)], prefix="C"); C.rename("C")
   sage: def f(a,b):
   ....:     return C.sum_of_terms( [((1,3), QQ(a[1]*b[3])), ((2,4), QQ(a[2]*b[4]))] )
   sage: f(a,b)
   C[(1, 3)] - 4*C[(2, 4)]
   sage: tensor([a,b]).apply_multilinear_morphism(f)
   C[(1, 3)] - 4*C[(2, 4)]

We conclude with a real life application, where we
check that the antipode of the Hopf algebra of
Symmetric functions on the Schur basis satisfies its
defining formula::

   sage: Sym = SymmetricFunctions(QQ)
   sage: s = Sym.schur()
   sage: def f(a,b): return a*b.antipode()
   sage: x = 4*s.an_element(); x
   8*s[] + 8*s[1] + 12*s[2]
   sage: x.coproduct().apply_multilinear_morphism(f)
   8*s[]
   sage: x.coproduct().apply_multilinear_morphism(f) == x.counit()
   True

We recover the constant term of \(x\), as desired.

Todo

Extract a method to linearize a multilinear morphism, and delegate the work there.

class ParentMethods

Implements operations on tensor products of modules with basis.

extra_super_categories()

EXAMPLES:

sage: ModulesWithBasis(QQ).TensorProducts().extra_super_categories()
[Category of vector spaces with basis over Rational Field]
sage: ModulesWithBasis(QQ).TensorProducts().super_categories()
[Category of tensor products of modules with basis over Rational Field,
 Category of vector spaces with basis over Rational Field,
 Category of tensor products of vector spaces over Rational Field]
is_abelian()

Return whether this category is abelian.

This is the case if and only if the base ring is a field.

EXAMPLES:

sage: ModulesWithBasis(QQ).is_abelian()
True
sage: ModulesWithBasis(ZZ).is_abelian()
False