Discrete Valuation Rings (DVR) and Fields (DVF)#
- class sage.categories.discrete_valuation.DiscreteValuationFields[source]#
Bases:
Category_singleton
The category of discrete valuation fields
EXAMPLES:
sage: Qp(7) in DiscreteValuationFields() # needs sage.rings.padics True sage: TestSuite(DiscreteValuationFields()).run()
>>> from sage.all import * >>> Qp(Integer(7)) in DiscreteValuationFields() # needs sage.rings.padics True >>> TestSuite(DiscreteValuationFields()).run()
- class ParentMethods[source]#
Bases:
object
- residue_field()[source]#
Return the residue field of the ring of integers of this discrete valuation field.
EXAMPLES:
sage: Qp(5).residue_field() # needs sage.rings.padics Finite Field of size 5 sage: K.<u> = LaurentSeriesRing(QQ) sage: K.residue_field() Rational Field
>>> from sage.all import * >>> Qp(Integer(5)).residue_field() # needs sage.rings.padics Finite Field of size 5 >>> K = LaurentSeriesRing(QQ, names=('u',)); (u,) = K._first_ngens(1) >>> K.residue_field() Rational Field
- class sage.categories.discrete_valuation.DiscreteValuationRings[source]#
Bases:
Category_singleton
The category of discrete valuation rings
EXAMPLES:
sage: GF(7)[['x']] in DiscreteValuationRings() True sage: TestSuite(DiscreteValuationRings()).run()
>>> from sage.all import * >>> GF(Integer(7))[['x']] in DiscreteValuationRings() True >>> TestSuite(DiscreteValuationRings()).run()
- class ElementMethods[source]#
Bases:
object
- gcd(other)[source]#
Return the greatest common divisor of self and other, normalized so that it is a power of the distinguished uniformizer.
- is_unit()[source]#
Return
True
ifself
is invertible.EXAMPLES:
sage: # needs sage.rings.padics sage: x = Zp(5)(50) sage: x.is_unit() False sage: # needs sage.rings.padics sage: x = Zp(7)(50) sage: x.is_unit() True
>>> from sage.all import * >>> # needs sage.rings.padics >>> x = Zp(Integer(5))(Integer(50)) >>> x.is_unit() False >>> # needs sage.rings.padics >>> x = Zp(Integer(7))(Integer(50)) >>> x.is_unit() True
- lcm(other)[source]#
Return the least common multiple of self and other, normalized so that it is a power of the distinguished uniformizer.
- quo_rem(other)[source]#
Return the quotient and remainder for Euclidean division of
self
byother
.EXAMPLES:
sage: R.<q> = GF(5)[[]] sage: (q^2 + q).quo_rem(q) (1 + q, 0) sage: (q + 1).quo_rem(q^2) (0, 1 + q)
>>> from sage.all import * >>> R = GF(Integer(5))[['q']]; (q,) = R._first_ngens(1) >>> (q**Integer(2) + q).quo_rem(q) (1 + q, 0) >>> (q + Integer(1)).quo_rem(q**Integer(2)) (0, 1 + q)
- class ParentMethods[source]#
Bases:
object
- residue_field()[source]#
Return the residue field of this ring.
EXAMPLES:
sage: Zp(5).residue_field() # needs sage.rings.padics Finite Field of size 5 sage: K.<u> = QQ[[]] sage: K.residue_field() Rational Field
>>> from sage.all import * >>> Zp(Integer(5)).residue_field() # needs sage.rings.padics Finite Field of size 5 >>> K = QQ[['u']]; (u,) = K._first_ngens(1) >>> K.residue_field() Rational Field
- uniformizer()[source]#
Return a uniformizer of this ring.
EXAMPLES:
sage: Zp(5).uniformizer() # needs sage.rings.padics 5 + O(5^21) sage: K.<u> = QQ[[]] sage: K.uniformizer() u
>>> from sage.all import * >>> Zp(Integer(5)).uniformizer() # needs sage.rings.padics 5 + O(5^21) >>> K = QQ[['u']]; (u,) = K._first_ngens(1) >>> K.uniformizer() u