Lie Algebras#
AUTHORS:
Travis Scrimshaw (07-15-2013): Initial implementation
- class sage.categories.lie_algebras.LieAlgebras(base, name=None)[source]#
Bases:
Category_over_base_ring
The category of Lie algebras.
EXAMPLES:
sage: C = LieAlgebras(QQ); C Category of Lie algebras over Rational Field sage: sorted(C.super_categories(), key=str) [Category of vector spaces over Rational Field]
>>> from sage.all import * >>> C = LieAlgebras(QQ); C Category of Lie algebras over Rational Field >>> sorted(C.super_categories(), key=str) [Category of vector spaces over Rational Field]
We construct a typical parent in this category, and do some computations with it:
sage: # needs sage.combinat sage.groups sage.modules sage: A = C.example(); A An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1]) sage: A.category() Category of Lie algebras over Rational Field sage: A.base_ring() Rational Field sage: a, b = A.lie_algebra_generators() sage: a.bracket(b) -[1, 3, 2] + [3, 2, 1] sage: b.bracket(2*a + b) 2*[1, 3, 2] - 2*[3, 2, 1] sage: A.bracket(a, b) -[1, 3, 2] + [3, 2, 1]
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules >>> A = C.example(); A An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1]) >>> A.category() Category of Lie algebras over Rational Field >>> A.base_ring() Rational Field >>> a, b = A.lie_algebra_generators() >>> a.bracket(b) -[1, 3, 2] + [3, 2, 1] >>> b.bracket(Integer(2)*a + b) 2*[1, 3, 2] - 2*[3, 2, 1] >>> A.bracket(a, b) -[1, 3, 2] + [3, 2, 1]
Please see the source code of \(A\) (with
A??
) for how to implement other Lie algebras.Todo
Many of these tests should use Lie algebras that are not the minimal example and need to be added after Issue #16820 (and Issue #16823).
- class ElementMethods[source]#
Bases:
object
- bracket(rhs)[source]#
Return the Lie bracket
[self, rhs]
.EXAMPLES:
sage: # needs sage.combinat sage.groups sage.modules sage: L = LieAlgebras(QQ).example() sage: x,y = L.lie_algebra_generators() sage: x.bracket(y) -[1, 3, 2] + [3, 2, 1] sage: x.bracket(0) 0
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules >>> L = LieAlgebras(QQ).example() >>> x,y = L.lie_algebra_generators() >>> x.bracket(y) -[1, 3, 2] + [3, 2, 1] >>> x.bracket(Integer(0)) 0
- exp(lie_group=None)[source]#
Return the exponential of
self
inlie_group
.INPUT:
lie_group
– (optional) the Lie group to map into; Iflie_group
is not given, the Lie group associated to the parent Lie algebra ofself
is used.
EXAMPLES:
sage: # needs sage.combinat sage.modules sage.symbolic sage: L.<X,Y,Z> = LieAlgebra(QQ, 2, step=2) sage: g = (X + Y + Z).exp(); g exp(X + Y + Z) sage: h = X.exp(); h exp(X) sage: g.parent() Lie group G of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field sage: g.parent() is h.parent() True
>>> from sage.all import * >>> # needs sage.combinat sage.modules sage.symbolic >>> L = LieAlgebra(QQ, Integer(2), step=Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = L._first_ngens(3) >>> g = (X + Y + Z).exp(); g exp(X + Y + Z) >>> h = X.exp(); h exp(X) >>> g.parent() Lie group G of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field >>> g.parent() is h.parent() True
The Lie group can be specified explicitly:
sage: # needs sage.combinat sage.modules sage.symbolic sage: H = L.lie_group('H') sage: k = Z.exp(lie_group=H); k exp(Z) sage: k.parent() Lie group H of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field sage: g.parent() == k.parent() False
>>> from sage.all import * >>> # needs sage.combinat sage.modules sage.symbolic >>> H = L.lie_group('H') >>> k = Z.exp(lie_group=H); k exp(Z) >>> k.parent() Lie group H of Free Nilpotent Lie algebra on 3 generators (X, Y, Z) over Rational Field >>> g.parent() == k.parent() False
- killing_form(x)[source]#
Return the Killing form of
self
andx
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: a, b, c = L.lie_algebra_generators() # needs sage.modules sage: a.killing_form(b) # needs sage.modules 0
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> a, b, c = L.lie_algebra_generators() # needs sage.modules >>> a.killing_form(b) # needs sage.modules 0
- lift()[source]#
Return the image of
self
under the canonical lift from the Lie algebra to its universal enveloping algebra.EXAMPLES:
sage: # needs sage.combinat sage.libs.singularsage.modules sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: elt = 3*a + b - c sage: elt.lift() 3*b0 + b1 - b2
>>> from sage.all import * >>> # needs sage.combinat sage.libs.singularsage.modules >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() >>> a, b, c = L.lie_algebra_generators() >>> elt = Integer(3)*a + b - c >>> elt.lift() 3*b0 + b1 - b2
sage: L.<x,y> = LieAlgebra(QQ, abelian=True) # needs sage.combinat sage.modules sage: x.lift() # needs sage.combinat sage.modules x
>>> from sage.all import * >>> L = LieAlgebra(QQ, abelian=True, names=('x', 'y',)); (x, y,) = L._first_ngens(2)# needs sage.combinat sage.modules >>> x.lift() # needs sage.combinat sage.modules x
- to_vector(order=None)[source]#
Return the vector in
g.module()
corresponding to the elementself
ofg
(whereg
is the parent ofself
).Implement this if you implement
g.module()
. SeeLieAlgebras.module()
for how this is to be done.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: u = L((1, 0, 0)).to_vector(); u # needs sage.modules (1, 0, 0) sage: parent(u) # needs sage.modules Vector space of dimension 3 over Rational Field
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> u = L((Integer(1), Integer(0), Integer(0))).to_vector(); u # needs sage.modules (1, 0, 0) >>> parent(u) # needs sage.modules Vector space of dimension 3 over Rational Field
- class FiniteDimensional(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
- extra_super_categories()[source]#
Implements the fact that a finite dimensional Lie algebra over a finite ring is finite.
EXAMPLES:
sage: LieAlgebras(IntegerModRing(4)).FiniteDimensional().extra_super_categories() [Category of finite sets] sage: LieAlgebras(ZZ).FiniteDimensional().extra_super_categories() [] sage: C = LieAlgebras(GF(5)).FiniteDimensional() sage: C.is_subcategory(Sets().Finite()) True sage: C = LieAlgebras(ZZ).FiniteDimensional() sage: C.is_subcategory(Sets().Finite()) False sage: C = LieAlgebras(GF(5)).WithBasis().FiniteDimensional() sage: C.is_subcategory(Sets().Finite()) True
>>> from sage.all import * >>> LieAlgebras(IntegerModRing(Integer(4))).FiniteDimensional().extra_super_categories() [Category of finite sets] >>> LieAlgebras(ZZ).FiniteDimensional().extra_super_categories() [] >>> C = LieAlgebras(GF(Integer(5))).FiniteDimensional() >>> C.is_subcategory(Sets().Finite()) True >>> C = LieAlgebras(ZZ).FiniteDimensional() >>> C.is_subcategory(Sets().Finite()) False >>> C = LieAlgebras(GF(Integer(5))).WithBasis().FiniteDimensional() >>> C.is_subcategory(Sets().Finite()) True
- Graded[source]#
alias of
GradedLieAlgebras
- class Nilpotent(base_category)[source]#
Bases:
CategoryWithAxiom_over_base_ring
Category of nilpotent Lie algebras.
- class ParentMethods[source]#
Bases:
object
- is_nilpotent()[source]#
Return
True
sinceself
is nilpotent.EXAMPLES:
sage: h = lie_algebras.Heisenberg(ZZ, oo) # needs sage.combinat sage.modules sage: h.is_nilpotent() # needs sage.combinat sage.modules True
>>> from sage.all import * >>> h = lie_algebras.Heisenberg(ZZ, oo) # needs sage.combinat sage.modules >>> h.is_nilpotent() # needs sage.combinat sage.modules True
- step()[source]#
Return the nilpotency step of
self
.EXAMPLES:
sage: h = lie_algebras.Heisenberg(ZZ, oo) # needs sage.combinat sage.modules sage: h.step() # needs sage.combinat sage.modules 2
>>> from sage.all import * >>> h = lie_algebras.Heisenberg(ZZ, oo) # needs sage.combinat sage.modules >>> h.step() # needs sage.combinat sage.modules 2
- class ParentMethods[source]#
Bases:
object
- baker_campbell_hausdorff(X, Y, prec=None)[source]#
Return the element \(\log(\exp(X)\exp(Y))\).
The BCH formula is an expression for \(\log(\exp(X)\exp(Y))\) as a sum of Lie brackets of
X ` and ``Y
with rational coefficients. It is only defined if the base ring ofself
has a coercion from the rationals.INPUT:
X
– an element ofself
Y
– an element ofself
prec
– an integer; the maximum length of Lie brackets to be considered in the formula
EXAMPLES:
The BCH formula for the generators of a free nilpotent Lie algebra of step 4:
sage: L = LieAlgebra(QQ, 2, step=4) # needs sage.combinat sage.modules sage: L.inject_variables() # needs sage.combinat sage.modules Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222 sage: L.bch(X_1, X_2) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
>>> from sage.all import * >>> L = LieAlgebra(QQ, Integer(2), step=Integer(4)) # needs sage.combinat sage.modules >>> L.inject_variables() # needs sage.combinat sage.modules Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222 >>> L.bch(X_1, X_2) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
An example of the BCH formula in a quotient:
sage: Q = L.quotient(X_112 + X_122) # needs sage.combinat sage.modules sage: x, y = Q.basis().list()[:2] # needs sage.combinat sage.modules sage: Q.bch(x, y) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
>>> from sage.all import * >>> Q = L.quotient(X_112 + X_122) # needs sage.combinat sage.modules >>> x, y = Q.basis().list()[:Integer(2)] # needs sage.combinat sage.modules >>> Q.bch(x, y) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:
sage: L.<X,Y> = LieAlgebra(QQ) # needs sage.combinat sage.modules sage: L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision sage: L.bch(X, Y, 4) # needs sage.combinat sage.modules X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y], Y] + Y
>>> from sage.all import * >>> L = LieAlgebra(QQ, names=('X', 'Y',)); (X, Y,) = L._first_ngens(2)# needs sage.combinat sage.modules >>> L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision >>> L.bch(X, Y, Integer(4)) # needs sage.combinat sage.modules X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y], Y] + Y
The BCH formula requires a coercion from the rationals:
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2) # needs sage.combinat sage.modules sage: L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
>>> from sage.all import * >>> L = LieAlgebra(ZZ, Integer(2), step=Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = L._first_ngens(3)# needs sage.combinat sage.modules >>> L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
- bch(X, Y, prec=None)[source]#
Return the element \(\log(\exp(X)\exp(Y))\).
The BCH formula is an expression for \(\log(\exp(X)\exp(Y))\) as a sum of Lie brackets of
X ` and ``Y
with rational coefficients. It is only defined if the base ring ofself
has a coercion from the rationals.INPUT:
X
– an element ofself
Y
– an element ofself
prec
– an integer; the maximum length of Lie brackets to be considered in the formula
EXAMPLES:
The BCH formula for the generators of a free nilpotent Lie algebra of step 4:
sage: L = LieAlgebra(QQ, 2, step=4) # needs sage.combinat sage.modules sage: L.inject_variables() # needs sage.combinat sage.modules Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222 sage: L.bch(X_1, X_2) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
>>> from sage.all import * >>> L = LieAlgebra(QQ, Integer(2), step=Integer(4)) # needs sage.combinat sage.modules >>> L.inject_variables() # needs sage.combinat sage.modules Defining X_1, X_2, X_12, X_112, X_122, X_1112, X_1122, X_1222 >>> L.bch(X_1, X_2) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 + 1/12*X_112 + 1/12*X_122 + 1/24*X_1122
An example of the BCH formula in a quotient:
sage: Q = L.quotient(X_112 + X_122) # needs sage.combinat sage.modules sage: x, y = Q.basis().list()[:2] # needs sage.combinat sage.modules sage: Q.bch(x, y) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
>>> from sage.all import * >>> Q = L.quotient(X_112 + X_122) # needs sage.combinat sage.modules >>> x, y = Q.basis().list()[:Integer(2)] # needs sage.combinat sage.modules >>> Q.bch(x, y) # needs sage.combinat sage.modules X_1 + X_2 + 1/2*X_12 - 1/24*X_1112
The BCH formula for a non-nilpotent Lie algebra requires the precision to be explicitly stated:
sage: L.<X,Y> = LieAlgebra(QQ) # needs sage.combinat sage.modules sage: L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision sage: L.bch(X, Y, 4) # needs sage.combinat sage.modules X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y], Y] + Y
>>> from sage.all import * >>> L = LieAlgebra(QQ, names=('X', 'Y',)); (X, Y,) = L._first_ngens(2)# needs sage.combinat sage.modules >>> L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... ValueError: the Lie algebra is not known to be nilpotent, so you must specify the precision >>> L.bch(X, Y, Integer(4)) # needs sage.combinat sage.modules X + 1/12*[X, [X, Y]] + 1/24*[X, [[X, Y], Y]] + 1/2*[X, Y] + 1/12*[[X, Y], Y] + Y
The BCH formula requires a coercion from the rationals:
sage: L.<X,Y,Z> = LieAlgebra(ZZ, 2, step=2) # needs sage.combinat sage.modules sage: L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
>>> from sage.all import * >>> L = LieAlgebra(ZZ, Integer(2), step=Integer(2), names=('X', 'Y', 'Z',)); (X, Y, Z,) = L._first_ngens(3)# needs sage.combinat sage.modules >>> L.bch(X, Y) # needs sage.combinat sage.modules Traceback (most recent call last): ... TypeError: the BCH formula is not well defined since Integer Ring has no coercion from Rational Field
- bracket(lhs, rhs)[source]#
Return the Lie bracket
[lhs, rhs]
after coercinglhs
andrhs
into elements ofself
.If
lhs
andrhs
are Lie algebras, then this constructs the product space, and if only one of them is a Lie algebra, then it constructs the corresponding ideal.EXAMPLES:
sage: # needs sage.combinat sage.groups sage.modules sage: L = LieAlgebras(QQ).example() sage: x, y = L.lie_algebra_generators() sage: L.bracket(x, x + y) -[1, 3, 2] + [3, 2, 1] sage: L.bracket(x, 0) 0 sage: L.bracket(0, x) 0
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules >>> L = LieAlgebras(QQ).example() >>> x, y = L.lie_algebra_generators() >>> L.bracket(x, x + y) -[1, 3, 2] + [3, 2, 1] >>> L.bracket(x, Integer(0)) 0 >>> L.bracket(Integer(0), x) 0
Constructing the product space:
sage: L = lie_algebras.Heisenberg(QQ, 1) # needs sage.combinat sage.modules sage: Z = L.bracket(L, L); Z # needs sage.combinat sage.modules Ideal (z) of Heisenberg algebra of rank 1 over Rational Field sage: L.bracket(L, Z) # needs sage.combinat sage.modules Ideal () of Heisenberg algebra of rank 1 over Rational Field
>>> from sage.all import * >>> L = lie_algebras.Heisenberg(QQ, Integer(1)) # needs sage.combinat sage.modules >>> Z = L.bracket(L, L); Z # needs sage.combinat sage.modules Ideal (z) of Heisenberg algebra of rank 1 over Rational Field >>> L.bracket(L, Z) # needs sage.combinat sage.modules Ideal () of Heisenberg algebra of rank 1 over Rational Field
Constructing ideals:
sage: p, q, z = L.basis(); p, q, z # needs sage.combinat sage.modules (p1, q1, z) sage: L.bracket(3*p, L) # needs sage.combinat sage.modules Ideal (3*p1) of Heisenberg algebra of rank 1 over Rational Field sage: L.bracket(L, q + p) # needs sage.combinat sage.modules Ideal (p1 + q1) of Heisenberg algebra of rank 1 over Rational Field
>>> from sage.all import * >>> p, q, z = L.basis(); p, q, z # needs sage.combinat sage.modules (p1, q1, z) >>> L.bracket(Integer(3)*p, L) # needs sage.combinat sage.modules Ideal (3*p1) of Heisenberg algebra of rank 1 over Rational Field >>> L.bracket(L, q + p) # needs sage.combinat sage.modules Ideal (p1 + q1) of Heisenberg algebra of rank 1 over Rational Field
- center_universal_enveloping_algebra(UEA=None)[source]#
Return the center of the universal enveloping algebra of
self
.EXAMPLES:
sage: L = LieAlgebra(QQ, 3, 'x', abelian=True) sage: L.center_universal_enveloping_algebra() Center of Universal enveloping algebra of Abelian Lie algebra on 3 generators (x0, x1, x2) over Rational Field in the Poincare-Birkhoff-Witt basis sage: PBW = L.pbw_basis() sage: L.center_universal_enveloping_algebra(PBW) Center of Universal enveloping algebra of Abelian Lie algebra on 3 generators (x0, x1, x2) over Rational Field in the Poincare-Birkhoff-Witt basis
>>> from sage.all import * >>> L = LieAlgebra(QQ, Integer(3), 'x', abelian=True) >>> L.center_universal_enveloping_algebra() Center of Universal enveloping algebra of Abelian Lie algebra on 3 generators (x0, x1, x2) over Rational Field in the Poincare-Birkhoff-Witt basis >>> PBW = L.pbw_basis() >>> L.center_universal_enveloping_algebra(PBW) Center of Universal enveloping algebra of Abelian Lie algebra on 3 generators (x0, x1, x2) over Rational Field in the Poincare-Birkhoff-Witt basis
- from_vector(v, order=None, coerce=False)[source]#
Return the element of
self
corresponding to the vectorv
inself.module()
.Implement this if you implement
module()
; see the documentation of the latter for how this is to be done.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: u = L.from_vector(vector(QQ, (1, 0, 0))); u # needs sage.modules (1, 0, 0) sage: parent(u) is L # needs sage.modules True
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> u = L.from_vector(vector(QQ, (Integer(1), Integer(0), Integer(0)))); u # needs sage.modules (1, 0, 0) >>> parent(u) is L # needs sage.modules True
- ideal(*gens, **kwds)[source]#
Return the ideal of
self
generated bygens
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: a, b, c = L.lie_algebra_generators() # needs sage.modules sage: L.ideal([2*a - c, b + c]) # needs sage.modules An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix: [ 1 0 -1/2] [ 0 1 1]
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> a, b, c = L.lie_algebra_generators() # needs sage.modules >>> L.ideal([Integer(2)*a - c, b + c]) # needs sage.modules An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix: [ 1 0 -1/2] [ 0 1 1]
sage: # needs sage.combinat sage.groups sage.modules sage: L = LieAlgebras(QQ).example() sage: x, y = L.lie_algebra_generators() sage: L.ideal([x + y]) Traceback (most recent call last): ... NotImplementedError: ideals not yet implemented: see #16824
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules >>> L = LieAlgebras(QQ).example() >>> x, y = L.lie_algebra_generators() >>> L.ideal([x + y]) Traceback (most recent call last): ... NotImplementedError: ideals not yet implemented: see #16824
- is_abelian()[source]#
Return
True
if this Lie algebra is abelian.A Lie algebra \(\mathfrak{g}\) is abelian if \([x, y] = 0\) for all \(x, y \in \mathfrak{g}\).
EXAMPLES:
sage: # needs sage.combinat sage.modules sage: L = LieAlgebras(QQ).example() # needs sage.groups sage: L.is_abelian() # needs sage.groups False sage: R = QQ['x,y'] sage: L = LieAlgebras(QQ).example(R.gens()) sage: L.is_abelian() True
>>> from sage.all import * >>> # needs sage.combinat sage.modules >>> L = LieAlgebras(QQ).example() # needs sage.groups >>> L.is_abelian() # needs sage.groups False >>> R = QQ['x,y'] >>> L = LieAlgebras(QQ).example(R.gens()) >>> L.is_abelian() True
sage: # not implemented, needs sage.combinat sage.modules sage: L.<x> = LieAlgebra(QQ, 1) sage: L.is_abelian() True sage: L.<x,y> = LieAlgebra(QQ, 2) sage: L.is_abelian() False
>>> from sage.all import * >>> # not implemented, needs sage.combinat sage.modules >>> L = LieAlgebra(QQ, Integer(1), names=('x',)); (x,) = L._first_ngens(1) >>> L.is_abelian() True >>> L = LieAlgebra(QQ, Integer(2), names=('x', 'y',)); (x, y,) = L._first_ngens(2) >>> L.is_abelian() False
- is_commutative()[source]#
Return if
self
is commutative. This is equivalent toself
being abelian.EXAMPLES:
sage: L = LieAlgebras(QQ).example() # needs sage.combinat sage.groups sage.modules sage: L.is_commutative() # needs sage.combinat sage.groups sage.modules False
>>> from sage.all import * >>> L = LieAlgebras(QQ).example() # needs sage.combinat sage.groups sage.modules >>> L.is_commutative() # needs sage.combinat sage.groups sage.modules False
sage: L.<x> = LieAlgebra(QQ, 1) # not implemented # needs sage.combinat sage.modules sage: L.is_commutative() # not implemented # needs sage.combinat sage.modules True
>>> from sage.all import * >>> L = LieAlgebra(QQ, Integer(1), names=('x',)); (x,) = L._first_ngens(1)# not implemented # needs sage.combinat sage.modules >>> L.is_commutative() # not implemented # needs sage.combinat sage.modules True
- is_ideal(A)[source]#
Return if
self
is an ideal ofA
.EXAMPLES:
sage: L = LieAlgebras(QQ).example() # needs sage.combinat sage.groups sage.modules sage: L.is_ideal(L) # needs sage.combinat sage.groups sage.modules True
>>> from sage.all import * >>> L = LieAlgebras(QQ).example() # needs sage.combinat sage.groups sage.modules >>> L.is_ideal(L) # needs sage.combinat sage.groups sage.modules True
- is_nilpotent()[source]#
Return if
self
is a nilpotent Lie algebra.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: L.is_nilpotent() # needs sage.modules True
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> L.is_nilpotent() # needs sage.modules True
- is_solvable()[source]#
Return if
self
is a solvable Lie algebra.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: L.is_solvable() # needs sage.modules True
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> L.is_solvable() # needs sage.modules True
- killing_form(x, y)[source]#
Return the Killing form of
x
andy
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: a, b, c = L.lie_algebra_generators() # needs sage.modules sage: L.killing_form(a, b + c) # needs sage.modules 0
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> a, b, c = L.lie_algebra_generators() # needs sage.modules >>> L.killing_form(a, b + c) # needs sage.modules 0
- lie_group(name='G', **kwds)[source]#
Return the simply connected Lie group related to
self
.INPUT:
name
– string (default:'G'
); the name (symbol) given to the Lie group
EXAMPLES:
sage: L = lie_algebras.Heisenberg(QQ, 1) # needs sage.combinat sage.modules sage: G = L.lie_group('G'); G # needs sage.combinat sage.modules sage.symbolic Lie group G of Heisenberg algebra of rank 1 over Rational Field
>>> from sage.all import * >>> L = lie_algebras.Heisenberg(QQ, Integer(1)) # needs sage.combinat sage.modules >>> G = L.lie_group('G'); G # needs sage.combinat sage.modules sage.symbolic Lie group G of Heisenberg algebra of rank 1 over Rational Field
- lift()[source]#
Construct the lift morphism from
self
to the universal enveloping algebra ofself
(the latter is implemented asuniversal_enveloping_algebra()
).This is a Lie algebra homomorphism. It is injective if
self
is a free module over its base ring, or if the base ring is a \(\QQ\)-algebra.EXAMPLES:
sage: # needs sage.combinat sage.libs.singular sage.modules sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() sage: a, b, c = L.lie_algebra_generators() sage: lifted = L.lift(2*a + b - c); lifted 2*b0 + b1 - b2 sage: lifted.parent() is L.universal_enveloping_algebra() True
>>> from sage.all import * >>> # needs sage.combinat sage.libs.singular sage.modules >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() >>> a, b, c = L.lie_algebra_generators() >>> lifted = L.lift(Integer(2)*a + b - c); lifted 2*b0 + b1 - b2 >>> lifted.parent() is L.universal_enveloping_algebra() True
- module()[source]#
Return an \(R\)-module which is isomorphic to the underlying \(R\)-module of
self
.The rationale behind this method is to enable linear algebraic functionality on
self
(such as computing the span of a list of vectors inself
) via an isomorphism fromself
to an \(R\)-module (typically, although not always, an \(R\)-module of the form \(R^n\) for an \(n \in \NN\)) on which such functionality already exists. For this method to be of any use, it should return an \(R\)-module which has linear algebraic functionality thatself
does not have.For instance, if
self
has ordered basis \((e, f, h)\), thenself.module()
will be the \(R\)-module \(R^3\), and the elements \(e\), \(f\) and \(h\) ofself
will correspond to the basis vectors \((1, 0, 0)\), \((0, 1, 0)\) and \((0, 0, 1)\) ofself.module()
.This method
module()
needs to be set whenever a finite-dimensional Lie algebra with basis is intended to support linear algebra (which is, e.g., used in the computation of centralizers and lower central series). One then needs to also implement the \(R\)-module isomorphism fromself
toself.module()
in both directions; that is, implement:a
to_vector
ElementMethod which sends every element ofself
to the corresponding element ofself.module()
;a
from_vector
ParentMethod which sends every element ofself.module()
to an element ofself
.
The
from_vector
method will automatically serve as an element constructor ofself
(that is,self(v)
for anyv
inself.module()
will returnself.from_vector(v)
).Todo
Ensure that this is actually so.
EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: L.module() # needs sage.modules Vector space of dimension 3 over Rational Field
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> L.module() # needs sage.modules Vector space of dimension 3 over Rational Field
- representation(f=None, index_set=None, on_basis=False, **kwargs)[source]#
Return a representation of
self
.If no arguments are given, then this returns the trivial representation.
Currently the only implemented method of constructing a representation is by explicitly specifying the action of
the elements of
self
by matrices;the basis elements of
self
using adict
or aFamily()
;a function on basis elements (either passed as
on_basis
or settingon_basis=True
).
INPUT:
f
– the function that defines the actionindex_set
– the index set of the representationon_basis
– (optional) see above
See also
EXAMPLES:
sage: L.<x,y> = LieAlgebra(QQ, {('x','y'): {'y':1}}) sage: f = {x: Matrix([[1,0],[0,0]]), y: Matrix([[0,1],[0,0]])} sage: L.representation(f) Representation of Lie algebra on 2 generators (x, y) over Rational Field defined by: [1 0] x |--> [0 0] [0 1] y |--> [0 0] sage: L.representation() Trivial representation of Lie algebra on 2 generators (x, y) over Rational Field
>>> from sage.all import * >>> L = LieAlgebra(QQ, {('x','y'): {'y':Integer(1)}}, names=('x', 'y',)); (x, y,) = L._first_ngens(2) >>> f = {x: Matrix([[Integer(1),Integer(0)],[Integer(0),Integer(0)]]), y: Matrix([[Integer(0),Integer(1)],[Integer(0),Integer(0)]])} >>> L.representation(f) Representation of Lie algebra on 2 generators (x, y) over Rational Field defined by: [1 0] x |--> [0 0] [0 1] y |--> [0 0] >>> L.representation() Trivial representation of Lie algebra on 2 generators (x, y) over Rational Field
- subalgebra(gens, names=None, index_set=None, category=None)[source]#
Return the subalgebra of
self
generated bygens
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: a, b, c = L.lie_algebra_generators() # needs sage.modules sage: L.subalgebra([2*a - c, b + c]) # needs sage.modules An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix: [ 1 0 -1/2] [ 0 1 1]
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> a, b, c = L.lie_algebra_generators() # needs sage.modules >>> L.subalgebra([Integer(2)*a - c, b + c]) # needs sage.modules An example of a finite dimensional Lie algebra with basis: the 2-dimensional abelian Lie algebra over Rational Field with basis matrix: [ 1 0 -1/2] [ 0 1 1]
sage: # needs sage.combinat sage.groups sage.modules sage: L = LieAlgebras(QQ).example() sage: x,y = L.lie_algebra_generators() sage: L.subalgebra([x + y]) Traceback (most recent call last): ... NotImplementedError: subalgebras not yet implemented: see #17416
>>> from sage.all import * >>> # needs sage.combinat sage.groups sage.modules >>> L = LieAlgebras(QQ).example() >>> x,y = L.lie_algebra_generators() >>> L.subalgebra([x + y]) Traceback (most recent call last): ... NotImplementedError: subalgebras not yet implemented: see #17416
- trivial_representation()[source]#
Return the trivial representation of
self
.EXAMPLES:
sage: L = lie_algebras.strictly_upper_triangular_matrices(QQ, 4) sage: L.trivial_representation() Trivial representation of Lie algebra of 4-dimensional strictly upper triangular matrices over Rational Field
>>> from sage.all import * >>> L = lie_algebras.strictly_upper_triangular_matrices(QQ, Integer(4)) >>> L.trivial_representation() Trivial representation of Lie algebra of 4-dimensional strictly upper triangular matrices over Rational Field
- universal_enveloping_algebra()[source]#
Return the universal enveloping algebra of
self
.EXAMPLES:
sage: L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules sage: L.universal_enveloping_algebra() # needs sage.combinat sage.libs.singular sage.modules Noncommutative Multivariate Polynomial Ring in b0, b1, b2 over Rational Field, nc-relations: {}
>>> from sage.all import * >>> L = LieAlgebras(QQ).FiniteDimensional().WithBasis().example() # needs sage.modules >>> L.universal_enveloping_algebra() # needs sage.combinat sage.libs.singular sage.modules Noncommutative Multivariate Polynomial Ring in b0, b1, b2 over Rational Field, nc-relations: {}
sage: L = LieAlgebra(QQ, 3, 'x', abelian=True) # needs sage.combinat sage.modules sage: L.universal_enveloping_algebra() # needs sage.combinat sage.libs.singular sage.modules Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
>>> from sage.all import * >>> L = LieAlgebra(QQ, Integer(3), 'x', abelian=True) # needs sage.combinat sage.modules >>> L.universal_enveloping_algebra() # needs sage.combinat sage.libs.singular sage.modules Multivariate Polynomial Ring in x0, x1, x2 over Rational Field
See also
- class SubcategoryMethods[source]#
Bases:
object
- Nilpotent()[source]#
Return the full subcategory of nilpotent objects of
self
.A Lie algebra \(L\) is nilpotent if there exist an integer \(s\) such that all iterated brackets of \(L\) of length more than \(s\) vanish. The integer \(s\) is called the nilpotency step. For instance any abelian Lie algebra is nilpotent of step 1.
EXAMPLES:
sage: LieAlgebras(QQ).Nilpotent() Category of nilpotent Lie algebras over Rational Field sage: LieAlgebras(QQ).WithBasis().Nilpotent() Category of nilpotent Lie algebras with basis over Rational Field
>>> from sage.all import * >>> LieAlgebras(QQ).Nilpotent() Category of nilpotent Lie algebras over Rational Field >>> LieAlgebras(QQ).WithBasis().Nilpotent() Category of nilpotent Lie algebras with basis over Rational Field
- WithBasis[source]#
alias of
LieAlgebrasWithBasis
- example(gens=None)[source]#
Return an example of a Lie algebra as per
Category.example
.EXAMPLES:
sage: LieAlgebras(QQ).example() # needs sage.combinat sage.groups sage.modules An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1])
>>> from sage.all import * >>> LieAlgebras(QQ).example() # needs sage.combinat sage.groups sage.modules An example of a Lie algebra: the Lie algebra from the associative algebra Symmetric group algebra of order 3 over Rational Field generated by ([2, 1, 3], [2, 3, 1])
Another set of generators can be specified as an optional argument:
sage: F.<x,y,z> = FreeAlgebra(QQ) # needs sage.combinat sage.modules sage: LieAlgebras(QQ).example(F.gens()) # needs sage.combinat sage.modules An example of a Lie algebra: the Lie algebra from the associative algebra Free Algebra on 3 generators (x, y, z) over Rational Field generated by (x, y, z)
>>> from sage.all import * >>> F = FreeAlgebra(QQ, names=('x', 'y', 'z',)); (x, y, z,) = F._first_ngens(3)# needs sage.combinat sage.modules >>> LieAlgebras(QQ).example(F.gens()) # needs sage.combinat sage.modules An example of a Lie algebra: the Lie algebra from the associative algebra Free Algebra on 3 generators (x, y, z) over Rational Field generated by (x, y, z)