Quiver mutation types#
AUTHORS:
Gregg Musiker (2012, initial version)
Christian Stump (2012, initial version)
Hugh Thomas (2012, initial version)
- sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType(*args)[source]#
- Quiver mutation types can be seen as a slight generalization of
generalized Cartan types.
Background on generalized Cartan types can be found at
For the compendium on the cluster algebra and quiver package in Sage see [MS2011]
A \(B\)-matrix is a skew-symmetrizable \(( n \times n )\)-matrix \(M\). I.e., there exists an invertible diagonal matrix \(D\) such that \(DM\) is skew-symmetric. \(M\) can be encoded as a quiver by having a directed edge from vertex \(i\) to vertex \(j\) with label \((a,b)\) if \(a = M_{i,j} > 0\) and \(b = M_{j,i} < 0\). We consider quivers up to mutation equivalence.
To a quiver mutation type we can associate a generalized Cartan type by sending \(M\) to the generalized Cartan matrix \(C(M)\) obtained by replacing all positive entries by their negatives and adding \(2\)’s on the main diagonal.
QuiverMutationType
constructs a quiver mutation type object. For more detail on the possible different types, please see the compendium.INPUT:
The input consists either of a quiver mutation type, or of a
letter
(a string), arank
(one integer or a list/tuple of integers), and an optionaltwist
(an integer or a list of integers). There are several different naming conventions for quiver mutation types.Finite type –
letter
is a Dynkin type (A-G), andrank
is the rank.Affine type – there is more than one convention for naming affine types.
Kac’s notation:
letter
is a Dynkin type,rank
is the rank of the associated finite Dynkin diagram, andtwist
is the twist, which could be 1, 2, or 3. In the special case of affine type A, there is more than one quiver mutation type associated to the Cartan type. In this case only,rank
is a pair of integers (i,j), giving the number of edges pointing clockwise and the number of edges pointing counter-clockwise. The total number of vertices is given by i+j in this case.Naive notation:
letter
is one of ‘BB’, ‘BC’, ‘BD’, ‘CC’, ‘CD’. The name specifies the two ends of the diagram, which are joined by a path. The total number of vertices is given byrank +1
(to match the indexing people expect because these are affine types). In general,rank
must be large enough for the picture to make sense, but we acceptletter
isBC
andrank=1
.Macdonald notation: for the dual of an untwisted affine type (such as [‘C’, 6, 1]), we accept a twist of -1 (i.e., [‘C’,6,-1]).
Elliptic type –
letter
is a Dynkin type,rank
is the rank of the finite Dynkin diagram, andtwist
is a tuple of two integers. We follow Saito’s notation.Other shapes:
Rank 2:
letter
is ‘R2’, andrank
is a pair of integers specifying the label on the unique edge.Triangle:
letter
isTR
, andrank
is the number of vertices along a side.T: This defines a quiver shaped like a T.
letter
is ‘T’, and therank
is a triple, whose entries specify the number of vertices along each path from the branch point (counting the branch point).Grassmannian: This defines the cluster algebra (without coefficients) corresponding to the cluster algebra with coefficients which is the coordinate ring of a Grassmannian.
letter
is ‘GR’.rank
is a pair of integers (\(k\), \(n\)) with ‘k’ < ‘n’ specifying the Grassmannian of \(k\)-planes in \(n\)-space. This defines a quiver given by a (k-1) x (n-k-1) grid where each square is cyclically oriented.Exceptional mutation finite quivers: The two exceptional mutation finite quivers, found by Derksen-Owen, have
letter
as ‘X’ andrank
6 or 7, equal to the number of vertices.AE, BE, CE, DE: Quivers are built of one end which looks like type (affine A), B, C, or D, and the other end which looks like type E (i.e., it consists of two antennae, one of length one, and one of length two).
letter
is ‘AE’, ‘BE’, ‘CE’, or ‘DE’, andrank
is the total number of vertices. Note that ‘AE’ is of a slightly different form and requiresrank
to be a pair of integers (i,j) just as in the case of affine type A. See Exercise 4.3 in Kac’s book Infinite Dimensional Lie Algebras for more details.Infinite type E: It is also possible to obtain infinite-type E quivers by specifying
letter
as ‘E’ andrank
as the number of vertices.
REFERENCES:
A good reference for finite and affine Dynkin diagrams, including Kac’s notation, is the Wikipedia article Dynkin_diagram.
A good reference for the skew-symmetrizable elliptic diagrams is “Cluster algebras of finite mutation type via unfolding” by A. Felikson, M. Shapiro, and P. Tumarkin, [FST2012].
EXAMPLES:
Finite types:
sage: QuiverMutationType('A', 1) ['A', 1] sage: QuiverMutationType('A',5) ['A', 5] sage: QuiverMutationType('B', 2) ['B', 2] sage: QuiverMutationType('B',5) ['B', 5] sage: QuiverMutationType('C', 2) ['B', 2] sage: QuiverMutationType('C',5) ['C', 5] sage: QuiverMutationType('D', 2) [ ['A', 1], ['A', 1] ] sage: QuiverMutationType('D',3) ['A', 3] sage: QuiverMutationType('D',4) ['D', 4] sage: QuiverMutationType('E',6) ['E', 6] sage: QuiverMutationType('G', 2) ['G', 2] sage: QuiverMutationType('A',(1,0), 1) ['A', 1] sage: QuiverMutationType('A',(2,0), 1) [ ['A', 1], ['A', 1] ] sage: QuiverMutationType('A',(7,0), 1) ['D', 7]
>>> from sage.all import * >>> QuiverMutationType('A', Integer(1)) ['A', 1] >>> QuiverMutationType('A',Integer(5)) ['A', 5] >>> QuiverMutationType('B', Integer(2)) ['B', 2] >>> QuiverMutationType('B',Integer(5)) ['B', 5] >>> QuiverMutationType('C', Integer(2)) ['B', 2] >>> QuiverMutationType('C',Integer(5)) ['C', 5] >>> QuiverMutationType('D', Integer(2)) [ ['A', 1], ['A', 1] ] >>> QuiverMutationType('D',Integer(3)) ['A', 3] >>> QuiverMutationType('D',Integer(4)) ['D', 4] >>> QuiverMutationType('E',Integer(6)) ['E', 6] >>> QuiverMutationType('G', Integer(2)) ['G', 2] >>> QuiverMutationType('A',(Integer(1),Integer(0)), Integer(1)) ['A', 1] >>> QuiverMutationType('A',(Integer(2),Integer(0)), Integer(1)) [ ['A', 1], ['A', 1] ] >>> QuiverMutationType('A',(Integer(7),Integer(0)), Integer(1)) ['D', 7]
Affine types:
sage: QuiverMutationType('A',(1, 1), 1) ['A', [1, 1], 1] sage: QuiverMutationType('A',(2,4), 1) ['A', [2, 4], 1] sage: QuiverMutationType('BB', 2, 1) ['BB', 2, 1] sage: QuiverMutationType('BB',4, 1) ['BB', 4, 1] sage: QuiverMutationType('CC', 2, 1) ['CC', 2, 1] sage: QuiverMutationType('CC',4, 1) ['CC', 4, 1] sage: QuiverMutationType('BC', 1, 1) ['BC', 1, 1] sage: QuiverMutationType('BC',5, 1) ['BC', 5, 1] sage: QuiverMutationType('BD',3, 1) ['BD', 3, 1] sage: QuiverMutationType('BD',5, 1) ['BD', 5, 1] sage: QuiverMutationType('CD',3, 1) ['CD', 3, 1] sage: QuiverMutationType('CD',5, 1) ['CD', 5, 1] sage: QuiverMutationType('D',4, 1) ['D', 4, 1] sage: QuiverMutationType('D',6, 1) ['D', 6, 1] sage: QuiverMutationType('E',6, 1) ['E', 6, 1] sage: QuiverMutationType('E',7, 1) ['E', 7, 1] sage: QuiverMutationType('E',8, 1) ['E', 8, 1] sage: QuiverMutationType('F',4, 1) ['F', 4, 1] sage: QuiverMutationType('F',4,-1) ['F', 4, -1] sage: QuiverMutationType('G', 2, 1) ['G', 2, 1] sage: QuiverMutationType('G', 2,-1) ['G', 2, -1] sage: QuiverMutationType('A',3, 2) == QuiverMutationType('D',3, 2) True
>>> from sage.all import * >>> QuiverMutationType('A',(Integer(1), Integer(1)), Integer(1)) ['A', [1, 1], 1] >>> QuiverMutationType('A',(Integer(2),Integer(4)), Integer(1)) ['A', [2, 4], 1] >>> QuiverMutationType('BB', Integer(2), Integer(1)) ['BB', 2, 1] >>> QuiverMutationType('BB',Integer(4), Integer(1)) ['BB', 4, 1] >>> QuiverMutationType('CC', Integer(2), Integer(1)) ['CC', 2, 1] >>> QuiverMutationType('CC',Integer(4), Integer(1)) ['CC', 4, 1] >>> QuiverMutationType('BC', Integer(1), Integer(1)) ['BC', 1, 1] >>> QuiverMutationType('BC',Integer(5), Integer(1)) ['BC', 5, 1] >>> QuiverMutationType('BD',Integer(3), Integer(1)) ['BD', 3, 1] >>> QuiverMutationType('BD',Integer(5), Integer(1)) ['BD', 5, 1] >>> QuiverMutationType('CD',Integer(3), Integer(1)) ['CD', 3, 1] >>> QuiverMutationType('CD',Integer(5), Integer(1)) ['CD', 5, 1] >>> QuiverMutationType('D',Integer(4), Integer(1)) ['D', 4, 1] >>> QuiverMutationType('D',Integer(6), Integer(1)) ['D', 6, 1] >>> QuiverMutationType('E',Integer(6), Integer(1)) ['E', 6, 1] >>> QuiverMutationType('E',Integer(7), Integer(1)) ['E', 7, 1] >>> QuiverMutationType('E',Integer(8), Integer(1)) ['E', 8, 1] >>> QuiverMutationType('F',Integer(4), Integer(1)) ['F', 4, 1] >>> QuiverMutationType('F',Integer(4),-Integer(1)) ['F', 4, -1] >>> QuiverMutationType('G', Integer(2), Integer(1)) ['G', 2, 1] >>> QuiverMutationType('G', Integer(2),-Integer(1)) ['G', 2, -1] >>> QuiverMutationType('A',Integer(3), Integer(2)) == QuiverMutationType('D',Integer(3), Integer(2)) True
Affine types using Kac’s Notation:
sage: QuiverMutationType('A', 1, 1) ['A', [1, 1], 1] sage: QuiverMutationType('B',5, 1) ['BD', 5, 1] sage: QuiverMutationType('C',5, 1) ['CC', 5, 1] sage: QuiverMutationType('A', 2, 2) ['BC', 1, 1] sage: QuiverMutationType('A',7, 2) ['CD', 4, 1] sage: QuiverMutationType('A',8, 2) ['BC', 4, 1] sage: QuiverMutationType('D',6, 2) ['BB', 5, 1] sage: QuiverMutationType('E',6, 2) ['F', 4, -1] sage: QuiverMutationType('D',4,3) ['G', 2, -1]
>>> from sage.all import * >>> QuiverMutationType('A', Integer(1), Integer(1)) ['A', [1, 1], 1] >>> QuiverMutationType('B',Integer(5), Integer(1)) ['BD', 5, 1] >>> QuiverMutationType('C',Integer(5), Integer(1)) ['CC', 5, 1] >>> QuiverMutationType('A', Integer(2), Integer(2)) ['BC', 1, 1] >>> QuiverMutationType('A',Integer(7), Integer(2)) ['CD', 4, 1] >>> QuiverMutationType('A',Integer(8), Integer(2)) ['BC', 4, 1] >>> QuiverMutationType('D',Integer(6), Integer(2)) ['BB', 5, 1] >>> QuiverMutationType('E',Integer(6), Integer(2)) ['F', 4, -1] >>> QuiverMutationType('D',Integer(4),Integer(3)) ['G', 2, -1]
Elliptic types:
sage: QuiverMutationType('E',6,[1, 1]) ['E', 6, [1, 1]] sage: QuiverMutationType('F',4,[2, 1]) ['F', 4, [1, 2]] sage: QuiverMutationType('G', 2,[3,3]) ['G', 2, [3, 3]]
>>> from sage.all import * >>> QuiverMutationType('E',Integer(6),[Integer(1), Integer(1)]) ['E', 6, [1, 1]] >>> QuiverMutationType('F',Integer(4),[Integer(2), Integer(1)]) ['F', 4, [1, 2]] >>> QuiverMutationType('G', Integer(2),[Integer(3),Integer(3)]) ['G', 2, [3, 3]]
Mutation finite types:
Rank 2 cases:
sage: QuiverMutationType('R2',(1, 1)) ['A', 2] sage: QuiverMutationType('R2',(1, 2)) ['B', 2] sage: QuiverMutationType('R2',(1,3)) ['G', 2] sage: QuiverMutationType('R2',(1,4)) ['BC', 1, 1] sage: QuiverMutationType('R2',(1,5)) ['R2', [1, 5]] sage: QuiverMutationType('R2',(2, 2)) ['A', [1, 1], 1] sage: QuiverMutationType('R2',(3,5)) ['R2', [3, 5]]
>>> from sage.all import * >>> QuiverMutationType('R2',(Integer(1), Integer(1))) ['A', 2] >>> QuiverMutationType('R2',(Integer(1), Integer(2))) ['B', 2] >>> QuiverMutationType('R2',(Integer(1),Integer(3))) ['G', 2] >>> QuiverMutationType('R2',(Integer(1),Integer(4))) ['BC', 1, 1] >>> QuiverMutationType('R2',(Integer(1),Integer(5))) ['R2', [1, 5]] >>> QuiverMutationType('R2',(Integer(2), Integer(2))) ['A', [1, 1], 1] >>> QuiverMutationType('R2',(Integer(3),Integer(5))) ['R2', [3, 5]]
Exceptional Derksen-Owen quivers:
sage: QuiverMutationType('X',6) ['X', 6]
>>> from sage.all import * >>> QuiverMutationType('X',Integer(6)) ['X', 6]
(Mainly) mutation infinite types:
Infinite type E:
sage: QuiverMutationType('E',9) ['E', 8, 1] sage: QuiverMutationType('E', 10) ['E', 10] sage: QuiverMutationType('E', 12) ['E', 12] sage: QuiverMutationType('AE',(2,3)) ['AE', [2, 3]] sage: QuiverMutationType('BE',5) ['BE', 5] sage: QuiverMutationType('CE',5) ['CE', 5] sage: QuiverMutationType('DE',6) ['DE', 6]
>>> from sage.all import * >>> QuiverMutationType('E',Integer(9)) ['E', 8, 1] >>> QuiverMutationType('E', Integer(10)) ['E', 10] >>> QuiverMutationType('E', Integer(12)) ['E', 12] >>> QuiverMutationType('AE',(Integer(2),Integer(3))) ['AE', [2, 3]] >>> QuiverMutationType('BE',Integer(5)) ['BE', 5] >>> QuiverMutationType('CE',Integer(5)) ['CE', 5] >>> QuiverMutationType('DE',Integer(6)) ['DE', 6]
Grassmannian types:
sage: QuiverMutationType('GR',(2,4)) ['A', 1] sage: QuiverMutationType('GR',(2,6)) ['A', 3] sage: QuiverMutationType('GR',(3,6)) ['D', 4] sage: QuiverMutationType('GR',(3,7)) ['E', 6] sage: QuiverMutationType('GR',(3,8)) ['E', 8] sage: QuiverMutationType('GR',(3, 10)) ['GR', [3, 10]]
>>> from sage.all import * >>> QuiverMutationType('GR',(Integer(2),Integer(4))) ['A', 1] >>> QuiverMutationType('GR',(Integer(2),Integer(6))) ['A', 3] >>> QuiverMutationType('GR',(Integer(3),Integer(6))) ['D', 4] >>> QuiverMutationType('GR',(Integer(3),Integer(7))) ['E', 6] >>> QuiverMutationType('GR',(Integer(3),Integer(8))) ['E', 8] >>> QuiverMutationType('GR',(Integer(3), Integer(10))) ['GR', [3, 10]]
Triangular types:
sage: QuiverMutationType('TR', 2) ['A', 3] sage: QuiverMutationType('TR',3) ['D', 6] sage: QuiverMutationType('TR',4) ['E', 8, [1, 1]] sage: QuiverMutationType('TR',5) ['TR', 5]
>>> from sage.all import * >>> QuiverMutationType('TR', Integer(2)) ['A', 3] >>> QuiverMutationType('TR',Integer(3)) ['D', 6] >>> QuiverMutationType('TR',Integer(4)) ['E', 8, [1, 1]] >>> QuiverMutationType('TR',Integer(5)) ['TR', 5]
T types:
sage: QuiverMutationType('T',(1, 1, 1)) ['A', 1] sage: QuiverMutationType('T',(1, 1,4)) ['A', 4] sage: QuiverMutationType('T',(1,4,4)) ['A', 7] sage: QuiverMutationType('T',(2, 2, 2)) ['D', 4] sage: QuiverMutationType('T',(2, 2,4)) ['D', 6] sage: QuiverMutationType('T',(2,3,3)) ['E', 6] sage: QuiverMutationType('T',(2,3,4)) ['E', 7] sage: QuiverMutationType('T',(2,3,5)) ['E', 8] sage: QuiverMutationType('T',(2,3,6)) ['E', 8, 1] sage: QuiverMutationType('T',(2,3,7)) ['E', 10] sage: QuiverMutationType('T',(3,3,3)) ['E', 6, 1] sage: QuiverMutationType('T',(3,3,4)) ['T', [3, 3, 4]]
>>> from sage.all import * >>> QuiverMutationType('T',(Integer(1), Integer(1), Integer(1))) ['A', 1] >>> QuiverMutationType('T',(Integer(1), Integer(1),Integer(4))) ['A', 4] >>> QuiverMutationType('T',(Integer(1),Integer(4),Integer(4))) ['A', 7] >>> QuiverMutationType('T',(Integer(2), Integer(2), Integer(2))) ['D', 4] >>> QuiverMutationType('T',(Integer(2), Integer(2),Integer(4))) ['D', 6] >>> QuiverMutationType('T',(Integer(2),Integer(3),Integer(3))) ['E', 6] >>> QuiverMutationType('T',(Integer(2),Integer(3),Integer(4))) ['E', 7] >>> QuiverMutationType('T',(Integer(2),Integer(3),Integer(5))) ['E', 8] >>> QuiverMutationType('T',(Integer(2),Integer(3),Integer(6))) ['E', 8, 1] >>> QuiverMutationType('T',(Integer(2),Integer(3),Integer(7))) ['E', 10] >>> QuiverMutationType('T',(Integer(3),Integer(3),Integer(3))) ['E', 6, 1] >>> QuiverMutationType('T',(Integer(3),Integer(3),Integer(4))) ['T', [3, 3, 4]]
Reducible types:
sage: QuiverMutationType(['A',3],['B',4]) [ ['A', 3], ['B', 4] ]
>>> from sage.all import * >>> QuiverMutationType(['A',Integer(3)],['B',Integer(4)]) [ ['A', 3], ['B', 4] ]
- class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationTypeFactory[source]#
Bases:
SageObject
- samples(finite=None, affine=None, elliptic=None, mutation_finite=None)[source]#
Return a sample of the available quiver mutations types.
INPUT:
finite
affine
elliptic
mutation_finite
All four input keywords default values are
None
. If set toTrue
orFalse
, only these samples are returned.EXAMPLES:
sage: QuiverMutationType.samples() [['A', 1], ['A', 5], ['B', 2], ['B', 5], ['C', 3], ['C', 5], [ ['A', 1], ['A', 1] ], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['A', [1, 1], 1], ['A', [4, 5], 1], ['D', 4, 1], ['BB', 5, 1], ['E', 6, [1, 1]], ['E', 7, [1, 1]], ['R2', [1, 5]], ['R2', [3, 5]], ['E', 10], ['BE', 5], ['GR', [3, 10]], ['T', [3, 3, 4]]] sage: QuiverMutationType.samples(finite=True) [['A', 1], ['A', 5], ['B', 2], ['B', 5], ['C', 3], ['C', 5], [ ['A', 1], ['A', 1] ], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]] sage: QuiverMutationType.samples(affine=True) [['A', [1, 1], 1], ['A', [4, 5], 1], ['D', 4, 1], ['BB', 5, 1]] sage: QuiverMutationType.samples(elliptic=True) [['E', 6, [1, 1]], ['E', 7, [1, 1]]] sage: QuiverMutationType.samples(mutation_finite=False) [['R2', [1, 5]], ['R2', [3, 5]], ['E', 10], ['BE', 5], ['GR', [3, 10]], ['T', [3, 3, 4]]]
>>> from sage.all import * >>> QuiverMutationType.samples() [['A', 1], ['A', 5], ['B', 2], ['B', 5], ['C', 3], ['C', 5], [ ['A', 1], ['A', 1] ], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['A', [1, 1], 1], ['A', [4, 5], 1], ['D', 4, 1], ['BB', 5, 1], ['E', 6, [1, 1]], ['E', 7, [1, 1]], ['R2', [1, 5]], ['R2', [3, 5]], ['E', 10], ['BE', 5], ['GR', [3, 10]], ['T', [3, 3, 4]]] >>> QuiverMutationType.samples(finite=True) [['A', 1], ['A', 5], ['B', 2], ['B', 5], ['C', 3], ['C', 5], [ ['A', 1], ['A', 1] ], ['D', 5], ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]] >>> QuiverMutationType.samples(affine=True) [['A', [1, 1], 1], ['A', [4, 5], 1], ['D', 4, 1], ['BB', 5, 1]] >>> QuiverMutationType.samples(elliptic=True) [['E', 6, [1, 1]], ['E', 7, [1, 1]]] >>> QuiverMutationType.samples(mutation_finite=False) [['R2', [1, 5]], ['R2', [3, 5]], ['E', 10], ['BE', 5], ['GR', [3, 10]], ['T', [3, 3, 4]]]
- class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Irreducible(letter, rank, twist=None)[source]#
Bases:
QuiverMutationType_abstract
The mutation type for a cluster algebra or a quiver. Should not be called directly, but through
QuiverMutationType
.- class_size()[source]#
If it is known, the size of the mutation class of all quivers which are mutation equivalent to the standard quiver of
self
(up to isomorphism) is returned.Otherwise,
NotImplemented
is returned.Formula for finite type A is taken from Torkildsen - Counting cluster-tilted algebras of type \(A_n\). Formulas for affine type A and finite type D are taken from Bastian, Prellberg, Rubey, Stump - Counting the number of elements in the mutation classes of \(\widetilde A_n\) quivers. Formulas for finite and affine types B and C are proven but not yet published. Conjectural formulas for several other non-simply-laced affine types are implemented. Exceptional Types (finite, affine, and elliptic) E, F, G, and X are hardcoded.
EXAMPLES:
sage: mut_type = QuiverMutationType( ['A',5] ); mut_type ['A', 5] sage: mut_type.class_size() 19 sage: mut_type = QuiverMutationType( ['A',[10,3], 1] ); mut_type ['A', [3, 10], 1] sage: mut_type.class_size() 142120 sage: mut_type = QuiverMutationType( ['B',6] ); mut_type ['B', 6] sage: mut_type.class_size() 132 sage: mut_type = QuiverMutationType( ['BD',6, 1] ); mut_type ['BD', 6, 1] sage: mut_type.class_size() Warning: This method uses a formula which has not been proved correct. 504
>>> from sage.all import * >>> mut_type = QuiverMutationType( ['A',Integer(5)] ); mut_type ['A', 5] >>> mut_type.class_size() 19 >>> mut_type = QuiverMutationType( ['A',[Integer(10),Integer(3)], Integer(1)] ); mut_type ['A', [3, 10], 1] >>> mut_type.class_size() 142120 >>> mut_type = QuiverMutationType( ['B',Integer(6)] ); mut_type ['B', 6] >>> mut_type.class_size() 132 >>> mut_type = QuiverMutationType( ['BD',Integer(6), Integer(1)] ); mut_type ['BD', 6, 1] >>> mut_type.class_size() Warning: This method uses a formula which has not been proved correct. 504
Check that Issue #14048 is fixed:
sage: mut_type = QuiverMutationType( ['F',4,(2, 1)] ) sage: mut_type.class_size() 90
>>> from sage.all import * >>> mut_type = QuiverMutationType( ['F',Integer(4),(Integer(2), Integer(1))] ) >>> mut_type.class_size() 90
- dual()[source]#
Return the
QuiverMutationType
which is dual toself
.EXAMPLES:
sage: mut_type = QuiverMutationType('A',5); mut_type ['A', 5] sage: mut_type.dual() ['A', 5] sage: mut_type = QuiverMutationType('B',5); mut_type ['B', 5] sage: mut_type.dual() ['C', 5] sage: mut_type.dual().dual() ['B', 5] sage: mut_type.dual().dual() == mut_type True
>>> from sage.all import * >>> mut_type = QuiverMutationType('A',Integer(5)); mut_type ['A', 5] >>> mut_type.dual() ['A', 5] >>> mut_type = QuiverMutationType('B',Integer(5)); mut_type ['B', 5] >>> mut_type.dual() ['C', 5] >>> mut_type.dual().dual() ['B', 5] >>> mut_type.dual().dual() == mut_type True
- irreducible_components()[source]#
Return a list of all irreducible components of
self
.EXAMPLES:
sage: mut_type = QuiverMutationType('A',3); mut_type ['A', 3] sage: mut_type.irreducible_components() (['A', 3],)
>>> from sage.all import * >>> mut_type = QuiverMutationType('A',Integer(3)); mut_type ['A', 3] >>> mut_type.irreducible_components() (['A', 3],)
- class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_Reducible(*args)[source]#
Bases:
QuiverMutationType_abstract
The mutation type for a cluster algebra or a quiver. Should not be called directly, but through
QuiverMutationType
. Inherits fromQuiverMutationType_abstract
.- class_size()[source]#
If it is known, the size of the mutation class of all quivers which are mutation equivalent to the standard quiver of
self
(up to isomorphism) is returned.Otherwise,
NotImplemented
is returned.EXAMPLES:
sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.class_size() 20 sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]) sage: mut_type [ ['A', 3], ['B', 3], ['X', 6] ] sage: mut_type.class_size() 100
>>> from sage.all import * >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.class_size() 20 >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)],['X',Integer(6)]) >>> mut_type [ ['A', 3], ['B', 3], ['X', 6] ] >>> mut_type.class_size() 100
- dual()[source]#
Return the
QuiverMutationType
which is dual toself
.EXAMPLES:
sage: mut_type = QuiverMutationType(['A',5],['B',6],['C',5],['D',4]); mut_type [ ['A', 5], ['B', 6], ['C', 5], ['D', 4] ] sage: mut_type.dual() [ ['A', 5], ['C', 6], ['B', 5], ['D', 4] ]
>>> from sage.all import * >>> mut_type = QuiverMutationType(['A',Integer(5)],['B',Integer(6)],['C',Integer(5)],['D',Integer(4)]); mut_type [ ['A', 5], ['B', 6], ['C', 5], ['D', 4] ] >>> mut_type.dual() [ ['A', 5], ['C', 6], ['B', 5], ['D', 4] ]
- irreducible_components()[source]#
Return a list of all irreducible components of
self
.EXAMPLES:
sage: mut_type = QuiverMutationType('A',3); mut_type ['A', 3] sage: mut_type.irreducible_components() (['A', 3],) sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.irreducible_components() (['A', 3], ['B', 3]) sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]) sage: mut_type [ ['A', 3], ['B', 3], ['X', 6] ] sage: mut_type.irreducible_components() (['A', 3], ['B', 3], ['X', 6])
>>> from sage.all import * >>> mut_type = QuiverMutationType('A',Integer(3)); mut_type ['A', 3] >>> mut_type.irreducible_components() (['A', 3],) >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.irreducible_components() (['A', 3], ['B', 3]) >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)],['X',Integer(6)]) >>> mut_type [ ['A', 3], ['B', 3], ['X', 6] ] >>> mut_type.irreducible_components() (['A', 3], ['B', 3], ['X', 6])
- class sage.combinat.cluster_algebra_quiver.quiver_mutation_type.QuiverMutationType_abstract[source]#
Bases:
UniqueRepresentation
,SageObject
EXAMPLES:
sage: mut_type1 = QuiverMutationType('A',5) sage: mut_type2 = QuiverMutationType('A',5) sage: mut_type3 = QuiverMutationType('A',6) sage: mut_type1 == mut_type2 True sage: mut_type1 == mut_type3 False
>>> from sage.all import * >>> mut_type1 = QuiverMutationType('A',Integer(5)) >>> mut_type2 = QuiverMutationType('A',Integer(5)) >>> mut_type3 = QuiverMutationType('A',Integer(6)) >>> mut_type1 == mut_type2 True >>> mut_type1 == mut_type3 False
- b_matrix()[source]#
Return the B-matrix of the standard quiver of
self
.The conventions for B-matrices agree with Fomin-Zelevinsky (up to a reordering of the simple roots).
EXAMPLES:
sage: mut_type = QuiverMutationType(['A',5]); mut_type ['A', 5] sage: mut_type.b_matrix() # needs sage.modules [ 0 1 0 0 0] [-1 0 -1 0 0] [ 0 1 0 1 0] [ 0 0 -1 0 -1] [ 0 0 0 1 0] sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.b_matrix() # needs sage.modules [ 0 1 0 0 0 0] [-1 0 -1 0 0 0] [ 0 1 0 0 0 0] [ 0 0 0 0 1 0] [ 0 0 0 -1 0 -1] [ 0 0 0 0 2 0]
>>> from sage.all import * >>> mut_type = QuiverMutationType(['A',Integer(5)]); mut_type ['A', 5] >>> mut_type.b_matrix() # needs sage.modules [ 0 1 0 0 0] [-1 0 -1 0 0] [ 0 1 0 1 0] [ 0 0 -1 0 -1] [ 0 0 0 1 0] >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.b_matrix() # needs sage.modules [ 0 1 0 0 0 0] [-1 0 -1 0 0 0] [ 0 1 0 0 0 0] [ 0 0 0 0 1 0] [ 0 0 0 -1 0 -1] [ 0 0 0 0 2 0]
- cartan_matrix()[source]#
Return the Cartan matrix of
self
.Note that (up to a reordering of the simple roots) the convention for the definition of Cartan matrix, used here and elsewhere in Sage, agrees with the conventions of Kac, Fulton-Harris, and Fomin-Zelevinsky, but disagrees with the convention of Bourbaki. The \((i,j)\) entry is \(2(\alpha_i,\alpha_j)/(\alpha_i,\alpha_i)\).
EXAMPLES:
sage: mut_type = QuiverMutationType(['A',5]); mut_type ['A', 5] sage: mut_type.cartan_matrix() # needs sage.modules [ 2 -1 0 0 0] [-1 2 -1 0 0] [ 0 -1 2 -1 0] [ 0 0 -1 2 -1] [ 0 0 0 -1 2] sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.cartan_matrix() # needs sage.modules [ 2 -1 0 0 0 0] [-1 2 -1 0 0 0] [ 0 -1 2 0 0 0] [ 0 0 0 2 -1 0] [ 0 0 0 -1 2 -1] [ 0 0 0 0 -2 2]
>>> from sage.all import * >>> mut_type = QuiverMutationType(['A',Integer(5)]); mut_type ['A', 5] >>> mut_type.cartan_matrix() # needs sage.modules [ 2 -1 0 0 0] [-1 2 -1 0 0] [ 0 -1 2 -1 0] [ 0 0 -1 2 -1] [ 0 0 0 -1 2] >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.cartan_matrix() # needs sage.modules [ 2 -1 0 0 0 0] [-1 2 -1 0 0 0] [ 0 -1 2 0 0 0] [ 0 0 0 2 -1 0] [ 0 0 0 -1 2 -1] [ 0 0 0 0 -2 2]
- is_affine()[source]#
Return
True
ifself
is of affine type.EXAMPLES:
sage: mt = QuiverMutationType(['A', 2]) sage: mt.is_affine() False sage: mt = QuiverMutationType(['A',[4, 2], 1]) sage: mt.is_affine() True
>>> from sage.all import * >>> mt = QuiverMutationType(['A', Integer(2)]) >>> mt.is_affine() False >>> mt = QuiverMutationType(['A',[Integer(4), Integer(2)], Integer(1)]) >>> mt.is_affine() True
- is_elliptic()[source]#
Return
True
ifself
is of elliptic type.EXAMPLES:
sage: mt = QuiverMutationType(['A', 2]) sage: mt.is_elliptic() False sage: mt = QuiverMutationType(['E',6,[1, 1]]) sage: mt.is_elliptic() True
>>> from sage.all import * >>> mt = QuiverMutationType(['A', Integer(2)]) >>> mt.is_elliptic() False >>> mt = QuiverMutationType(['E',Integer(6),[Integer(1), Integer(1)]]) >>> mt.is_elliptic() True
- is_finite()[source]#
Return
True
ifself
is of finite type.This means that the cluster algebra associated to
self
has only a finite number of cluster variables.EXAMPLES:
sage: mt = QuiverMutationType(['A', 2]) sage: mt.is_finite() True sage: mt = QuiverMutationType(['A',[4, 2], 1]) sage: mt.is_finite() False
>>> from sage.all import * >>> mt = QuiverMutationType(['A', Integer(2)]) >>> mt.is_finite() True >>> mt = QuiverMutationType(['A',[Integer(4), Integer(2)], Integer(1)]) >>> mt.is_finite() False
- is_irreducible()[source]#
Return
True
ifself
is irreducible.EXAMPLES:
sage: mt = QuiverMutationType(['A', 2]) sage: mt.is_irreducible() True
>>> from sage.all import * >>> mt = QuiverMutationType(['A', Integer(2)]) >>> mt.is_irreducible() True
- is_mutation_finite()[source]#
Return
True
ifself
is of finite mutation type.This means that its mutation class has only finitely many different B-matrices.
EXAMPLES:
sage: mt = QuiverMutationType(['D',5, 1]) sage: mt.is_mutation_finite() True
>>> from sage.all import * >>> mt = QuiverMutationType(['D',Integer(5), Integer(1)]) >>> mt.is_mutation_finite() True
- is_simply_laced()[source]#
Return
True
ifself
is simply laced.This means that the only arrows that appear in the quiver of
self
are single unlabelled arrows.EXAMPLES:
sage: mt = QuiverMutationType(['A', 2]) sage: mt.is_simply_laced() True sage: mt = QuiverMutationType(['B', 2]) sage: mt.is_simply_laced() False sage: mt = QuiverMutationType(['A',(1, 1), 1]) sage: mt.is_simply_laced() False
>>> from sage.all import * >>> mt = QuiverMutationType(['A', Integer(2)]) >>> mt.is_simply_laced() True >>> mt = QuiverMutationType(['B', Integer(2)]) >>> mt.is_simply_laced() False >>> mt = QuiverMutationType(['A',(Integer(1), Integer(1)), Integer(1)]) >>> mt.is_simply_laced() False
- is_skew_symmetric()[source]#
Return
True
if the B-matrix ofself
is skew-symmetric.EXAMPLES:
sage: mt = QuiverMutationType(['A', 2]) sage: mt.is_skew_symmetric() True sage: mt = QuiverMutationType(['B', 2]) sage: mt.is_skew_symmetric() False sage: mt = QuiverMutationType(['A',(1, 1), 1]) sage: mt.is_skew_symmetric() True
>>> from sage.all import * >>> mt = QuiverMutationType(['A', Integer(2)]) >>> mt.is_skew_symmetric() True >>> mt = QuiverMutationType(['B', Integer(2)]) >>> mt.is_skew_symmetric() False >>> mt = QuiverMutationType(['A',(Integer(1), Integer(1)), Integer(1)]) >>> mt.is_skew_symmetric() True
- letter()[source]#
Return the classification letter of
self
.EXAMPLES:
sage: mut_type = QuiverMutationType( ['A',5] ); mut_type ['A', 5] sage: mut_type.letter() 'A' sage: mut_type = QuiverMutationType( ['BC',5, 1] ); mut_type ['BC', 5, 1] sage: mut_type.letter() 'BC' sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.letter() 'A x B' sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]); mut_type [ ['A', 3], ['B', 3], ['X', 6] ] sage: mut_type.letter() 'A x B x X'
>>> from sage.all import * >>> mut_type = QuiverMutationType( ['A',Integer(5)] ); mut_type ['A', 5] >>> mut_type.letter() 'A' >>> mut_type = QuiverMutationType( ['BC',Integer(5), Integer(1)] ); mut_type ['BC', 5, 1] >>> mut_type.letter() 'BC' >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.letter() 'A x B' >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)],['X',Integer(6)]); mut_type [ ['A', 3], ['B', 3], ['X', 6] ] >>> mut_type.letter() 'A x B x X'
- plot(circular=False, directed=True)[source]#
Return the plot of the underlying graph or digraph of
self
.INPUT:
circular
– (default:False
) ifTrue
, the circular plot is chosen, otherwise >>spring<< is used.directed
– (default:True
) ifTrue
, the directed version is shown, otherwise the undirected.
EXAMPLES:
sage: QMT = QuiverMutationType(['A',5]) sage: pl = QMT.plot() # needs sage.plot sage.symbolic sage: pl = QMT.plot(circular=True) # needs sage.plot sage.symbolic
>>> from sage.all import * >>> QMT = QuiverMutationType(['A',Integer(5)]) >>> pl = QMT.plot() # needs sage.plot sage.symbolic >>> pl = QMT.plot(circular=True) # needs sage.plot sage.symbolic
- properties()[source]#
Print a scheme of all properties of
self
.Most properties have natural definitions for either irreducible or reducible types.
affine
andelliptic
are only defined for irreducible types.EXAMPLES:
sage: mut_type = QuiverMutationType(['A',3]); mut_type ['A', 3] sage: mut_type.properties() ['A', 3] has rank 3 and the following properties: - irreducible: True - mutation finite: True - simply-laced: True - skew-symmetric: True - finite: True - affine: False - elliptic: False sage: mut_type = QuiverMutationType(['B',3]); mut_type ['B', 3] sage: mut_type.properties() ['B', 3] has rank 3 and the following properties: - irreducible: True - mutation finite: True - simply-laced: False - skew-symmetric: False - finite: True - affine: False - elliptic: False sage: mut_type = QuiverMutationType(['B',3, 1]); mut_type ['BD', 3, 1] sage: mut_type.properties() ['BD', 3, 1] has rank 4 and the following properties: - irreducible: True - mutation finite: True - simply-laced: False - skew-symmetric: False - finite: False - affine: True - elliptic: False sage: mut_type = QuiverMutationType(['E',6,[1, 1]]); mut_type ['E', 6, [1, 1]] sage: mut_type.properties() ['E', 6, [1, 1]] has rank 8 and the following properties: - irreducible: True - mutation finite: True - simply-laced: False - skew-symmetric: True - finite: False - affine: False - elliptic: True sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.properties() [ ['A', 3], ['B', 3] ] has rank 6 and the following properties: - irreducible: False - mutation finite: True - simply-laced: False - skew-symmetric: False - finite: True sage: mut_type = QuiverMutationType('GR',[4,9]); mut_type ['GR', [4, 9]] sage: mut_type.properties() ['GR', [4, 9]] has rank 12 and the following properties: - irreducible: True - mutation finite: False - simply-laced: True - skew-symmetric: True - finite: False - affine: False - elliptic: False
>>> from sage.all import * >>> mut_type = QuiverMutationType(['A',Integer(3)]); mut_type ['A', 3] >>> mut_type.properties() ['A', 3] has rank 3 and the following properties: - irreducible: True - mutation finite: True - simply-laced: True - skew-symmetric: True - finite: True - affine: False - elliptic: False >>> mut_type = QuiverMutationType(['B',Integer(3)]); mut_type ['B', 3] >>> mut_type.properties() ['B', 3] has rank 3 and the following properties: - irreducible: True - mutation finite: True - simply-laced: False - skew-symmetric: False - finite: True - affine: False - elliptic: False >>> mut_type = QuiverMutationType(['B',Integer(3), Integer(1)]); mut_type ['BD', 3, 1] >>> mut_type.properties() ['BD', 3, 1] has rank 4 and the following properties: - irreducible: True - mutation finite: True - simply-laced: False - skew-symmetric: False - finite: False - affine: True - elliptic: False >>> mut_type = QuiverMutationType(['E',Integer(6),[Integer(1), Integer(1)]]); mut_type ['E', 6, [1, 1]] >>> mut_type.properties() ['E', 6, [1, 1]] has rank 8 and the following properties: - irreducible: True - mutation finite: True - simply-laced: False - skew-symmetric: True - finite: False - affine: False - elliptic: True >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.properties() [ ['A', 3], ['B', 3] ] has rank 6 and the following properties: - irreducible: False - mutation finite: True - simply-laced: False - skew-symmetric: False - finite: True >>> mut_type = QuiverMutationType('GR',[Integer(4),Integer(9)]); mut_type ['GR', [4, 9]] >>> mut_type.properties() ['GR', [4, 9]] has rank 12 and the following properties: - irreducible: True - mutation finite: False - simply-laced: True - skew-symmetric: True - finite: False - affine: False - elliptic: False
- rank()[source]#
Return the rank in the standard quiver of
self
.The rank is the number of vertices.
EXAMPLES:
sage: mut_type = QuiverMutationType( ['A',5] ); mut_type ['A', 5] sage: mut_type.rank() 5 sage: mut_type = QuiverMutationType( ['A',[4,5], 1] ); mut_type ['A', [4, 5], 1] sage: mut_type.rank() 9 sage: mut_type = QuiverMutationType( ['BC',5, 1] ); mut_type ['BC', 5, 1] sage: mut_type.rank() 6 sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.rank() 6 sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]); mut_type [ ['A', 3], ['B', 3], ['X', 6] ] sage: mut_type.rank() 12
>>> from sage.all import * >>> mut_type = QuiverMutationType( ['A',Integer(5)] ); mut_type ['A', 5] >>> mut_type.rank() 5 >>> mut_type = QuiverMutationType( ['A',[Integer(4),Integer(5)], Integer(1)] ); mut_type ['A', [4, 5], 1] >>> mut_type.rank() 9 >>> mut_type = QuiverMutationType( ['BC',Integer(5), Integer(1)] ); mut_type ['BC', 5, 1] >>> mut_type.rank() 6 >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.rank() 6 >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)],['X',Integer(6)]); mut_type [ ['A', 3], ['B', 3], ['X', 6] ] >>> mut_type.rank() 12
- show(circular=False, directed=True)[source]#
Show the plot of the underlying digraph of
self
.INPUT:
circular
– (default:False
) ifTrue
, the circular plot is chosen, otherwise >>spring<< is used.directed
– (default:True
) ifTrue
, the directed version is shown, otherwise the undirected.
- standard_quiver()[source]#
Return the standard quiver of
self
.EXAMPLES:
sage: mut_type = QuiverMutationType( ['A',5] ); mut_type ['A', 5] sage: mut_type.standard_quiver() # needs sage.modules Quiver on 5 vertices of type ['A', 5] sage: mut_type = QuiverMutationType( ['A',[5,3], 1] ); mut_type ['A', [3, 5], 1] sage: mut_type.standard_quiver() # needs sage.modules Quiver on 8 vertices of type ['A', [3, 5], 1] sage: mut_type = QuiverMutationType(['A',3],['B',3]); mut_type [ ['A', 3], ['B', 3] ] sage: mut_type.standard_quiver() # needs sage.modules Quiver on 6 vertices of type [ ['A', 3], ['B', 3] ] sage: mut_type = QuiverMutationType(['A',3],['B',3],['X',6]); mut_type [ ['A', 3], ['B', 3], ['X', 6] ] sage: mut_type.standard_quiver() # needs sage.modules Quiver on 12 vertices of type [ ['A', 3], ['B', 3], ['X', 6] ]
>>> from sage.all import * >>> mut_type = QuiverMutationType( ['A',Integer(5)] ); mut_type ['A', 5] >>> mut_type.standard_quiver() # needs sage.modules Quiver on 5 vertices of type ['A', 5] >>> mut_type = QuiverMutationType( ['A',[Integer(5),Integer(3)], Integer(1)] ); mut_type ['A', [3, 5], 1] >>> mut_type.standard_quiver() # needs sage.modules Quiver on 8 vertices of type ['A', [3, 5], 1] >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)]); mut_type [ ['A', 3], ['B', 3] ] >>> mut_type.standard_quiver() # needs sage.modules Quiver on 6 vertices of type [ ['A', 3], ['B', 3] ] >>> mut_type = QuiverMutationType(['A',Integer(3)],['B',Integer(3)],['X',Integer(6)]); mut_type [ ['A', 3], ['B', 3], ['X', 6] ] >>> mut_type.standard_quiver() # needs sage.modules Quiver on 12 vertices of type [ ['A', 3], ['B', 3], ['X', 6] ]
- sage.combinat.cluster_algebra_quiver.quiver_mutation_type.save_quiver_data(n, up_to=True, types='ClassicalExceptional', verbose=True)[source]#
Save mutation classes of certain quivers of ranks up to and equal to
n
or equal ton
toDOT_SAGE/cluster_algebra_quiver/mutation_classes_n.dig6
.This data will then be used to determine quiver mutation types.
INPUT:
n
– the rank (or the upper limit on the rank) of the mutation classes that are being saved.up_to
– (default:True
) ifTrue
, saves data for ranks smaller than or equal ton
. IfFalse
, saves data for rank exactlyn
.types
– (default:’ClassicalExceptional’) if all, saves data for both exceptional mutation-finite quivers and for classical quiver. The input ‘Exceptional’ or ‘Classical’ is also allowed to save only part of this data.