Bases for \(NCSym\)#

AUTHORS:

  • Travis Scrimshaw (08-04-2013): Initial version

class sage.combinat.ncsym.bases.MultiplicativeNCSymBases(parent_with_realization)#

Bases: Category_realization_of_parent

Category of multiplicative bases of symmetric functions in non-commuting variables.

A multiplicative basis is one for which \(\mathbf{b}_A \mathbf{b}_B = \mathbf{b}_{A|B}\) where \(A|B\) is the pipe() operation on set partitions.

EXAMPLES:

sage: from sage.combinat.ncsym.bases import MultiplicativeNCSymBases
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: MultiplicativeNCSymBases(NCSym)
Category of multiplicative bases of symmetric functions in non-commuting variables over the Rational Field
class ElementMethods#

Bases: object

class ParentMethods#

Bases: object

product_on_basis(A, B)#

The product on basis elements.

The product on a multiplicative basis is given by \(\mathbf{b}_A \cdot \mathbf{b}_B = \mathbf{b}_{A | B}\).

The bases \(\{ \mathbf{e}, \mathbf{h}, \mathbf{x}, \mathbf{cp}, \mathbf{p}, \mathbf{chi}, \mathbf{rho} \}\) are all multiplicative.

INPUT:

  • A, B – set partitions

OUTPUT:

  • an element in the basis self

EXAMPLES:

sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e()
sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x()
sage: cp = SymmetricFunctionsNonCommutingVariables(QQ).cp()
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p()
sage: chi = SymmetricFunctionsNonCommutingVariables(QQ).chi()
sage: rho = SymmetricFunctionsNonCommutingVariables(QQ).rho()
sage: A = SetPartition([[1], [2, 3]])
sage: B = SetPartition([[1], [3], [2,4]])
sage: e.product_on_basis(A, B)
e{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: h.product_on_basis(A, B)
h{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: x.product_on_basis(A, B)
x{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: cp.product_on_basis(A, B)
cp{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: p.product_on_basis(A, B)
p{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: chi.product_on_basis(A, B)
chi{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: rho.product_on_basis(A, B)
rho{{1}, {2, 3}, {4}, {5, 7}, {6}}
sage: e.product_on_basis(A,B)==e(h(e(A))*h(e(B)))
True
sage: h.product_on_basis(A,B)==h(x(h(A))*x(h(B)))
True
sage: x.product_on_basis(A,B)==x(h(x(A))*h(x(B)))
True
sage: cp.product_on_basis(A,B)==cp(p(cp(A))*p(cp(B)))
True
sage: p.product_on_basis(A,B)==p(e(p(A))*e(p(B)))
True
super_categories()#

Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting variables.

OUTPUT:

  • a list of categories

class sage.combinat.ncsym.bases.NCSymBases(parent_with_realization)#

Bases: Category_realization_of_parent

Category of bases of symmetric functions in non-commuting variables.

EXAMPLES:

sage: from sage.combinat.ncsym.bases import NCSymBases
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: NCSymBases(NCSym)
Category of bases of symmetric functions in non-commuting variables over the Rational Field
class ElementMethods#

Bases: object

expand(n, alphabet='x')#

Expand the symmetric function into n non-commuting variables in an alphabet, which by default is 'x'.

This computation is completed by coercing the element self into the monomial basis and computing the expansion in the alphabet there.

INPUT:

  • n – the number of variables in the expansion

  • alphabet – (default: 'x') the alphabet in which self is to be expanded

OUTPUT:

  • an expansion of self into the n non-commuting variables specified by alphabet

EXAMPLES:

sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: h[[1,3],[2]].expand(3)
2*x0^3 + x0^2*x1 + x0^2*x2 + 2*x0*x1*x0 + x0*x1^2 + x0*x1*x2 + 2*x0*x2*x0
 + x0*x2*x1 + x0*x2^2 + x1*x0^2 + 2*x1*x0*x1 + x1*x0*x2 + x1^2*x0 + 2*x1^3
 + x1^2*x2 + x1*x2*x0 + 2*x1*x2*x1 + x1*x2^2 + x2*x0^2 + x2*x0*x1 + 2*x2*x0*x2
 + x2*x1*x0 + x2*x1^2 + 2*x2*x1*x2 + x2^2*x0 + x2^2*x1 + 2*x2^3
sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x()
sage: x[[1,3],[2]].expand(3)
-x0^2*x1 - x0^2*x2 - x0*x1^2 - x0*x1*x2 - x0*x2*x1 - x0*x2^2 - x1*x0^2
 - x1*x0*x2 - x1^2*x0 - x1^2*x2 - x1*x2*x0 - x1*x2^2 - x2*x0^2 - x2*x0*x1
 - x2*x1*x0 - x2*x1^2 - x2^2*x0 - x2^2*x1
internal_coproduct()#

Return the internal coproduct of self.

The internal coproduct is defined on the power sum basis as

\[\mathbf{p}_A \mapsto \mathbf{p}_A \otimes \mathbf{p}_A\]

and the map is extended linearly.

OUTPUT:

  • an element of the tensor square of the basis of self

EXAMPLES:

sage: x = SymmetricFunctionsNonCommutingVariables(QQ).x()
sage: x[[1,3],[2]].internal_coproduct()
x{{1}, {2}, {3}} # x{{1, 3}, {2}} + x{{1, 3}, {2}} # x{{1}, {2}, {3}}
 + x{{1, 3}, {2}} # x{{1, 3}, {2}}
omega()#

Return the involution \(\omega\) applied to self.

The involution \(\omega\) is defined by

\[\mathbf{e}_A \mapsto \mathbf{h}_A\]

and the result is extended linearly.

OUTPUT:

  • an element in the same basis as self

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: m[[1,3],[2]].omega()
-2*m{{1, 2, 3}} - m{{1, 3}, {2}}
sage: p = NCSym.p()
sage: p[[1,3],[2]].omega()
-p{{1, 3}, {2}}
sage: cp = NCSym.cp()
sage: cp[[1,3],[2]].omega()
-2*cp{{1, 2, 3}} - cp{{1, 3}, {2}}
sage: x = NCSym.x()
sage: x[[1,3],[2]].omega()
-2*x{{1}, {2}, {3}} - x{{1, 3}, {2}}
to_symmetric_function()#

Compute the projection of an element of symmetric function in non-commuting variables to the symmetric functions.

The projection of a monomial symmetric function in non-commuting variables indexed by the set partition A is defined as

\[\mathbf{m}_A \mapsto m_{\lambda(A)} \prod_i n_i(\lambda(A))!\]

where \(\lambda(A)\) is the partition associated with \(A\) by taking the sizes of the parts and \(n_i(\mu)\) is the multiplicity of \(i\) in \(\mu\). For other bases this map is extended linearly.

OUTPUT:

  • an element of the symmetric functions in the monomial basis

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: e = NCSym.e()
sage: h = NCSym.h()
sage: p = NCSym.p()
sage: cp = NCSym.cp()
sage: x = NCSym.x()
sage: cp[[1,3],[2]].to_symmetric_function()
m[2, 1]
sage: x[[1,3],[2]].to_symmetric_function()
-6*m[1, 1, 1] - 2*m[2, 1]
sage: e[[1,3],[2]].to_symmetric_function()
2*e[2, 1]
sage: h[[1,3],[2]].to_symmetric_function()
2*h[2, 1]
sage: p[[1,3],[2]].to_symmetric_function()
p[2, 1]
to_wqsym()#

Return the image of self under the canonical inclusion map \(NCSym \to WQSym\).

The canonical inclusion map \(NCSym \to WQSym\) is an injective homomorphism of algebras. It sends a basis element \(\mathbf{m}_A\) of \(NCSym\) to the sum of basis elements \(\mathbf{M}_P\) of \(WQSym\), where \(P\) ranges over all ordered set partitions that become \(A\) when the ordering is forgotten. This map is denoted by \(\theta\) in [BZ05] (17).

See also

WordQuasiSymmetricFunctions for a definition of \(WQSym\).

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: e = NCSym.e()
sage: h = NCSym.h()
sage: p = NCSym.p()
sage: cp = NCSym.cp()
sage: x = NCSym.x()
sage: m = NCSym.m()
sage: m[[1,3],[2]].to_wqsym()
M[{1, 3}, {2}] + M[{2}, {1, 3}]
sage: x[[1,3],[2]].to_wqsym()
-M[{1}, {2}, {3}] - M[{1}, {2, 3}] - M[{1}, {3}, {2}]
 - M[{1, 2}, {3}] - M[{2}, {1}, {3}] - M[{2}, {3}, {1}]
 - M[{2, 3}, {1}] - M[{3}, {1}, {2}] - M[{3}, {1, 2}]
 - M[{3}, {2}, {1}]
sage: (4*p[[1,3],[2]]-p[[1]]).to_wqsym()
-M[{1}] + 4*M[{1, 2, 3}] + 4*M[{1, 3}, {2}] + 4*M[{2}, {1, 3}]
class ParentMethods#

Bases: object

from_symmetric_function(f)#

Return the image of the symmetric function f in self.

This is performed by converting to the monomial basis and extending the method sum_of_partitions() linearly. This is a linear map from the symmetric functions to the symmetric functions in non-commuting variables that does not preserve the product or coproduct structure of the Hopf algebra.

See also

to_symmetric_function()

INPUT:

  • f – a symmetric function

OUTPUT:

  • an element of self

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: Sym = SymmetricFunctions(QQ)
sage: e = NCSym.e()
sage: elem = Sym.e()
sage: elt = e.from_symmetric_function(elem[2,1,1]); elt
1/12*e{{1}, {2}, {3, 4}} + 1/12*e{{1}, {2, 3}, {4}} + 1/12*e{{1}, {2, 4}, {3}}
 + 1/12*e{{1, 2}, {3}, {4}} + 1/12*e{{1, 3}, {2}, {4}} + 1/12*e{{1, 4}, {2}, {3}}
sage: elem(elt.to_symmetric_function())
e[2, 1, 1]
sage: e.from_symmetric_function(elem[4])
1/24*e{{1, 2, 3, 4}}
sage: p = NCSym.p()
sage: pow = Sym.p()
sage: elt = p.from_symmetric_function(pow[2,1,1]); elt
1/6*p{{1}, {2}, {3, 4}} + 1/6*p{{1}, {2, 3}, {4}} + 1/6*p{{1}, {2, 4}, {3}}
 + 1/6*p{{1, 2}, {3}, {4}} + 1/6*p{{1, 3}, {2}, {4}} + 1/6*p{{1, 4}, {2}, {3}}
sage: pow(elt.to_symmetric_function())
p[2, 1, 1]
sage: p.from_symmetric_function(pow[4])
p{{1, 2, 3, 4}}
sage: h = NCSym.h()
sage: comp = Sym.complete()
sage: elt = h.from_symmetric_function(comp[2,1,1]); elt
1/12*h{{1}, {2}, {3, 4}} + 1/12*h{{1}, {2, 3}, {4}} + 1/12*h{{1}, {2, 4}, {3}}
 + 1/12*h{{1, 2}, {3}, {4}} + 1/12*h{{1, 3}, {2}, {4}} + 1/12*h{{1, 4}, {2}, {3}}
sage: comp(elt.to_symmetric_function())
h[2, 1, 1]
sage: h.from_symmetric_function(comp[4])
1/24*h{{1, 2, 3, 4}}
internal_coproduct()#

Compute the internal coproduct of self.

If internal_coproduct_on_basis() is available, construct the internal coproduct morphism from self to self \(\otimes\) self by extending it by linearity. Otherwise, this uses internal_coproduct_by_coercion(), if available.

OUTPUT:

  • an element of the tensor squared of self

EXAMPLES:

sage: cp = SymmetricFunctionsNonCommutingVariables(QQ).cp()
sage: cp.internal_coproduct(cp[[1,3],[2]] - 2*cp[[1]])
-2*cp{{1}} # cp{{1}} + cp{{1, 2, 3}} # cp{{1, 3}, {2}} + cp{{1, 3}, {2}} # cp{{1, 2, 3}}
 + cp{{1, 3}, {2}} # cp{{1, 3}, {2}}
internal_coproduct_by_coercion(x)#

Return the internal coproduct by coercing the element to the powersum basis.

INPUT:

  • x – an element of self

OUTPUT:

  • an element of the tensor squared of self

EXAMPLES:

sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h()
sage: h[[1,3],[2]].internal_coproduct() # indirect doctest
2*h{{1}, {2}, {3}} # h{{1}, {2}, {3}} - h{{1}, {2}, {3}} # h{{1, 3}, {2}}
 - h{{1, 3}, {2}} # h{{1}, {2}, {3}} + h{{1, 3}, {2}} # h{{1, 3}, {2}}
internal_coproduct_on_basis(i)#

The internal coproduct of the algebra on the basis (optional).

INPUT:

  • i – the indices of an element of the basis of self

OUTPUT:

  • an element of the tensor squared of self

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.internal_coproduct_on_basis(SetPartition([[1,2]]))
m{{1, 2}} # m{{1, 2}}
primitive(A, i=1)#

Return the primitive associated to A in self.

See also

primitive()

INPUT:

  • A – a set partition

  • i – a positive integer

OUTPUT:

  • an element of self

EXAMPLES:

sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e()
sage: elt = e.primitive(SetPartition([[1,3],[2]])); elt
e{{1, 2}, {3}} - e{{1, 3}, {2}}
sage: elt.coproduct()
e{} # e{{1, 2}, {3}} - e{} # e{{1, 3}, {2}} + e{{1, 2}, {3}} # e{} - e{{1, 3}, {2}} # e{}
super_categories()#

Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting variables.

OUTPUT:

  • a list of categories

class sage.combinat.ncsym.bases.NCSymBasis_abstract(R, basis_keys=None, element_class=None, category=None, prefix=None, names=None, **kwds)#

Bases: CombinatorialFreeModule, BindableClass

Abstract base class for a basis of \(NCSym\) or its dual.

class sage.combinat.ncsym.bases.NCSymDualBases(parent_with_realization)#

Bases: Category_realization_of_parent

Category of bases of dual symmetric functions in non-commuting variables.

EXAMPLES:

sage: from sage.combinat.ncsym.bases import NCSymDualBases
sage: DNCSym = SymmetricFunctionsNonCommutingVariables(QQ).dual()
sage: NCSymDualBases(DNCSym)
Category of bases of dual symmetric functions in non-commuting variables over the Rational Field
super_categories()#

Return the super categories of bases of the Hopf dual of the symmetric functions in non-commuting variables.

OUTPUT:

  • a list of categories

class sage.combinat.ncsym.bases.NCSymOrNCSymDualBases(parent_with_realization)#

Bases: Category_realization_of_parent

Base category for the category of bases of symmetric functions in non-commuting variables or its Hopf dual for the common code.

class ElementMethods#

Bases: object

duality_pairing(other)#

Compute the pairing between self and an element other of the dual.

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: w = m.dual_basis()
sage: elt = m[[1,3],[2]] - 3*m[[1,2],[3]]
sage: elt.duality_pairing(w[[1,3],[2]])
1
sage: elt.duality_pairing(w[[1,2],[3]])
-3
sage: elt.duality_pairing(w[[1,2]])
0
sage: e = NCSym.e()
sage: w[[1,3],[2]].duality_pairing(e[[1,3],[2]])
0
class ParentMethods#

Bases: object

counit_on_basis(A)#

The counit is defined by sending all elements of positive degree to zero.

INPUT:

  • A – a set partition

OUTPUT:

  • either the 0 or the 1 of the base ring of self

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.counit_on_basis(SetPartition([[1,3], [2]]))
0
sage: m.counit_on_basis(SetPartition([]))
1
sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.counit_on_basis(SetPartition([[1,3], [2]]))
0
sage: w.counit_on_basis(SetPartition([]))
1
duality_pairing(x, y)#

Compute the pairing between an element of self and an element of the dual.

Carry out this computation by converting x to the \(\mathbf{m}\) basis and y to the \(\mathbf{w}\) basis.

INPUT:

  • x – an element of symmetric functions in non-commuting variables

  • y – an element of the dual of symmetric functions in non-commuting variables

OUTPUT:

  • an element of the base ring of self

EXAMPLES:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: h = NCSym.h()
sage: w = NCSym.m().dual_basis()
sage: matrix([[h(A).duality_pairing(w(B)) for A in SetPartitions(3)] for B in SetPartitions(3)])
[6 2 2 2 1]
[2 2 1 1 1]
[2 1 2 1 1]
[2 1 1 2 1]
[1 1 1 1 1]
sage: (h[[1,2],[3]] + 3*h[[1,3],[2]]).duality_pairing(2*w[[1,3],[2]] + w[[1,2,3]] + 2*w[[1,2],[3]])
32
duality_pairing_matrix(basis, degree)#

The matrix of scalar products between elements of \(NCSym\) and elements of \(NCSym^*\).

INPUT:

  • basis – a basis of the dual Hopf algebra

  • degree – a non-negative integer

OUTPUT:

  • the matrix of scalar products between the basis self and the basis basis in the dual Hopf algebra of degree degree

EXAMPLES:

The matrix between the \(\mathbf{m}\) basis and the \(\mathbf{w}\) basis:

sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ)
sage: m = NCSym.m()
sage: w = NCSym.dual().w()
sage: m.duality_pairing_matrix(w, 3)
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

Similarly for some of the other basis of \(NCSym\) and the \(\mathbf{w}\) basis:

sage: e = NCSym.e()
sage: e.duality_pairing_matrix(w, 3)
[0 0 0 0 1]
[0 0 1 1 1]
[0 1 0 1 1]
[0 1 1 0 1]
[1 1 1 1 1]
sage: p = NCSym.p()
sage: p.duality_pairing_matrix(w, 3)
[1 0 0 0 0]
[1 1 0 0 0]
[1 0 1 0 0]
[1 0 0 1 0]
[1 1 1 1 1]
sage: cp = NCSym.cp()
sage: cp.duality_pairing_matrix(w, 3)
[1 0 0 0 0]
[1 1 0 0 0]
[0 0 1 0 0]
[1 0 0 1 0]
[1 1 1 1 1]
sage: x = NCSym.x()
sage: w.duality_pairing_matrix(x, 3)
[ 0  0  0  0  1]
[ 1  0 -1 -1  1]
[ 1 -1  0 -1  1]
[ 1 -1 -1  0  1]
[ 2 -1 -1 -1  1]

A base case test:

sage: m.duality_pairing_matrix(w, 0)
[1]
one_basis()#

Return the index of the basis element containing \(1\).

OUTPUT:

  • The empty set partition

EXAMPLES:

sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m()
sage: m.one_basis()
{}
sage: w = SymmetricFunctionsNonCommutingVariables(QQ).dual().w()
sage: w.one_basis()
{}
super_categories()#

Return the super categories of bases of (the Hopf dual of) the symmetric functions in non-commuting variables.

OUTPUT:

  • a list of categories