Bijection classes for type \(B_n^{(1)}\)#
Part of the (internal) classes which runs the bijection between rigged configurations and KR tableaux of type \(B_n^{(1)}\).
AUTHORS:
Travis Scrimshaw (2012-12-21): Initial version
- class sage.combinat.rigged_configurations.bij_type_B.KRTToRCBijectionTypeB(tp_krt)[source]#
Bases:
KRTToRCBijectionTypeC
Specific implementation of the bijection from KR tableaux to rigged configurations for type \(B_n^{(1)}\).
- other_outcome(rc, pos_val, width_n)[source]#
Do the other case \((QS)\) possibility.
This arises from the ambiguity when we found a singular string at the max width in \(\nu^{(n)}\). We had first attempted case \((S)\), and if that resulted in an invalid rigged configuration, we now finish the bijection using case \((QS)\).
EXAMPLES:
sage: RC = RiggedConfigurations(['B',3,1], [[2,1],[1,2]]) sage: rc = RC(partition_list=[[2,1], [2,1,1], [5,1]]) sage: t = rc.to_tensor_product_of_kirillov_reshetikhin_tableaux() sage: t.to_rigged_configuration() == rc # indirect doctest True
>>> from sage.all import * >>> RC = RiggedConfigurations(['B',Integer(3),Integer(1)], [[Integer(2),Integer(1)],[Integer(1),Integer(2)]]) >>> rc = RC(partition_list=[[Integer(2),Integer(1)], [Integer(2),Integer(1),Integer(1)], [Integer(5),Integer(1)]]) >>> t = rc.to_tensor_product_of_kirillov_reshetikhin_tableaux() >>> t.to_rigged_configuration() == rc # indirect doctest True
- run(verbose=False)[source]#
Run the bijection from a tensor product of KR tableaux to a rigged configuration.
INPUT:
tp_krt
– A tensor product of KR tableauxverbose
– (Default:False
) Display each step in the bijection
EXAMPLES:
sage: from sage.combinat.rigged_configurations.bij_type_B import KRTToRCBijectionTypeB sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['B', 3, 1], [[2, 1]]) sage: KRTToRCBijectionTypeB(KRT(pathlist=[[0,3]])).run() 0[ ]0 -1[ ]-1 -1[ ]-1 0[]0 sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['B', 3, 1], [[3, 1]]) sage: KRTToRCBijectionTypeB(KRT(pathlist=[[-2,3,1]])).run() (/) -1[ ]-1 0[]0
>>> from sage.all import * >>> from sage.combinat.rigged_configurations.bij_type_B import KRTToRCBijectionTypeB >>> KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['B', Integer(3), Integer(1)], [[Integer(2), Integer(1)]]) >>> KRTToRCBijectionTypeB(KRT(pathlist=[[Integer(0),Integer(3)]])).run() <BLANKLINE> 0[ ]0 <BLANKLINE> -1[ ]-1 -1[ ]-1 <BLANKLINE> 0[]0 <BLANKLINE> >>> KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['B', Integer(3), Integer(1)], [[Integer(3), Integer(1)]]) >>> KRTToRCBijectionTypeB(KRT(pathlist=[[-Integer(2),Integer(3),Integer(1)]])).run() <BLANKLINE> (/) <BLANKLINE> -1[ ]-1 <BLANKLINE> 0[]0 <BLANKLINE>
- class sage.combinat.rigged_configurations.bij_type_B.RCToKRTBijectionTypeB(RC_element)[source]#
Bases:
RCToKRTBijectionTypeC
Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type \(B_n^{(1)}\).
- run(verbose=False, build_graph=False)[source]#
Run the bijection from rigged configurations to tensor product of KR tableaux for type \(B_n^{(1)}\).
INPUT:
verbose
– (default:False
) display each step in the bijectionbuild_graph
– (default:False
) build the graph of each step of the bijection
EXAMPLES:
sage: RC = RiggedConfigurations(['B', 3, 1], [[2, 1]]) sage: from sage.combinat.rigged_configurations.bij_type_B import RCToKRTBijectionTypeB sage: RCToKRTBijectionTypeB(RC(partition_list=[[1],[1,1],[1]])).run() [[3], [0]] sage: RC = RiggedConfigurations(['B', 3, 1], [[3, 1]]) sage: x = RC(partition_list=[[],[1],[1]]) sage: RCToKRTBijectionTypeB(x).run() [[1], [3], [-2]] sage: bij = RCToKRTBijectionTypeB(x) sage: bij.run(build_graph=True) [[1], [3], [-2]] sage: bij._graph Digraph on 6 vertices
>>> from sage.all import * >>> RC = RiggedConfigurations(['B', Integer(3), Integer(1)], [[Integer(2), Integer(1)]]) >>> from sage.combinat.rigged_configurations.bij_type_B import RCToKRTBijectionTypeB >>> RCToKRTBijectionTypeB(RC(partition_list=[[Integer(1)],[Integer(1),Integer(1)],[Integer(1)]])).run() [[3], [0]] >>> RC = RiggedConfigurations(['B', Integer(3), Integer(1)], [[Integer(3), Integer(1)]]) >>> x = RC(partition_list=[[],[Integer(1)],[Integer(1)]]) >>> RCToKRTBijectionTypeB(x).run() [[1], [3], [-2]] >>> bij = RCToKRTBijectionTypeB(x) >>> bij.run(build_graph=True) [[1], [3], [-2]] >>> bij._graph Digraph on 6 vertices