Constellations#
A constellation is a tuple \((g_0, g_1, \dots, g_k)\) of permutations such that the product \(g_0 g_1 ... g_k\) is the identity. One often assumes that the group generated by \(g_0, g_1, \dots, g_k\) acts transitively ([LZ2004] definition 1). Geometrically, it corresponds to a covering of the 2-sphere ramified over \(k\) points (the transitivity condition corresponds to the connectivity of the covering).
EXAMPLES:
sage: c = Constellation(['(1,2)', '(1,3)', None])
sage: c
Constellation of length 3 and degree 3
g0 (1,2)(3)
g1 (1,3)(2)
g2 (1,3,2)
sage: C = Constellations(3,4); C
Connected constellations of length 3 and degree 4 on {1, 2, 3, 4}
sage: C.cardinality() # long time
426
sage: C = Constellations(3, 4, domain=('a', 'b', 'c', 'd'))
sage: C
Connected constellations of length 3 and degree 4 on {'a', 'b', 'c', 'd'}
sage: c = C(('a','c'),(('b','c'),('a','d')), None)
sage: c
Constellation of length 3 and degree 4
g0 ('a','c')('b')('d')
g1 ('a','d')('b','c')
g2 ('a','d','c','b')
sage: c.is_connected()
True
sage: c.euler_characteristic()
2
sage: TestSuite(C).run()
>>> from sage.all import *
>>> c = Constellation(['(1,2)', '(1,3)', None])
>>> c
Constellation of length 3 and degree 3
g0 (1,2)(3)
g1 (1,3)(2)
g2 (1,3,2)
>>> C = Constellations(Integer(3),Integer(4)); C
Connected constellations of length 3 and degree 4 on {1, 2, 3, 4}
>>> C.cardinality() # long time
426
>>> C = Constellations(Integer(3), Integer(4), domain=('a', 'b', 'c', 'd'))
>>> C
Connected constellations of length 3 and degree 4 on {'a', 'b', 'c', 'd'}
>>> c = C(('a','c'),(('b','c'),('a','d')), None)
>>> c
Constellation of length 3 and degree 4
g0 ('a','c')('b')('d')
g1 ('a','d')('b','c')
g2 ('a','d','c','b')
>>> c.is_connected()
True
>>> c.euler_characteristic()
2
>>> TestSuite(C).run()
- sage.combinat.constellation.Constellation(g=None, mutable=False, connected=True, check=True)[source]#
INPUT:
g
– a list of permutationsmutable
– whether the result is mutable or not. Default isFalse
.connected
– whether the result should be connected. Default isTrue
.check
– whether or not to check. If it isTrue
, then the listg
must contains noNone
.
EXAMPLES:
Simple initialization:
sage: Constellation(['(0,1)','(0,3)(1,2)','(0,3,1,2)']) Constellation of length 3 and degree 4 g0 (0,1)(2)(3) g1 (0,3)(1,2) g2 (0,3,1,2)
>>> from sage.all import * >>> Constellation(['(0,1)','(0,3)(1,2)','(0,3,1,2)']) Constellation of length 3 and degree 4 g0 (0,1)(2)(3) g1 (0,3)(1,2) g2 (0,3,1,2)
One of the permutation can be omitted:
sage: Constellation(['(0,1)', None, '(0,4)(1,2,3)']) Constellation of length 3 and degree 5 g0 (0,1)(2)(3)(4) g1 (0,3,2,1,4) g2 (0,4)(1,2,3)
>>> from sage.all import * >>> Constellation(['(0,1)', None, '(0,4)(1,2,3)']) Constellation of length 3 and degree 5 g0 (0,1)(2)(3)(4) g1 (0,3,2,1,4) g2 (0,4)(1,2,3)
One can define mutable constellations:
sage: Constellation(([0,2,1], [2,1,0], [1,2,0]), mutable=True) Constellation of length 3 and degree 3 g0 (0)(1,2) g1 (0,2)(1) g2 (0,1,2)
>>> from sage.all import * >>> Constellation(([Integer(0),Integer(2),Integer(1)], [Integer(2),Integer(1),Integer(0)], [Integer(1),Integer(2),Integer(0)]), mutable=True) Constellation of length 3 and degree 3 g0 (0)(1,2) g1 (0,2)(1) g2 (0,1,2)
- class sage.combinat.constellation.Constellation_class(parent, g, connected, mutable, check)[source]#
Bases:
Element
Constellation
A constellation or a tuple of permutations \((g_0,g_1,...,g_k)\) such that the product \(g_0 g_1 ... g_k\) is the identity.
- braid_group_action(i)[source]#
Act on
self
as the braid group generator that exchanges position \(i\) and \(i+1\).INPUT:
i
– integer in \([0, n-1]\) where \(n\) is the length ofself
EXAMPLES:
sage: sigma = lambda c, i: c.braid_group_action(i) sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) sage: sigma(c, 1) Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0,1,3,2,4) g2 (0,3)(1)(2)(4)
>>> from sage.all import * >>> sigma = lambda c, i: c.braid_group_action(i) >>> c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) >>> sigma(c, Integer(1)) Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0,1,3,2,4) g2 (0,3)(1)(2)(4)
Check the commutation relation:
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)','(2,5)(0,4)',None]) sage: d = Constellation(['(0,1,3,5)','(2,3,4)','(0,3,5)',None]) sage: c13 = sigma(sigma(c, 0), 2) sage: c31 = sigma(sigma(c, 2), 0) sage: c13 == c31 True sage: d13 = sigma(sigma(d, 0), 2) sage: d31 = sigma(sigma(d, 2), 0) sage: d13 == d31 True
>>> from sage.all import * >>> c = Constellation(['(0,1)(2,3,4)','(1,4)','(2,5)(0,4)',None]) >>> d = Constellation(['(0,1,3,5)','(2,3,4)','(0,3,5)',None]) >>> c13 = sigma(sigma(c, Integer(0)), Integer(2)) >>> c31 = sigma(sigma(c, Integer(2)), Integer(0)) >>> c13 == c31 True >>> d13 = sigma(sigma(d, Integer(0)), Integer(2)) >>> d31 = sigma(sigma(d, Integer(2)), Integer(0)) >>> d13 == d31 True
Check the braid relation:
sage: c121 = sigma(sigma(sigma(c, 1), 2), 1) sage: c212 = sigma(sigma(sigma(c, 2), 1), 2) sage: c121 == c212 True sage: d121 = sigma(sigma(sigma(d, 1), 2), 1) sage: d212 = sigma(sigma(sigma(d, 2), 1), 2) sage: d121 == d212 True
>>> from sage.all import * >>> c121 = sigma(sigma(sigma(c, Integer(1)), Integer(2)), Integer(1)) >>> c212 = sigma(sigma(sigma(c, Integer(2)), Integer(1)), Integer(2)) >>> c121 == c212 True >>> d121 = sigma(sigma(sigma(d, Integer(1)), Integer(2)), Integer(1)) >>> d212 = sigma(sigma(sigma(d, Integer(2)), Integer(1)), Integer(2)) >>> d121 == d212 True
- braid_group_orbit()[source]#
Return the graph of the action of the braid group.
The action is considered up to isomorphism of constellation.
EXAMPLES:
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) sage: G = c.braid_group_orbit() sage: G.num_verts() 4 sage: G.num_edges() 12
>>> from sage.all import * >>> c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) >>> G = c.braid_group_orbit() >>> G.num_verts() 4 >>> G.num_edges() 12
- connected_components()[source]#
Return the connected components.
OUTPUT:
A list of connected constellations.
EXAMPLES:
sage: c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False) sage: cc = c.connected_components(); cc [Constellation of length 3 and degree 2 g0 (0,1) g1 (0)(1) g2 (0,1), Constellation of length 3 and degree 1 g0 (0) g1 (0) g2 (0)] sage: all(c2.is_connected() for c2 in cc) True sage: c = Constellation(['(0,1,2)', None], connected=False) sage: c.connected_components() [Constellation of length 2 and degree 3 g0 (0,1,2) g1 (0,2,1)]
>>> from sage.all import * >>> c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False) >>> cc = c.connected_components(); cc [Constellation of length 3 and degree 2 g0 (0,1) g1 (0)(1) g2 (0,1), Constellation of length 3 and degree 1 g0 (0) g1 (0) g2 (0)] >>> all(c2.is_connected() for c2 in cc) True >>> c = Constellation(['(0,1,2)', None], connected=False) >>> c.connected_components() [Constellation of length 2 and degree 3 g0 (0,1,2) g1 (0,2,1)]
- degree()[source]#
Return the degree of the constellation.
The degree of a constellation is the number \(n\) that corresponds to the symmetric group \(S(n)\) in which the permutations of the constellation are defined.
EXAMPLES:
sage: c = Constellation([]) sage: c.degree() 0 sage: c = Constellation(['(0,1)',None]) sage: c.degree() 2 sage: c = Constellation(['(0,1)','(0,3,2)(1,5)',None,'(4,3,2,1)']) sage: c.degree() 6
>>> from sage.all import * >>> c = Constellation([]) >>> c.degree() 0 >>> c = Constellation(['(0,1)',None]) >>> c.degree() 2 >>> c = Constellation(['(0,1)','(0,3,2)(1,5)',None,'(4,3,2,1)']) >>> c.degree() 6
- euler_characteristic()[source]#
Return the Euler characteristic of the surface.
ALGORITHM:
Hurwitz formula
EXAMPLES:
sage: c = Constellation(['(0,1)', '(0,2)', None]) sage: c.euler_characteristic() 2 sage: c = Constellation(['(0,1,2,3)','(1,3,0,2)', '(0,3,1,2)', None]) sage: c.euler_characteristic() -4
>>> from sage.all import * >>> c = Constellation(['(0,1)', '(0,2)', None]) >>> c.euler_characteristic() 2 >>> c = Constellation(['(0,1,2,3)','(1,3,0,2)', '(0,3,1,2)', None]) >>> c.euler_characteristic() -4
- g(i=None)[source]#
Return the permutation \(g_i\) of the constellation.
INPUT:
i – integer or
None
(default)
If
None
, return instead the list of all \(g_i\).EXAMPLES:
sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None]) sage: c.g(0) (0,1,2)(3,4) sage: c.g(1) (0,3) sage: c.g(2) (0,4,3,2,1) sage: c.g() [(0,1,2)(3,4), (0,3), (0,4,3,2,1)]
>>> from sage.all import * >>> c = Constellation(['(0,1,2)(3,4)','(0,3)',None]) >>> c.g(Integer(0)) (0,1,2)(3,4) >>> c.g(Integer(1)) (0,3) >>> c.g(Integer(2)) (0,4,3,2,1) >>> c.g() [(0,1,2)(3,4), (0,3), (0,4,3,2,1)]
- genus()[source]#
Return the genus of the surface.
EXAMPLES:
sage: c = Constellation(['(0,1)', '(0,2)', None]) sage: c.genus() 0 sage: c = Constellation(['(0,1)(2,3,4)','(1,3,4)(2,0)', None]) sage: c.genus() 1
>>> from sage.all import * >>> c = Constellation(['(0,1)', '(0,2)', None]) >>> c.genus() 0 >>> c = Constellation(['(0,1)(2,3,4)','(1,3,4)(2,0)', None]) >>> c.genus() 1
- is_connected()[source]#
Test of connectedness.
EXAMPLES:
sage: c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False) sage: c.is_connected() False sage: c = Constellation(['(0,1,2)', None], connected=False) sage: c.is_connected() True
>>> from sage.all import * >>> c = Constellation(['(0,1)(2)', None, '(0,1)(2)'], connected=False) >>> c.is_connected() False >>> c = Constellation(['(0,1,2)', None], connected=False) >>> c.is_connected() True
- is_isomorphic(other, return_map=False)[source]#
Test of isomorphism.
Return
True
if the constellations are isomorphic (i.e. related by a common conjugacy) and return the permutation that conjugate the two permutations ifreturn_map
isTrue
in such a way thatself.relabel(m) == other
.ALGORITHM:
uses canonical labels obtained from the method
relabel()
.EXAMPLES:
sage: c = Constellation([[1,0,2],[2,1,0],[0,2,1],None]) sage: d = Constellation([[2,1,0],[0,2,1],[1,0,2],None]) sage: answer, mapping = c.is_isomorphic(d,return_map=True) sage: answer True sage: c.relabel(mapping) == d True
>>> from sage.all import * >>> c = Constellation([[Integer(1),Integer(0),Integer(2)],[Integer(2),Integer(1),Integer(0)],[Integer(0),Integer(2),Integer(1)],None]) >>> d = Constellation([[Integer(2),Integer(1),Integer(0)],[Integer(0),Integer(2),Integer(1)],[Integer(1),Integer(0),Integer(2)],None]) >>> answer, mapping = c.is_isomorphic(d,return_map=True) >>> answer True >>> c.relabel(mapping) == d True
- is_mutable()[source]#
Return
False
asself
is immutable.EXAMPLES:
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False) sage: c.is_mutable() False
>>> from sage.all import * >>> c = Constellation(([Integer(0),Integer(2),Integer(1)],[Integer(2),Integer(1),Integer(0)],[Integer(1),Integer(2),Integer(0)]), mutable=False) >>> c.is_mutable() False
- length()[source]#
Return the number of permutations.
EXAMPLES:
sage: c = Constellation(['(0,1)','(0,2)','(0,3)',None]) sage: c.length() 4 sage: c = Constellation(['(0,1,3)',None,'(1,2)']) sage: c.length() 3
>>> from sage.all import * >>> c = Constellation(['(0,1)','(0,2)','(0,3)',None]) >>> c.length() 4 >>> c = Constellation(['(0,1,3)',None,'(1,2)']) >>> c.length() 3
- mutable_copy()[source]#
Return a mutable copy of
self
.EXAMPLES:
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False) sage: d = c.mutable_copy() sage: d.is_mutable() True
>>> from sage.all import * >>> c = Constellation(([Integer(0),Integer(2),Integer(1)],[Integer(2),Integer(1),Integer(0)],[Integer(1),Integer(2),Integer(0)]), mutable=False) >>> d = c.mutable_copy() >>> d.is_mutable() True
- passport(i=None)[source]#
Return the profile of
self
.The profile of a constellation is the tuple of partitions associated to the conjugacy classes of the permutations of the constellation.
This is also called the passport.
EXAMPLES:
sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None]) sage: c.profile() ([3, 2], [2, 1, 1, 1], [5])
>>> from sage.all import * >>> c = Constellation(['(0,1,2)(3,4)','(0,3)',None]) >>> c.profile() ([3, 2], [2, 1, 1, 1], [5])
- profile(i=None)[source]#
Return the profile of
self
.The profile of a constellation is the tuple of partitions associated to the conjugacy classes of the permutations of the constellation.
This is also called the passport.
EXAMPLES:
sage: c = Constellation(['(0,1,2)(3,4)','(0,3)',None]) sage: c.profile() ([3, 2], [2, 1, 1, 1], [5])
>>> from sage.all import * >>> c = Constellation(['(0,1,2)(3,4)','(0,3)',None]) >>> c.profile() ([3, 2], [2, 1, 1, 1], [5])
- relabel(perm=None, return_map=False)[source]#
Relabel
self
.If
perm
is provided then relabel with respect toperm
. Otherwise use canonical labels. In that case, ifreturn_map
is provided, the return also the map used for canonical labels.Algorithm:
the cycle for g(0) are adjacent and the cycle are joined with respect to the other permutations. The minimum is taken for all possible renumerotations.
EXAMPLES:
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) sage: c2 = c.relabel(); c2 Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,2)(3)(4) g2 (0,1,4,3,2)
>>> from sage.all import * >>> c = Constellation(['(0,1)(2,3,4)','(1,4)',None]); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) >>> c2 = c.relabel(); c2 Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,2)(3)(4) g2 (0,1,4,3,2)
The map returned when the option
return_map
is set toTrue
can be used to set the relabelling:sage: c3, perm = c.relabel(return_map=True) sage: c3 == c2 and c3 == c.relabel(perm=perm) True sage: S5 = SymmetricGroup(range(5)) sage: d = c.relabel(S5([4,3,1,0,2])); d Constellation of length 3 and degree 5 g0 (0,2,1)(3,4) g1 (0)(1)(2,3)(4) g2 (0,1,2,4,3) sage: d.is_isomorphic(c) True
>>> from sage.all import * >>> c3, perm = c.relabel(return_map=True) >>> c3 == c2 and c3 == c.relabel(perm=perm) True >>> S5 = SymmetricGroup(range(Integer(5))) >>> d = c.relabel(S5([Integer(4),Integer(3),Integer(1),Integer(0),Integer(2)])); d Constellation of length 3 and degree 5 g0 (0,2,1)(3,4) g1 (0)(1)(2,3)(4) g2 (0,1,2,4,3) >>> d.is_isomorphic(c) True
We check that after a random relabelling the new constellation is isomorphic to the initial one:
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None]) sage: p = S5.random_element() sage: cc = c.relabel(perm=p) sage: cc.is_isomorphic(c) True
>>> from sage.all import * >>> c = Constellation(['(0,1)(2,3,4)','(1,4)',None]) >>> p = S5.random_element() >>> cc = c.relabel(perm=p) >>> cc.is_isomorphic(c) True
Check that it works for “non standard” labels:
sage: c = Constellation([(('a','b'),('c','d','e')),('b','d'), None]) sage: c.relabel() Constellation of length 3 and degree 5 g0 ('a','b')('c','d','e') g1 ('a')('b','c')('d')('e') g2 ('a','b','e','d','c')
>>> from sage.all import * >>> c = Constellation([(('a','b'),('c','d','e')),('b','d'), None]) >>> c.relabel() Constellation of length 3 and degree 5 g0 ('a','b')('c','d','e') g1 ('a')('b','c')('d')('e') g2 ('a','b','e','d','c')
- set_immutable()[source]#
Do nothing, as
self
is already immutable.EXAMPLES:
sage: c = Constellation(([0,2,1],[2,1,0],[1,2,0]), mutable=False) sage: c.set_immutable() sage: c.is_mutable() False
>>> from sage.all import * >>> c = Constellation(([Integer(0),Integer(2),Integer(1)],[Integer(2),Integer(1),Integer(0)],[Integer(1),Integer(2),Integer(0)]), mutable=False) >>> c.set_immutable() >>> c.is_mutable() False
- switch(i, j0, j1)[source]#
Perform the multiplication by the transposition \((j0, j1)\) between the permutations \(g_i\) and \(g_{i+1}\).
The modification is local in the sense that it modifies \(g_i\) and \(g_{i+1}\) but does not modify the product \(g_i g_{i+1}\). The new constellation is
\[(g_0, \ldots, g_{i-1}, g_{i} (j0 j1), (j0 j1) g_{i+1}, g_{i+2}, \ldots, g_k)\]EXAMPLES:
sage: c = Constellation(['(0,1)(2,3,4)','(1,4)',None], mutable=True); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) sage: c.is_mutable() True sage: c.switch(1,2,3); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2,3) g2 (0,1,3,4)(2) sage: c._check() sage: c.switch(2,1,3); c Constellation of length 3 and degree 5 g0 (0,1,4,2,3) g1 (0)(1,4)(2,3) g2 (0,3,4)(1)(2) sage: c._check() sage: c.switch(0,0,1); c Constellation of length 3 and degree 5 g0 (0)(1,4,2,3) g1 (0,4,1)(2,3) g2 (0,3,4)(1)(2) sage: c._check()
>>> from sage.all import * >>> c = Constellation(['(0,1)(2,3,4)','(1,4)',None], mutable=True); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2)(3) g2 (0,1,3,2,4) >>> c.is_mutable() True >>> c.switch(Integer(1),Integer(2),Integer(3)); c Constellation of length 3 and degree 5 g0 (0,1)(2,3,4) g1 (0)(1,4)(2,3) g2 (0,1,3,4)(2) >>> c._check() >>> c.switch(Integer(2),Integer(1),Integer(3)); c Constellation of length 3 and degree 5 g0 (0,1,4,2,3) g1 (0)(1,4)(2,3) g2 (0,3,4)(1)(2) >>> c._check() >>> c.switch(Integer(0),Integer(0),Integer(1)); c Constellation of length 3 and degree 5 g0 (0)(1,4,2,3) g1 (0,4,1)(2,3) g2 (0,3,4)(1)(2) >>> c._check()
- sage.combinat.constellation.Constellations(*data, **options)[source]#
Build a set of constellations.
INPUT:
profile
– an optional profilelength
– an optional lengthdegree
– an optional degreeconnected
– an optional boolean
EXAMPLES:
sage: Constellations(4,2) Connected constellations of length 4 and degree 2 on {1, 2} sage: Constellations([[3,2,1],[3,3],[3,3]]) Connected constellations with profile ([3, 2, 1], [3, 3], [3, 3]) on {1, 2, 3, 4, 5, 6}
>>> from sage.all import * >>> Constellations(Integer(4),Integer(2)) Connected constellations of length 4 and degree 2 on {1, 2} >>> Constellations([[Integer(3),Integer(2),Integer(1)],[Integer(3),Integer(3)],[Integer(3),Integer(3)]]) Connected constellations with profile ([3, 2, 1], [3, 3], [3, 3]) on {1, 2, 3, 4, 5, 6}
- class sage.combinat.constellation.Constellations_ld(length, degree, sym=None, connected=True)[source]#
Bases:
UniqueRepresentation
,Parent
Constellations of given length and degree.
EXAMPLES:
sage: C = Constellations(2,3); C Connected constellations of length 2 and degree 3 on {1, 2, 3} sage: C([[2,3,1],[3,1,2]]) Constellation of length 2 and degree 3 g0 (1,2,3) g1 (1,3,2) sage: C.cardinality() 2 sage: Constellations(2,3,connected=False).cardinality() 6
>>> from sage.all import * >>> C = Constellations(Integer(2),Integer(3)); C Connected constellations of length 2 and degree 3 on {1, 2, 3} >>> C([[Integer(2),Integer(3),Integer(1)],[Integer(3),Integer(1),Integer(2)]]) Constellation of length 2 and degree 3 g0 (1,2,3) g1 (1,3,2) >>> C.cardinality() 2 >>> Constellations(Integer(2),Integer(3),connected=False).cardinality() 6
- Element[source]#
alias of
Constellation_class
- braid_group_action()[source]#
Return a list of graphs that corresponds to the braid group action on
self
up to isomorphism.OUTPUT:
list of graphs
EXAMPLES:
sage: C = Constellations(3,3) sage: C.braid_group_action() [Looped multi-digraph on 3 vertices, Looped multi-digraph on 1 vertex, Looped multi-digraph on 3 vertices]
>>> from sage.all import * >>> C = Constellations(Integer(3),Integer(3)) >>> C.braid_group_action() [Looped multi-digraph on 3 vertices, Looped multi-digraph on 1 vertex, Looped multi-digraph on 3 vertices]
- braid_group_orbits()[source]#
Return the orbits under the action of braid group.
EXAMPLES:
sage: C = Constellations(3,3) sage: O = C.braid_group_orbits() sage: len(O) 3 sage: [x.profile() for x in O[0]] [([1, 1, 1], [3], [3]), ([3], [1, 1, 1], [3]), ([3], [3], [1, 1, 1])] sage: [x.profile() for x in O[1]] [([3], [3], [3])] sage: [x.profile() for x in O[2]] [([2, 1], [2, 1], [3]), ([2, 1], [3], [2, 1]), ([3], [2, 1], [2, 1])]
>>> from sage.all import * >>> C = Constellations(Integer(3),Integer(3)) >>> O = C.braid_group_orbits() >>> len(O) 3 >>> [x.profile() for x in O[Integer(0)]] [([1, 1, 1], [3], [3]), ([3], [1, 1, 1], [3]), ([3], [3], [1, 1, 1])] >>> [x.profile() for x in O[Integer(1)]] [([3], [3], [3])] >>> [x.profile() for x in O[Integer(2)]] [([2, 1], [2, 1], [3]), ([2, 1], [3], [2, 1]), ([3], [2, 1], [2, 1])]
- is_empty()[source]#
Return whether this set of constellations is empty.
EXAMPLES:
sage: Constellations(2, 3).is_empty() False sage: Constellations(1, 2).is_empty() True sage: Constellations(1, 2, connected=False).is_empty() False
>>> from sage.all import * >>> Constellations(Integer(2), Integer(3)).is_empty() False >>> Constellations(Integer(1), Integer(2)).is_empty() True >>> Constellations(Integer(1), Integer(2), connected=False).is_empty() False
- random_element(mutable=False)[source]#
Return a random element.
This is found by trial and rejection, starting from a random list of permutations.
EXAMPLES:
sage: const = Constellations(3,3) sage: const.random_element() Constellation of length 3 and degree 3 ... ... ... sage: c = const.random_element() sage: c.degree() == 3 and c.length() == 3 True
>>> from sage.all import * >>> const = Constellations(Integer(3),Integer(3)) >>> const.random_element() Constellation of length 3 and degree 3 ... ... ... >>> c = const.random_element() >>> c.degree() == Integer(3) and c.length() == Integer(3) True
- class sage.combinat.constellation.Constellations_p(profile, domain=None, connected=True)[source]#
Bases:
UniqueRepresentation
,Parent
Constellations with fixed profile.
EXAMPLES:
sage: C = Constellations([[3,1],[3,1],[2,2]]); C Connected constellations with profile ([3, 1], [3, 1], [2, 2]) on {1, 2, 3, 4} sage: C.cardinality() 24 sage: C.first() Constellation of length 3 and degree 4 g0 (1)(2,3,4) g1 (1,2,3)(4) g2 (1,2)(3,4) sage: C.last() Constellation of length 3 and degree 4 g0 (1,4,3)(2) g1 (1,4,2)(3) g2 (1,2)(3,4)
>>> from sage.all import * >>> C = Constellations([[Integer(3),Integer(1)],[Integer(3),Integer(1)],[Integer(2),Integer(2)]]); C Connected constellations with profile ([3, 1], [3, 1], [2, 2]) on {1, 2, 3, 4} >>> C.cardinality() 24 >>> C.first() Constellation of length 3 and degree 4 g0 (1)(2,3,4) g1 (1,2,3)(4) g2 (1,2)(3,4) >>> C.last() Constellation of length 3 and degree 4 g0 (1,4,3)(2) g1 (1,4,2)(3) g2 (1,2)(3,4)
Note that the cardinality can also be computed using characters of the symmetric group (Frobenius formula):
sage: P = Partitions(4) sage: p1 = Partition([3,1]) sage: p2 = Partition([3,1]) sage: p3 = Partition([2,2]) sage: i1 = P.cardinality() - P.rank(p1) - 1 sage: i2 = P.cardinality() - P.rank(p2) - 1 sage: i3 = P.cardinality() - P.rank(p3) - 1 sage: s = 0 sage: for c in SymmetricGroup(4).irreducible_characters(): ....: v = c.values() ....: s += v[i1] * v[i2] * v[i3] / v[0] sage: c1 = p1.conjugacy_class_size() sage: c2 = p2.conjugacy_class_size() sage: c3 = p3.conjugacy_class_size() sage: c1 * c2 * c3 / factorial(4)**2 * s 1
>>> from sage.all import * >>> P = Partitions(Integer(4)) >>> p1 = Partition([Integer(3),Integer(1)]) >>> p2 = Partition([Integer(3),Integer(1)]) >>> p3 = Partition([Integer(2),Integer(2)]) >>> i1 = P.cardinality() - P.rank(p1) - Integer(1) >>> i2 = P.cardinality() - P.rank(p2) - Integer(1) >>> i3 = P.cardinality() - P.rank(p3) - Integer(1) >>> s = Integer(0) >>> for c in SymmetricGroup(Integer(4)).irreducible_characters(): ... v = c.values() ... s += v[i1] * v[i2] * v[i3] / v[Integer(0)] >>> c1 = p1.conjugacy_class_size() >>> c2 = p2.conjugacy_class_size() >>> c3 = p3.conjugacy_class_size() >>> c1 * c2 * c3 / factorial(Integer(4))**Integer(2) * s 1
The number obtained above is up to isomorphism. And we can check:
sage: len(C.isomorphism_representatives()) 1
>>> from sage.all import * >>> len(C.isomorphism_representatives()) 1
- isomorphism_representatives()[source]#
Return a set of isomorphism representative of
self
.EXAMPLES:
sage: C = Constellations([[5], [4,1], [3,2]]) sage: C.cardinality() 240 sage: ir = sorted(C.isomorphism_representatives()) sage: len(ir) 2 sage: ir[0] Constellation of length 3 and degree 5 g0 (1,2,3,4,5) g1 (1)(2,3,4,5) g2 (1,5,3)(2,4) sage: ir[1] Constellation of length 3 and degree 5 g0 (1,2,3,4,5) g1 (1)(2,5,3,4) g2 (1,5)(2,3,4)
>>> from sage.all import * >>> C = Constellations([[Integer(5)], [Integer(4),Integer(1)], [Integer(3),Integer(2)]]) >>> C.cardinality() 240 >>> ir = sorted(C.isomorphism_representatives()) >>> len(ir) 2 >>> ir[Integer(0)] Constellation of length 3 and degree 5 g0 (1,2,3,4,5) g1 (1)(2,3,4,5) g2 (1,5,3)(2,4) >>> ir[Integer(1)] Constellation of length 3 and degree 5 g0 (1,2,3,4,5) g1 (1)(2,5,3,4) g2 (1,5)(2,3,4)
- sage.combinat.constellation.perm_conjugate(p, s)[source]#
Return the conjugate of the permutation \(p\) by the permutation \(s\).
INPUT:
two permutations of {0,..,n-1} given by lists of values
OUTPUT:
a permutation of {0,..,n-1} given by a list of values
EXAMPLES:
sage: from sage.combinat.constellation import perm_conjugate sage: perm_conjugate([3,1,2,0], [3,2,0,1]) [0, 3, 2, 1]
>>> from sage.all import * >>> from sage.combinat.constellation import perm_conjugate >>> perm_conjugate([Integer(3),Integer(1),Integer(2),Integer(0)], [Integer(3),Integer(2),Integer(0),Integer(1)]) [0, 3, 2, 1]
- sage.combinat.constellation.perm_invert(p)[source]#
Return the inverse of the permutation \(p\).
INPUT:
a permutation of {0,..,n-1} given by a list of values
OUTPUT:
a permutation of {0,..,n-1} given by a list of values
EXAMPLES:
sage: from sage.combinat.constellation import perm_invert sage: perm_invert([3,2,0,1]) [2, 3, 1, 0]
>>> from sage.all import * >>> from sage.combinat.constellation import perm_invert >>> perm_invert([Integer(3),Integer(2),Integer(0),Integer(1)]) [2, 3, 1, 0]
- sage.combinat.constellation.perm_sym_domain(g)[source]#
Return the domain of a single permutation (before initialization).
EXAMPLES:
sage: from sage.combinat.constellation import perm_sym_domain sage: perm_sym_domain([1,2,3,4]) {1, 2, 3, 4} sage: perm_sym_domain(((1,2),(0,4))) {0, 1, 2, 4} sage: sorted(perm_sym_domain('(1,2,0,5)')) [0, 1, 2, 5]
>>> from sage.all import * >>> from sage.combinat.constellation import perm_sym_domain >>> perm_sym_domain([Integer(1),Integer(2),Integer(3),Integer(4)]) {1, 2, 3, 4} >>> perm_sym_domain(((Integer(1),Integer(2)),(Integer(0),Integer(4)))) {0, 1, 2, 4} >>> sorted(perm_sym_domain('(1,2,0,5)')) [0, 1, 2, 5]
- sage.combinat.constellation.perms_are_connected(g, n)[source]#
Checks that the action of the generated group is transitive
INPUT:
a list of permutations of \([0, n-1]\) (in a SymmetricGroup)
an integer \(n\)
EXAMPLES:
sage: from sage.combinat.constellation import perms_are_connected sage: S = SymmetricGroup(range(3)) sage: perms_are_connected([S([0,1,2]),S([0,2,1])],3) False sage: perms_are_connected([S([0,1,2]),S([1,2,0])],3) True
>>> from sage.all import * >>> from sage.combinat.constellation import perms_are_connected >>> S = SymmetricGroup(range(Integer(3))) >>> perms_are_connected([S([Integer(0),Integer(1),Integer(2)]),S([Integer(0),Integer(2),Integer(1)])],Integer(3)) False >>> perms_are_connected([S([Integer(0),Integer(1),Integer(2)]),S([Integer(1),Integer(2),Integer(0)])],Integer(3)) True
- sage.combinat.constellation.perms_canonical_labels(p, e=None)[source]#
Relabel a list with a common conjugation such that two conjugated lists are relabeled the same way.
INPUT:
p
is a list of at least 2 permutationse
is None or a list of integer in the domain of the permutations. If provided, then the renumbering algorithm is only performed from the elements ofe
.
OUTPUT:
a pair made of a list of permutations (as a list of lists) and a list that corresponds to the conjugacy used.
EXAMPLES:
sage: from sage.combinat.constellation import perms_canonical_labels sage: l0 = [[2,0,3,1], [3,1,2,0], [0,2,1,3]] sage: l, m = perms_canonical_labels(l0); l [[1, 2, 3, 0], [0, 3, 2, 1], [2, 1, 0, 3]] sage: S = SymmetricGroup(range(4)) sage: [~S(m) * S(u) * S(m) for u in l0] == list(map(S, l)) True sage: perms_canonical_labels([]) Traceback (most recent call last): ... ValueError: input must have length >= 2
>>> from sage.all import * >>> from sage.combinat.constellation import perms_canonical_labels >>> l0 = [[Integer(2),Integer(0),Integer(3),Integer(1)], [Integer(3),Integer(1),Integer(2),Integer(0)], [Integer(0),Integer(2),Integer(1),Integer(3)]] >>> l, m = perms_canonical_labels(l0); l [[1, 2, 3, 0], [0, 3, 2, 1], [2, 1, 0, 3]] >>> S = SymmetricGroup(range(Integer(4))) >>> [~S(m) * S(u) * S(m) for u in l0] == list(map(S, l)) True >>> perms_canonical_labels([]) Traceback (most recent call last): ... ValueError: input must have length >= 2
- sage.combinat.constellation.perms_canonical_labels_from(x, y, j0, verbose=False)[source]#
Return canonical labels for
x
,y
that starts atj0
Warning
The group generated by
x
and the elements ofy
should be transitive.INPUT:
x
– list; a permutation of \([0, ..., n]\) as a listy
– list of permutations of \([0, ..., n]\) as a list of listsj0
– an index in [0, …, n]
OUTPUT:
mapping: a permutation that specify the new labels
EXAMPLES:
sage: from sage.combinat.constellation import perms_canonical_labels_from sage: perms_canonical_labels_from([0,1,2],[[1,2,0]], 0) [0, 1, 2] sage: perms_canonical_labels_from([1,0,2], [[2,0,1]], 0) [0, 1, 2] sage: perms_canonical_labels_from([1,0,2], [[2,0,1]], 1) [1, 0, 2] sage: perms_canonical_labels_from([1,0,2], [[2,0,1]], 2) [2, 1, 0]
>>> from sage.all import * >>> from sage.combinat.constellation import perms_canonical_labels_from >>> perms_canonical_labels_from([Integer(0),Integer(1),Integer(2)],[[Integer(1),Integer(2),Integer(0)]], Integer(0)) [0, 1, 2] >>> perms_canonical_labels_from([Integer(1),Integer(0),Integer(2)], [[Integer(2),Integer(0),Integer(1)]], Integer(0)) [0, 1, 2] >>> perms_canonical_labels_from([Integer(1),Integer(0),Integer(2)], [[Integer(2),Integer(0),Integer(1)]], Integer(1)) [1, 0, 2] >>> perms_canonical_labels_from([Integer(1),Integer(0),Integer(2)], [[Integer(2),Integer(0),Integer(1)]], Integer(2)) [2, 1, 0]
- sage.combinat.constellation.perms_sym_init(g, sym=None)[source]#
Initialize a list of permutations (in the same symmetric group).
OUTPUT:
sym
– a symmetric groupgg
– a list of permutations
EXAMPLES:
sage: from sage.combinat.constellation import perms_sym_init sage: S, g = perms_sym_init([[0,2,1,3], [1,3,2,0]]) sage: S.domain() {0, 1, 2, 3} sage: g [(1,2), (0,1,3)] sage: S, g = perms_sym_init(['(2,1)', '(0,3)']) sage: S.domain() {0, 1, 2, 3} sage: g [(1,2), (0,3)] sage: S, g = perms_sym_init([(1,0), (2,1)]) sage: S.domain() {0, 1, 2} sage: g [(0,1), (1,2)] sage: S, g = perms_sym_init([((1,0),(2,3)), '(0,1,4)']) sage: S.domain() {0, 1, 2, 3, 4} sage: g [(0,1)(2,3), (0,1,4)]
>>> from sage.all import * >>> from sage.combinat.constellation import perms_sym_init >>> S, g = perms_sym_init([[Integer(0),Integer(2),Integer(1),Integer(3)], [Integer(1),Integer(3),Integer(2),Integer(0)]]) >>> S.domain() {0, 1, 2, 3} >>> g [(1,2), (0,1,3)] >>> S, g = perms_sym_init(['(2,1)', '(0,3)']) >>> S.domain() {0, 1, 2, 3} >>> g [(1,2), (0,3)] >>> S, g = perms_sym_init([(Integer(1),Integer(0)), (Integer(2),Integer(1))]) >>> S.domain() {0, 1, 2} >>> g [(0,1), (1,2)] >>> S, g = perms_sym_init([((Integer(1),Integer(0)),(Integer(2),Integer(3))), '(0,1,4)']) >>> S.domain() {0, 1, 2, 3, 4} >>> g [(0,1)(2,3), (0,1,4)]