Root system data for (untwisted) type B affine#
- class sage.combinat.root_system.type_B_affine.CartanType(n)[source]#
Bases:
CartanType_standard_untwisted_affine
EXAMPLES:
sage: ct = CartanType(['B',4,1]) sage: ct ['B', 4, 1] sage: ct._repr_(compact = True) 'B4~' sage: ct.is_irreducible() True sage: ct.is_finite() False sage: ct.is_affine() True sage: ct.is_untwisted_affine() True sage: ct.is_crystallographic() True sage: ct.is_simply_laced() False sage: ct.classical() ['B', 4] sage: ct.dual() ['B', 4, 1]^* sage: ct.dual().is_untwisted_affine() False
>>> from sage.all import * >>> ct = CartanType(['B',Integer(4),Integer(1)]) >>> ct ['B', 4, 1] >>> ct._repr_(compact = True) 'B4~' >>> ct.is_irreducible() True >>> ct.is_finite() False >>> ct.is_affine() True >>> ct.is_untwisted_affine() True >>> ct.is_crystallographic() True >>> ct.is_simply_laced() False >>> ct.classical() ['B', 4] >>> ct.dual() ['B', 4, 1]^* >>> ct.dual().is_untwisted_affine() False
- PieriFactors[source]#
alias of
PieriFactors_type_B_affine
- ascii_art(label=None, node=None)[source]#
Return an ascii art representation of the extended Dynkin diagram.
EXAMPLES:
sage: print(CartanType(['B',3,1]).ascii_art()) O 0 | | O---O=>=O 1 2 3 sage: print(CartanType(['B',5,1]).ascii_art(label = lambda x: x+2)) O 2 | | O---O---O---O=>=O 3 4 5 6 7 sage: print(CartanType(['B',2,1]).ascii_art(label = lambda x: x+2)) O=>=O=<=O 2 4 3 sage: print(CartanType(['B',1,1]).ascii_art(label = lambda x: x+2)) O<=>O 2 3
>>> from sage.all import * >>> print(CartanType(['B',Integer(3),Integer(1)]).ascii_art()) O 0 | | O---O=>=O 1 2 3 >>> print(CartanType(['B',Integer(5),Integer(1)]).ascii_art(label = lambda x: x+Integer(2))) O 2 | | O---O---O---O=>=O 3 4 5 6 7 >>> print(CartanType(['B',Integer(2),Integer(1)]).ascii_art(label = lambda x: x+Integer(2))) O=>=O=<=O 2 4 3 >>> print(CartanType(['B',Integer(1),Integer(1)]).ascii_art(label = lambda x: x+Integer(2))) O<=>O 2 3
- dynkin_diagram()[source]#
Return the extended Dynkin diagram for affine type \(B\).
EXAMPLES:
sage: # needs sage.graphs sage: b = CartanType(['B',3,1]).dynkin_diagram(); b O 0 | | O---O=>=O 1 2 3 B3~ sage: b.edges(sort=True) [(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)] sage: b = CartanType(['B',2,1]).dynkin_diagram(); b O=>=O=<=O 0 2 1 B2~ sage: b.edges(sort=True) [(0, 2, 2), (1, 2, 2), (2, 0, 1), (2, 1, 1)] sage: b = CartanType(['B',1,1]).dynkin_diagram(); b O<=>O 0 1 B1~ sage: b.edges(sort=True) [(0, 1, 2), (1, 0, 2)]
>>> from sage.all import * >>> # needs sage.graphs >>> b = CartanType(['B',Integer(3),Integer(1)]).dynkin_diagram(); b O 0 | | O---O=>=O 1 2 3 B3~ >>> b.edges(sort=True) [(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)] >>> b = CartanType(['B',Integer(2),Integer(1)]).dynkin_diagram(); b O=>=O=<=O 0 2 1 B2~ >>> b.edges(sort=True) [(0, 2, 2), (1, 2, 2), (2, 0, 1), (2, 1, 1)] >>> b = CartanType(['B',Integer(1),Integer(1)]).dynkin_diagram(); b O<=>O 0 1 B1~ >>> b.edges(sort=True) [(0, 1, 2), (1, 0, 2)]