Set Species#

class sage.combinat.species.set_species.SetSpecies(min=None, max=None, weight=None)#

Bases: sage.combinat.species.species.GenericCombinatorialSpecies, sage.structure.unique_representation.UniqueRepresentation

Returns the species of sets.

EXAMPLES:

sage: E = species.SetSpecies()
sage: E.structures([1,2,3]).list()
[{1, 2, 3}]
sage: E.isotype_generating_series().coefficients(4)
[1, 1, 1, 1]

sage: S = species.SetSpecies()
sage: c = S.generating_series().coefficients(3)
sage: S._check()
True
sage: S == loads(dumps(S))
True
class sage.combinat.species.set_species.SetSpeciesStructure(parent, labels, list)#

Bases: sage.combinat.species.structure.GenericSpeciesStructure

automorphism_group()#

Returns the group of permutations whose action on this set leave it fixed. For the species of sets, there is only one isomorphism class, so every permutation is in its automorphism group.

EXAMPLES:

sage: F = species.SetSpecies()
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.automorphism_group()
Symmetric group of order 3! as a permutation group
canonical_label()#

EXAMPLES:

sage: S = species.SetSpecies()
sage: a = S.structures(["a","b","c"]).random_element(); a
{'a', 'b', 'c'}
sage: a.canonical_label()
{'a', 'b', 'c'}
transport(perm)#

Returns the transport of this set along the permutation perm.

EXAMPLES:

sage: F = species.SetSpecies()
sage: a = F.structures(["a", "b", "c"]).random_element(); a
{'a', 'b', 'c'}
sage: p = PermutationGroupElement((1,2))
sage: a.transport(p)
{'a', 'b', 'c'}
sage.combinat.species.set_species.SetSpecies_class#

alias of sage.combinat.species.set_species.SetSpecies