Set Species¶
- class sage.combinat.species.set_species.SetSpecies(min=None, max=None, weight=None)[source]¶
Bases:
GenericCombinatorialSpecies
,UniqueRepresentation
Return the species of sets.
EXAMPLES:
sage: E = species.SetSpecies() sage: E.structures([1,2,3]).list() [{1, 2, 3}] sage: E.isotype_generating_series()[0:4] [1, 1, 1, 1] sage: S = species.SetSpecies() sage: c = S.generating_series()[0:3] sage: S._check() True sage: S == loads(dumps(S)) True
>>> from sage.all import * >>> E = species.SetSpecies() >>> E.structures([Integer(1),Integer(2),Integer(3)]).list() [{1, 2, 3}] >>> E.isotype_generating_series()[Integer(0):Integer(4)] [1, 1, 1, 1] >>> S = species.SetSpecies() >>> c = S.generating_series()[Integer(0):Integer(3)] >>> S._check() True >>> S == loads(dumps(S)) True
- class sage.combinat.species.set_species.SetSpeciesStructure(parent, labels, list)[source]¶
Bases:
GenericSpeciesStructure
- automorphism_group()[source]¶
Return the group of permutations whose action on this set leave it fixed. For the species of sets, there is only one isomorphism class, so every permutation is in its automorphism group.
EXAMPLES:
sage: F = species.SetSpecies() sage: a = F.structures(["a", "b", "c"]).random_element(); a {'a', 'b', 'c'} sage: a.automorphism_group() # needs sage.groups Symmetric group of order 3! as a permutation group
>>> from sage.all import * >>> F = species.SetSpecies() >>> a = F.structures(["a", "b", "c"]).random_element(); a {'a', 'b', 'c'} >>> a.automorphism_group() # needs sage.groups Symmetric group of order 3! as a permutation group
- canonical_label()[source]¶
EXAMPLES:
sage: S = species.SetSpecies() sage: a = S.structures(["a","b","c"]).random_element(); a {'a', 'b', 'c'} sage: a.canonical_label() {'a', 'b', 'c'}
>>> from sage.all import * >>> S = species.SetSpecies() >>> a = S.structures(["a","b","c"]).random_element(); a {'a', 'b', 'c'} >>> a.canonical_label() {'a', 'b', 'c'}
- transport(perm)[source]¶
Return the transport of this set along the permutation perm.
EXAMPLES:
sage: F = species.SetSpecies() sage: a = F.structures(["a", "b", "c"]).random_element(); a {'a', 'b', 'c'} sage: p = PermutationGroupElement((1,2)) # needs sage.groups sage: a.transport(p) # needs sage.groups {'a', 'b', 'c'}
>>> from sage.all import * >>> F = species.SetSpecies() >>> a = F.structures(["a", "b", "c"]).random_element(); a {'a', 'b', 'c'} >>> p = PermutationGroupElement((Integer(1),Integer(2))) # needs sage.groups >>> a.transport(p) # needs sage.groups {'a', 'b', 'c'}
- sage.combinat.species.set_species.SetSpecies_class[source]¶
alias of
SetSpecies