Generalized Tamari lattices¶
These lattices depend on three parameters \(a\), \(b\) and \(m\), where \(a\) and \(b\) are positive integers and \(m\) is a nonnegative integer.
The elements are Dyck paths
in the \((a \times b)\)-rectangle. The order relation depends on \(m\).
To use the provided functionality, you should import Generalized Tamari lattices by typing:
sage: from sage.combinat.tamari_lattices import GeneralizedTamariLattice
>>> from sage.all import *
>>> from sage.combinat.tamari_lattices import GeneralizedTamariLattice
Then,
sage: GeneralizedTamariLattice(3,2)
Finite lattice containing 2 elements
sage: GeneralizedTamariLattice(4,3)
Finite lattice containing 5 elements
>>> from sage.all import *
>>> GeneralizedTamariLattice(Integer(3),Integer(2))
Finite lattice containing 2 elements
>>> GeneralizedTamariLattice(Integer(4),Integer(3))
Finite lattice containing 5 elements
The classical Tamari lattices are special cases of this construction and are also available directly using the catalogue of posets, as follows:
sage: posets.TamariLattice(3)
Finite lattice containing 5 elements
>>> from sage.all import *
>>> posets.TamariLattice(Integer(3))
Finite lattice containing 5 elements
See also
For more detailed information see TamariLattice()
,
GeneralizedTamariLattice()
.
- sage.combinat.tamari_lattices.DexterSemilattice(n)[source]¶
Return the \(n\)-th Dexter meet-semilattice.
INPUT:
n
– nonnegative integer (the index)
OUTPUT: a finite meet-semilattice
The elements of the semilattice are
Dyck paths
in the \((n+1 \times n)\)-rectangle.EXAMPLES:
sage: posets.DexterSemilattice(3) Finite meet-semilattice containing 5 elements sage: P = posets.DexterSemilattice(4); P Finite meet-semilattice containing 14 elements sage: len(P.maximal_chains()) 15 sage: len(P.maximal_elements()) 4 sage: P.chain_polynomial() q^5 + 19*q^4 + 47*q^3 + 42*q^2 + 14*q + 1
>>> from sage.all import * >>> posets.DexterSemilattice(Integer(3)) Finite meet-semilattice containing 5 elements >>> P = posets.DexterSemilattice(Integer(4)); P Finite meet-semilattice containing 14 elements >>> len(P.maximal_chains()) 15 >>> len(P.maximal_elements()) 4 >>> P.chain_polynomial() q^5 + 19*q^4 + 47*q^3 + 42*q^2 + 14*q + 1
REFERENCES:
- sage.combinat.tamari_lattices.GeneralizedTamariLattice(a, b, m=1)[source]¶
Return the \((a,b)\)-Tamari lattice of parameter \(m\).
INPUT:
a
,b
– integers with \(a \geq b\)m
– a nonnegative rational number such that \(a \geq b m\)
OUTPUT:
a finite lattice (special case of the alt \(\nu\)-Tamari lattices in [CC2023])
The elements of the lattice are
Dyck paths
in the \((a \times b)\)-rectangle.The parameter \(m\) (slope) is used only to define the covering relations. When the slope \(m\) is \(0\), two paths are comparable if and only if one is always above the other.
The usual Tamari lattice of index \(b\) is the special case \(a=b+1\) and \(m=1\).
Other special cases give the \(m\)-Tamari lattices studied in [BMFPR2011], or the rational Tamari lattices when a and b are coprime and m = a/b (see [PRV2017]).
EXAMPLES:
sage: from sage.combinat.tamari_lattices import GeneralizedTamariLattice sage: GeneralizedTamariLattice(3,2) Finite lattice containing 2 elements sage: GeneralizedTamariLattice(4,3) Finite lattice containing 5 elements sage: GeneralizedTamariLattice(7,5,2) Traceback (most recent call last): ... ValueError: the condition a>=b*m does not hold sage: P = GeneralizedTamariLattice(5,3); P Finite lattice containing 7 elements sage: P = GeneralizedTamariLattice(5, 3, m=5/3); P Finite lattice containing 7 elements
>>> from sage.all import * >>> from sage.combinat.tamari_lattices import GeneralizedTamariLattice >>> GeneralizedTamariLattice(Integer(3),Integer(2)) Finite lattice containing 2 elements >>> GeneralizedTamariLattice(Integer(4),Integer(3)) Finite lattice containing 5 elements >>> GeneralizedTamariLattice(Integer(7),Integer(5),Integer(2)) Traceback (most recent call last): ... ValueError: the condition a>=b*m does not hold >>> P = GeneralizedTamariLattice(Integer(5),Integer(3)); P Finite lattice containing 7 elements >>> P = GeneralizedTamariLattice(Integer(5), Integer(3), m=Integer(5)/Integer(3)); P Finite lattice containing 7 elements
REFERENCES:
- sage.combinat.tamari_lattices.TamariLattice(n, m=1)[source]¶
Return the \(n\)-th Tamari lattice.
Using the slope parameter \(m\), one can also get the \(m\)-Tamari lattices.
INPUT:
n
– nonnegative integer (the index)m
– nonnegative integer (the slope, default: 1)
OUTPUT: a finite lattice
In the usual case, the elements of the lattice are
Dyck paths
in the \((n+1 \times n)\)-rectangle. For a general slope \(m\), the elements are Dyck paths in the \((m n+1 \times n)\)-rectangle.See Tamari lattice for mathematical background.
EXAMPLES:
sage: posets.TamariLattice(3) Finite lattice containing 5 elements sage: posets.TamariLattice(3, 2) Finite lattice containing 12 elements
>>> from sage.all import * >>> posets.TamariLattice(Integer(3)) Finite lattice containing 5 elements >>> posets.TamariLattice(Integer(3), Integer(2)) Finite lattice containing 12 elements
REFERENCES:
- sage.combinat.tamari_lattices.paths_in_triangle(i, j, a, b)[source]¶
Return all Dyck paths from \((0,0)\) to \((i,j)\) in the \((a \times b)\)-rectangle.
This means that at each step of the path, one has \(a y \geq b x\).
A path is represented by a sequence of \(0\) and \(1\), where \(0\) is an horizontal step \((1,0)\) and \(1\) is a vertical step \((0,1)\).
INPUT:
a
,b
– integers with \(a \geq b\)i
,j
– nonnegative integers with \(1 \geq \frac{j}{b} \geq \frac{i}{a} \geq 0\)
OUTPUT: list of paths
EXAMPLES:
sage: from sage.combinat.tamari_lattices import paths_in_triangle sage: paths_in_triangle(2,2,2,2) [(1, 0, 1, 0), (1, 1, 0, 0)] sage: paths_in_triangle(2,3,4,4) [(1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 1, 0, 1, 0), (1, 1, 1, 0, 0)] sage: paths_in_triangle(2,1,4,4) Traceback (most recent call last): ... ValueError: the endpoint is not valid sage: paths_in_triangle(3,2,5,3) [(1, 0, 1, 0, 0), (1, 1, 0, 0, 0)]
>>> from sage.all import * >>> from sage.combinat.tamari_lattices import paths_in_triangle >>> paths_in_triangle(Integer(2),Integer(2),Integer(2),Integer(2)) [(1, 0, 1, 0), (1, 1, 0, 0)] >>> paths_in_triangle(Integer(2),Integer(3),Integer(4),Integer(4)) [(1, 0, 1, 0, 1), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 1, 0, 1, 0), (1, 1, 1, 0, 0)] >>> paths_in_triangle(Integer(2),Integer(1),Integer(4),Integer(4)) Traceback (most recent call last): ... ValueError: the endpoint is not valid >>> paths_in_triangle(Integer(3),Integer(2),Integer(5),Integer(3)) [(1, 0, 1, 0, 0), (1, 1, 0, 0, 0)]
- sage.combinat.tamari_lattices.swap(p, i, m=1)[source]¶
Perform a covering move in the \((a,b)\)-Tamari lattice of slope parameter \(m\).
The letter at position \(i\) in \(p\) must be a \(0\), followed by at least one \(1\).
INPUT:
p
– a Dyck path in the \((a \times b)\)-rectanglei
– integer between \(0\) and \(a+b-1\)
OUTPUT: a Dyck path in the \((a \times b)\)-rectangle
EXAMPLES:
sage: from sage.combinat.tamari_lattices import swap sage: swap((1,0,1,0,0),1) (1, 1, 0, 0, 0) sage: swap((1,1,0,0,1,1,0,0,0),3) (1, 1, 0, 1, 1, 0, 0, 0, 0) sage: swap((1,0,1,0,1,0,0,0), 1, 1) (1, 1, 0, 0, 1, 0, 0, 0) sage: swap((1,0,1,0,1,0,0,0), 1, 5/3) (1, 1, 0, 1, 0, 0, 0, 0)
>>> from sage.all import * >>> from sage.combinat.tamari_lattices import swap >>> swap((Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)),Integer(1)) (1, 1, 0, 0, 0) >>> swap((Integer(1),Integer(1),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0),Integer(0)),Integer(3)) (1, 1, 0, 1, 1, 0, 0, 0, 0) >>> swap((Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0)), Integer(1), Integer(1)) (1, 1, 0, 0, 1, 0, 0, 0) >>> swap((Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0)), Integer(1), Integer(5)/Integer(3)) (1, 1, 0, 1, 0, 0, 0, 0)
- sage.combinat.tamari_lattices.swap_dexter(p, i)[source]¶
Perform covering moves in the \((a,b)\)-Dexter posets.
The letter at position \(i\) in \(p\) must be a \(0\), followed by at least one \(1\).
INPUT:
p
– a Dyck path in the \((a \times b)\)-rectanglei
– integer between \(0\) and \(a+b-1\)
OUTPUT:
a list of Dyck paths in the \((a \times b)\)-rectangle
EXAMPLES:
sage: from sage.combinat.tamari_lattices import swap_dexter sage: swap_dexter((1,0,1,0,0),1) [(1, 1, 0, 0, 0)] sage: swap_dexter((1,1,0,0,1,1,0,0,0),3) [(1, 1, 0, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0, 0, 0)] sage: swap_dexter((1,1,0,1,0,0,0),2) []
>>> from sage.all import * >>> from sage.combinat.tamari_lattices import swap_dexter >>> swap_dexter((Integer(1),Integer(0),Integer(1),Integer(0),Integer(0)),Integer(1)) [(1, 1, 0, 0, 0)] >>> swap_dexter((Integer(1),Integer(1),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0),Integer(0)),Integer(3)) [(1, 1, 0, 1, 1, 0, 0, 0, 0), (1, 1, 1, 1, 0, 0, 0, 0, 0)] >>> swap_dexter((Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(0)),Integer(2)) []