Characters of the symmetric group as bases of the symmetric functions

Just as the Schur functions are the irreducible characters of \(Gl_n\) and form a basis of the symmetric functions, the irreducible symmetric group character basis are the irreducible characters of of \(S_n\) when the group is realized as the permutation matrices.

REFERENCES:

[OZ2015](1, 2) R. Orellana, M. Zabrocki, Symmetric group characters as symmetric functions, arXiv 1510.00438.
class sage.combinat.sf.character.generic_character(Sym, basis_name=None, prefix=None, graded=True)

Bases: sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic

class sage.combinat.sf.character.induced_trivial_character_basis(Sym, pfix)

Bases: sage.combinat.sf.character.generic_character

The induced trivial symmetric group character basis of the symmetric functions.

This is a basis of the symmetric functions that has the property that self(la).character_to_frobenius_image(n) is equal to h([n-sum(la)]+la).

It has the property that the (outer) structure constants are the analogue of the stable Kronecker coefficients on the complete basis.

This basis is introduced in [OZ2015].

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: h = Sym.h()
sage: ht = SymmetricFunctions(QQ).ht()
sage: st = SymmetricFunctions(QQ).st()
sage: ht(s[2,1])
ht[1, 1] + ht[2, 1] - ht[3]
sage: s(ht[2,1])
s[1] - 2*s[1, 1] - 2*s[2] + s[2, 1] + s[3]
sage: ht(h[2,1])
ht[1] + 2*ht[1, 1] + ht[2, 1]
sage: h(ht[2,1])
h[1] - 2*h[1, 1] + h[2, 1]
sage: st(ht[2,1])
st[] + 2*st[1] + st[1, 1] + 2*st[2] + st[2, 1] + st[3]
sage: ht(st[2,1])
ht[1] - ht[1, 1] + ht[2, 1] - ht[3]
sage: ht[2]*ht[1,1]
ht[1, 1] + 2*ht[1, 1, 1] + ht[2, 1, 1]
sage: h[4,2].kronecker_product(h[4,1,1])
h[2, 2, 1, 1] + 2*h[3, 1, 1, 1] + h[4, 1, 1]
sage: s(st[2,1])
3*s[1] - 2*s[1, 1] - 2*s[2] + s[2, 1]
sage: st(s[2,1])
st[] + 3*st[1] + 2*st[1, 1] + 2*st[2] + st[2, 1]
sage: st[2]*st[1]
st[1] + st[1, 1] + st[2] + st[2, 1] + st[3]
sage: s[4,2].kronecker_product(s[5,1])
s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2] + s[5, 1]
class sage.combinat.sf.character.irreducible_character_basis(Sym, pfix)

Bases: sage.combinat.sf.character.generic_character

The irreducible symmetric group character basis of the symmetric functions.

This is a basis of the symmetric functions that has the property that self(la).character_to_frobenius_image(n) is equal to s([n-sum(la)]+la).

It should also have the property that the (outer) structure constants are the analogue of the stable Kronecker coefficients on the Schur basis.

This basis is introduced in [OZ2015].

EXAMPLES:

sage: Sym = SymmetricFunctions(QQ)
sage: s = Sym.s()
sage: h = Sym.h()
sage: ht = SymmetricFunctions(QQ).ht()
sage: st = SymmetricFunctions(QQ).st()
sage: st(ht[2,1])
st[] + 2*st[1] + st[1, 1] + 2*st[2] + st[2, 1] + st[3]
sage: ht(st[2,1])
ht[1] - ht[1, 1] + ht[2, 1] - ht[3]
sage: s(st[2,1])
3*s[1] - 2*s[1, 1] - 2*s[2] + s[2, 1]
sage: st(s[2,1])
st[] + 3*st[1] + 2*st[1, 1] + 2*st[2] + st[2, 1]
sage: st[2]*st[1]
st[1] + st[1, 1] + st[2] + st[2, 1] + st[3]
sage: s[4,2].kronecker_product(s[5,1])
s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2] + s[5, 1]
sage: st[1,1,1].counit()
-1
sage: all(sum(c*st(la)*st(mu).antipode() for
....:    ((la,mu),c) in st(ga).coproduct())==st(st(ga).counit())
....:    for ga in Partitions(3))
True