Cycle Species#
- class sage.combinat.species.cycle_species.CycleSpecies(min=None, max=None, weight=None)#
Bases:
GenericCombinatorialSpecies
,UniqueRepresentation
Returns the species of cycles.
EXAMPLES:
sage: C = species.CycleSpecies(); C Cyclic permutation species sage: C.structures([1,2,3,4]).list() [(1, 2, 3, 4), (1, 2, 4, 3), (1, 3, 2, 4), (1, 3, 4, 2), (1, 4, 2, 3), (1, 4, 3, 2)]
- class sage.combinat.species.cycle_species.CycleSpeciesStructure(parent, labels, list)#
Bases:
GenericSpeciesStructure
- automorphism_group()#
Returns the group of permutations whose action on this structure leave it fixed.
EXAMPLES:
sage: P = species.CycleSpecies() sage: a = P.structures([1, 2, 3, 4])[0]; a (1, 2, 3, 4) sage: a.automorphism_group() Permutation Group with generators [(1,2,3,4)]
sage: [a.transport(perm) for perm in a.automorphism_group()] [(1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4), (1, 2, 3, 4)]
- canonical_label()#
EXAMPLES:
sage: P = species.CycleSpecies() sage: P.structures(["a","b","c"]).random_element().canonical_label() ('a', 'b', 'c')
- permutation_group_element()#
Returns this cycle as a permutation group element.
EXAMPLES:
sage: F = species.CycleSpecies() sage: a = F.structures(["a", "b", "c"])[0]; a ('a', 'b', 'c') sage: a.permutation_group_element() (1,2,3)
- transport(perm)#
Returns the transport of this structure along the permutation perm.
EXAMPLES:
sage: F = species.CycleSpecies() sage: a = F.structures(["a", "b", "c"])[0]; a ('a', 'b', 'c') sage: p = PermutationGroupElement((1,2)) sage: a.transport(p) ('a', 'c', 'b')
- sage.combinat.species.cycle_species.CycleSpecies_class#
alias of
CycleSpecies