Symmetric Functions in Non-Commuting Variables¶
AUTHORS:
Travis Scrimshaw (08-04-2013): Initial version
- class sage.combinat.ncsym.ncsym.SymmetricFunctionsNonCommutingVariables(R)[source]¶
Bases:
UniqueRepresentation
,Parent
Symmetric functions in non-commutative variables.
The ring of symmetric functions in non-commutative variables, which is not to be confused with the
non-commutative symmetric functions
, is the ring of all bounded-degree noncommutative power series in countably many indeterminates (i.e., elements in \(R \langle \langle x_1, x_2, x_3, \ldots \rangle \rangle\) of bounded degree) which are invariant with respect to the action of the symmetric group \(S_{\infty}\) on the indices of the indeterminates. It can be regarded as a direct limit over all \(n \to \infty\) of rings of \(S_n\)-invariant polynomials in \(n\) non-commuting variables (that is, \(S_n\)-invariant elements of \(R\langle x_1, x_2, \ldots, x_n \rangle\)).This ring is implemented as a Hopf algebra whose basis elements are indexed by set partitions.
Let \(A = \{A_1, A_2, \ldots, A_r\}\) be a set partition of the integers \([k] := \{ 1, 2, \ldots, k \}\). This partition \(A\) determines an equivalence relation \(\sim_A\) on \([k]\), which has \(c \sim_A d\) if and only if \(c\) and \(d\) are in the same part \(A_j\) of \(A\). The monomial basis element \(\mathbf{m}_A\) indexed by \(A\) is the sum of monomials \(x_{i_1} x_{i_2} \cdots x_{i_k}\) such that \(i_c = i_d\) if and only if \(c \sim_A d\).
The \(k\)-th graded component of the ring of symmetric functions in non-commutative variables has its dimension equal to the number of set partitions of \([k]\). (If we work, instead, with finitely many – say, \(n\) – variables, then its dimension is equal to the number of set partitions of \([k]\) where the number of parts is at most \(n\).)
Note
All set partitions are considered standard (i.e., set partitions of \([n]\) for some \(n\)) unless otherwise stated.
REFERENCES:
[BZ05] (1,2)N. Bergeron, M. Zabrocki. The Hopf algebra of symmetric functions and quasisymmetric functions in non-commutative variables are free and cofree. (2005). arXiv math/0509265v3.
[BHRZ06]N. Bergeron, C. Hohlweg, M. Rosas, M. Zabrocki. Grothendieck bialgebras, partition lattices, and symmetric functions in noncommutative variables. Electronic Journal of Combinatorics. 13 (2006).
[RS06]M. Rosas, B. Sagan. Symmetric functions in noncommuting variables. Trans. Amer. Math. Soc. 358 (2006). no. 1, 215-232. arXiv math/0208168.
[BRRZ08]N. Bergeron, C. Reutenauer, M. Rosas, M. Zabrocki. Invariants and coinvariants of the symmetric group in noncommuting variables. Canad. J. Math. 60 (2008). 266-296. arXiv math/0502082
[BT13] (1,2,3,4,5,6)N. Bergeron, N. Thiem. A supercharacter table decomposition via power-sum symmetric functions. Int. J. Algebra Comput. 23, 763 (2013). doi:10.1142/S0218196713400171. arXiv 1112.4901.
EXAMPLES:
We begin by first creating the ring of \(NCSym\) and the bases that are analogues of the usual symmetric functions:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: e = NCSym.e() sage: h = NCSym.h() sage: p = NCSym.p() sage: m Symmetric functions in non-commuting variables over the Rational Field in the monomial basis
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> m = NCSym.m() >>> e = NCSym.e() >>> h = NCSym.h() >>> p = NCSym.p() >>> m Symmetric functions in non-commuting variables over the Rational Field in the monomial basis
The basis is indexed by set partitions, so we create a few elements and convert them between these bases:
sage: elt = m(SetPartition([[1,3],[2]])) - 2*m(SetPartition([[1],[2]])); elt -2*m{{1}, {2}} + m{{1, 3}, {2}} sage: e(elt) 1/2*e{{1}, {2, 3}} - 2*e{{1, 2}} + 1/2*e{{1, 2}, {3}} - 1/2*e{{1, 2, 3}} - 1/2*e{{1, 3}, {2}} sage: h(elt) -4*h{{1}, {2}} - 2*h{{1}, {2}, {3}} + 1/2*h{{1}, {2, 3}} + 2*h{{1, 2}} + 1/2*h{{1, 2}, {3}} - 1/2*h{{1, 2, 3}} + 3/2*h{{1, 3}, {2}} sage: p(elt) -2*p{{1}, {2}} + 2*p{{1, 2}} - p{{1, 2, 3}} + p{{1, 3}, {2}} sage: m(p(elt)) -2*m{{1}, {2}} + m{{1, 3}, {2}} sage: elt = p(SetPartition([[1,3],[2]])) - 4*p(SetPartition([[1],[2]])) + 2; elt 2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}} sage: e(elt) 2*e{} - 4*e{{1}, {2}} + e{{1}, {2}, {3}} - e{{1, 3}, {2}} sage: m(elt) 2*m{} - 4*m{{1}, {2}} - 4*m{{1, 2}} + m{{1, 2, 3}} + m{{1, 3}, {2}} sage: h(elt) 2*h{} - 4*h{{1}, {2}} - h{{1}, {2}, {3}} + h{{1, 3}, {2}} sage: p(m(elt)) 2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}}
>>> from sage.all import * >>> elt = m(SetPartition([[Integer(1),Integer(3)],[Integer(2)]])) - Integer(2)*m(SetPartition([[Integer(1)],[Integer(2)]])); elt -2*m{{1}, {2}} + m{{1, 3}, {2}} >>> e(elt) 1/2*e{{1}, {2, 3}} - 2*e{{1, 2}} + 1/2*e{{1, 2}, {3}} - 1/2*e{{1, 2, 3}} - 1/2*e{{1, 3}, {2}} >>> h(elt) -4*h{{1}, {2}} - 2*h{{1}, {2}, {3}} + 1/2*h{{1}, {2, 3}} + 2*h{{1, 2}} + 1/2*h{{1, 2}, {3}} - 1/2*h{{1, 2, 3}} + 3/2*h{{1, 3}, {2}} >>> p(elt) -2*p{{1}, {2}} + 2*p{{1, 2}} - p{{1, 2, 3}} + p{{1, 3}, {2}} >>> m(p(elt)) -2*m{{1}, {2}} + m{{1, 3}, {2}} >>> elt = p(SetPartition([[Integer(1),Integer(3)],[Integer(2)]])) - Integer(4)*p(SetPartition([[Integer(1)],[Integer(2)]])) + Integer(2); elt 2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}} >>> e(elt) 2*e{} - 4*e{{1}, {2}} + e{{1}, {2}, {3}} - e{{1, 3}, {2}} >>> m(elt) 2*m{} - 4*m{{1}, {2}} - 4*m{{1, 2}} + m{{1, 2, 3}} + m{{1, 3}, {2}} >>> h(elt) 2*h{} - 4*h{{1}, {2}} - h{{1}, {2}, {3}} + h{{1, 3}, {2}} >>> p(m(elt)) 2*p{} - 4*p{{1}, {2}} + p{{1, 3}, {2}}
There is also a shorthand for creating elements. We note that we must use
p[[]]
to create the empty set partition due to python’s syntax.sage: eltm = m[[1,3],[2]] - 3*m[[1],[2]]; eltm -3*m{{1}, {2}} + m{{1, 3}, {2}} sage: elte = e[[1,3],[2]]; elte e{{1, 3}, {2}} sage: elth = h[[1,3],[2,4]]; elth h{{1, 3}, {2, 4}} sage: eltp = p[[1,3],[2,4]] + 2*p[[1]] - 4*p[[]]; eltp -4*p{} + 2*p{{1}} + p{{1, 3}, {2, 4}}
>>> from sage.all import * >>> eltm = m[[Integer(1),Integer(3)],[Integer(2)]] - Integer(3)*m[[Integer(1)],[Integer(2)]]; eltm -3*m{{1}, {2}} + m{{1, 3}, {2}} >>> elte = e[[Integer(1),Integer(3)],[Integer(2)]]; elte e{{1, 3}, {2}} >>> elth = h[[Integer(1),Integer(3)],[Integer(2),Integer(4)]]; elth h{{1, 3}, {2, 4}} >>> eltp = p[[Integer(1),Integer(3)],[Integer(2),Integer(4)]] + Integer(2)*p[[Integer(1)]] - Integer(4)*p[[]]; eltp -4*p{} + 2*p{{1}} + p{{1, 3}, {2, 4}}
There is also a natural projection to the usual symmetric functions by letting the variables commute. This projection map preserves the product and coproduct structure. We check that Theorem 2.1 of [RS06] holds:
sage: Sym = SymmetricFunctions(QQ) sage: Sm = Sym.m() sage: Se = Sym.e() sage: Sh = Sym.h() sage: Sp = Sym.p() sage: eltm.to_symmetric_function() -6*m[1, 1] + m[2, 1] sage: Sm(p(eltm).to_symmetric_function()) -6*m[1, 1] + m[2, 1] sage: elte.to_symmetric_function() 2*e[2, 1] sage: Se(h(elte).to_symmetric_function()) 2*e[2, 1] sage: elth.to_symmetric_function() 4*h[2, 2] sage: Sh(m(elth).to_symmetric_function()) 4*h[2, 2] sage: eltp.to_symmetric_function() -4*p[] + 2*p[1] + p[2, 2] sage: Sp(e(eltp).to_symmetric_function()) -4*p[] + 2*p[1] + p[2, 2]
>>> from sage.all import * >>> Sym = SymmetricFunctions(QQ) >>> Sm = Sym.m() >>> Se = Sym.e() >>> Sh = Sym.h() >>> Sp = Sym.p() >>> eltm.to_symmetric_function() -6*m[1, 1] + m[2, 1] >>> Sm(p(eltm).to_symmetric_function()) -6*m[1, 1] + m[2, 1] >>> elte.to_symmetric_function() 2*e[2, 1] >>> Se(h(elte).to_symmetric_function()) 2*e[2, 1] >>> elth.to_symmetric_function() 4*h[2, 2] >>> Sh(m(elth).to_symmetric_function()) 4*h[2, 2] >>> eltp.to_symmetric_function() -4*p[] + 2*p[1] + p[2, 2] >>> Sp(e(eltp).to_symmetric_function()) -4*p[] + 2*p[1] + p[2, 2]
- a_realization()[source]¶
Return the realization of the powersum basis of
self
.OUTPUT: the powersum basis of symmetric functions in non-commuting variables
EXAMPLES:
sage: SymmetricFunctionsNonCommutingVariables(QQ).a_realization() Symmetric functions in non-commuting variables over the Rational Field in the powersum basis
>>> from sage.all import * >>> SymmetricFunctionsNonCommutingVariables(QQ).a_realization() Symmetric functions in non-commuting variables over the Rational Field in the powersum basis
- chi[source]¶
alias of
supercharacter
- class coarse_powersum(NCSym)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the \(\mathbf{cp}\) basis.
This basis was defined in [BZ05] as
\[\mathbf{cp}_A = \sum_{A \leq_* B} \mathbf{m}_B,\]where we sum over all strict coarsenings of the set partition \(A\). An alternative description of this basis was given in [BT13] as
\[\mathbf{cp}_A = \sum_{A \subseteq B} \mathbf{m}_B,\]where we sum over all set partitions whose arcs are a subset of the arcs of the set partition \(A\).
Note
In [BZ05], this basis was denoted by \(\mathbf{q}\). In [BT13], this basis was called the powersum basis and denoted by \(p\). However it is a coarser basis than the usual powersum basis in the sense that it does not yield the usual powersum basis of the symmetric function under the natural map of letting the variables commute.
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: cp = NCSym.cp() sage: cp[[1,3],[2,4]]*cp[[1,2,3]] cp{{1, 3}, {2, 4}, {5, 6, 7}} sage: cp[[1,2],[3]].internal_coproduct() cp{{1, 2}, {3}} # cp{{1, 2}, {3}} sage: ps = SymmetricFunctions(NCSym.base_ring()).p() sage: ps(cp[[1,3],[2]].to_symmetric_function()) p[2, 1] - p[3] sage: ps(cp[[1,2],[3]].to_symmetric_function()) p[2, 1]
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> cp = NCSym.cp() >>> cp[[Integer(1),Integer(3)],[Integer(2),Integer(4)]]*cp[[Integer(1),Integer(2),Integer(3)]] cp{{1, 3}, {2, 4}, {5, 6, 7}} >>> cp[[Integer(1),Integer(2)],[Integer(3)]].internal_coproduct() cp{{1, 2}, {3}} # cp{{1, 2}, {3}} >>> ps = SymmetricFunctions(NCSym.base_ring()).p() >>> ps(cp[[Integer(1),Integer(3)],[Integer(2)]].to_symmetric_function()) p[2, 1] - p[3] >>> ps(cp[[Integer(1),Integer(2)],[Integer(3)]].to_symmetric_function()) p[2, 1]
- cp[source]¶
alias of
coarse_powersum
- class deformed_coarse_powersum(NCSym, q=2)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the \(\rho\) basis.
This basis was defined in [BT13] as a \(q\)-deformation of the \(\mathbf{cp}\) basis:
\[\rho_A = \sum_{A \subseteq B} \frac{1}{q^{\operatorname{nst}_{B-A}^A}} \mathbf{m}_B,\]where we sum over all set partitions whose arcs are a subset of the arcs of the set partition \(A\).
INPUT:
q
– (default:2
) the parameter \(q\)
EXAMPLES:
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: rho = NCSym.rho(q)
>>> from sage.all import * >>> R = QQ['q'].fraction_field() >>> q = R.gen() >>> NCSym = SymmetricFunctionsNonCommutingVariables(R) >>> rho = NCSym.rho(q)
We construct Example 3.1 in [BT13]:
sage: rnode = lambda A: sorted([a[1] for a in A.arcs()], reverse=True) sage: dimv = lambda A: sorted([a[1]-a[0] for a in A.arcs()], reverse=True) sage: lst = list(SetPartitions(4)) sage: S = sorted(lst, key=lambda A: (dimv(A), rnode(A))) sage: m = NCSym.m() sage: matrix([[m(rho[A])[B] for B in S] for A in S]) [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] [ 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0] [ 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1] [ 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0] [ 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0] [ 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1/q] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
>>> from sage.all import * >>> rnode = lambda A: sorted([a[Integer(1)] for a in A.arcs()], reverse=True) >>> dimv = lambda A: sorted([a[Integer(1)]-a[Integer(0)] for a in A.arcs()], reverse=True) >>> lst = list(SetPartitions(Integer(4))) >>> S = sorted(lst, key=lambda A: (dimv(A), rnode(A))) >>> m = NCSym.m() >>> matrix([[m(rho[A])[B] for B in S] for A in S]) [ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1] [ 0 1 0 0 1 1 0 1 0 0 1 0 0 0 0] [ 0 0 1 0 1 0 1 1 0 0 0 0 0 0 1] [ 0 0 0 1 0 1 1 1 0 0 0 1 0 0 0] [ 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0] [ 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0] [ 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1/q] [ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1]
- q()[source]¶
Return the deformation parameter \(q\) of
self
.EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: rho = NCSym.rho(5) sage: rho.q() 5 sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: rho = NCSym.rho(q) sage: rho.q() == q True
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> rho = NCSym.rho(Integer(5)) >>> rho.q() 5 >>> R = QQ['q'].fraction_field() >>> q = R.gen() >>> NCSym = SymmetricFunctionsNonCommutingVariables(R) >>> rho = NCSym.rho(q) >>> rho.q() == q True
- dual()[source]¶
Return the dual Hopf algebra of the symmetric functions in non-commuting variables.
EXAMPLES:
sage: SymmetricFunctionsNonCommutingVariables(QQ).dual() Dual symmetric functions in non-commuting variables over the Rational Field
>>> from sage.all import * >>> SymmetricFunctionsNonCommutingVariables(QQ).dual() Dual symmetric functions in non-commuting variables over the Rational Field
- e[source]¶
alias of
elementary
- class elementary(NCSym)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the elementary basis.
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e()
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> e = NCSym.e()
- class Element[source]¶
Bases:
IndexedFreeModuleElement
An element in the elementary basis of \(NCSym\).
- omega()[source]¶
Return the involution \(\omega\) applied to
self
.The involution \(\omega\) on \(NCSym\) is defined by \(\omega(\mathbf{e}_A) = \mathbf{h}_A\).
OUTPUT: an element in the basis
self
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: e = NCSym.e() sage: h = NCSym.h() sage: elt = e[[1,3],[2]].omega(); elt 2*e{{1}, {2}, {3}} - e{{1, 3}, {2}} sage: elt.omega() e{{1, 3}, {2}} sage: h(elt) h{{1, 3}, {2}}
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> e = NCSym.e() >>> h = NCSym.h() >>> elt = e[[Integer(1),Integer(3)],[Integer(2)]].omega(); elt 2*e{{1}, {2}, {3}} - e{{1, 3}, {2}} >>> elt.omega() e{{1, 3}, {2}} >>> h(elt) h{{1, 3}, {2}}
- to_symmetric_function()[source]¶
The projection of
self
to the symmetric functions.Take a symmetric function in non-commuting variables expressed in the \(\mathbf{e}\) basis, and return the projection of expressed in the elementary basis of symmetric functions.
The map \(\chi \colon NCSym \to Sym\) is given by
\[\mathbf{e}_A \mapsto e_{\lambda(A)} \prod_i \lambda(A)_i!\]where \(\lambda(A)\) is the partition associated with \(A\) by taking the sizes of the parts.
OUTPUT: an element of the symmetric functions in the elementary basis
EXAMPLES:
sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e() sage: e[[1,3],[2]].to_symmetric_function() 2*e[2, 1] sage: e[[1],[3],[2]].to_symmetric_function() e[1, 1, 1]
>>> from sage.all import * >>> e = SymmetricFunctionsNonCommutingVariables(QQ).e() >>> e[[Integer(1),Integer(3)],[Integer(2)]].to_symmetric_function() 2*e[2, 1] >>> e[[Integer(1)],[Integer(3)],[Integer(2)]].to_symmetric_function() e[1, 1, 1]
- h[source]¶
alias of
homogeneous
- class homogeneous(NCSym)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the homogeneous basis.
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: h[[1,3],[2,4]]*h[[1,2,3]] h{{1, 3}, {2, 4}, {5, 6, 7}} sage: h[[1,2]].coproduct() h{} # h{{1, 2}} + 2*h{{1}} # h{{1}} + h{{1, 2}} # h{}
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> h = NCSym.h() >>> h[[Integer(1),Integer(3)],[Integer(2),Integer(4)]]*h[[Integer(1),Integer(2),Integer(3)]] h{{1, 3}, {2, 4}, {5, 6, 7}} >>> h[[Integer(1),Integer(2)]].coproduct() h{} # h{{1, 2}} + 2*h{{1}} # h{{1}} + h{{1, 2}} # h{}
- class Element[source]¶
Bases:
IndexedFreeModuleElement
An element in the homogeneous basis of \(NCSym\).
- omega()[source]¶
Return the involution \(\omega\) applied to
self
.The involution \(\omega\) on \(NCSym\) is defined by \(\omega(\mathbf{h}_A) = \mathbf{e}_A\).
OUTPUT: an element in the basis
self
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: h = NCSym.h() sage: e = NCSym.e() sage: elt = h[[1,3],[2]].omega(); elt 2*h{{1}, {2}, {3}} - h{{1, 3}, {2}} sage: elt.omega() h{{1, 3}, {2}} sage: e(elt) e{{1, 3}, {2}}
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> h = NCSym.h() >>> e = NCSym.e() >>> elt = h[[Integer(1),Integer(3)],[Integer(2)]].omega(); elt 2*h{{1}, {2}, {3}} - h{{1, 3}, {2}} >>> elt.omega() h{{1, 3}, {2}} >>> e(elt) e{{1, 3}, {2}}
- to_symmetric_function()[source]¶
The projection of
self
to the symmetric functions.Take a symmetric function in non-commuting variables expressed in the \(\mathbf{h}\) basis, and return the projection of expressed in the complete basis of symmetric functions.
The map \(\chi \colon NCSym \to Sym\) is given by
\[\mathbf{h}_A \mapsto h_{\lambda(A)} \prod_i \lambda(A)_i!\]where \(\lambda(A)\) is the partition associated with \(A\) by taking the sizes of the parts.
OUTPUT: an element of the symmetric functions in the complete basis
EXAMPLES:
sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: h[[1,3],[2]].to_symmetric_function() 2*h[2, 1] sage: h[[1],[3],[2]].to_symmetric_function() h[1, 1, 1]
>>> from sage.all import * >>> h = SymmetricFunctionsNonCommutingVariables(QQ).h() >>> h[[Integer(1),Integer(3)],[Integer(2)]].to_symmetric_function() 2*h[2, 1] >>> h[[Integer(1)],[Integer(3)],[Integer(2)]].to_symmetric_function() h[1, 1, 1]
- class monomial(NCSym)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the monomial basis.
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: m[[1,3],[2]]*m[[1,2]] m{{1, 3}, {2}, {4, 5}} + m{{1, 3}, {2, 4, 5}} + m{{1, 3, 4, 5}, {2}} sage: m[[1,3],[2]].coproduct() m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3}, {2}} # m{}
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> m = NCSym.m() >>> m[[Integer(1),Integer(3)],[Integer(2)]]*m[[Integer(1),Integer(2)]] m{{1, 3}, {2}, {4, 5}} + m{{1, 3}, {2, 4, 5}} + m{{1, 3, 4, 5}, {2}} >>> m[[Integer(1),Integer(3)],[Integer(2)]].coproduct() m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3}, {2}} # m{}
- class Element[source]¶
Bases:
IndexedFreeModuleElement
An element in the monomial basis of \(NCSym\).
- expand(n, alphabet='x')[source]¶
Expand
self
written in the monomial basis in \(n\) non-commuting variables.INPUT:
n
– integeralphabet
– string (default:'x'
)
OUTPUT:
The symmetric function of
self
expressed in then
non-commuting variables described byalphabet
.
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m[[1,3],[2]].expand(4) x0*x1*x0 + x0*x2*x0 + x0*x3*x0 + x1*x0*x1 + x1*x2*x1 + x1*x3*x1 + x2*x0*x2 + x2*x1*x2 + x2*x3*x2 + x3*x0*x3 + x3*x1*x3 + x3*x2*x3
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() >>> m[[Integer(1),Integer(3)],[Integer(2)]].expand(Integer(4)) x0*x1*x0 + x0*x2*x0 + x0*x3*x0 + x1*x0*x1 + x1*x2*x1 + x1*x3*x1 + x2*x0*x2 + x2*x1*x2 + x2*x3*x2 + x3*x0*x3 + x3*x1*x3 + x3*x2*x3
One can use a different set of variables by using the optional argument
alphabet
:sage: m[[1],[2,3]].expand(3,alphabet='y') y0*y1^2 + y0*y2^2 + y1*y0^2 + y1*y2^2 + y2*y0^2 + y2*y1^2
>>> from sage.all import * >>> m[[Integer(1)],[Integer(2),Integer(3)]].expand(Integer(3),alphabet='y') y0*y1^2 + y0*y2^2 + y1*y0^2 + y1*y2^2 + y2*y0^2 + y2*y1^2
- to_symmetric_function()[source]¶
The projection of
self
to the symmetric functions.Take a symmetric function in non-commuting variables expressed in the \(\mathbf{m}\) basis, and return the projection of expressed in the monomial basis of symmetric functions.
The map \(\chi \colon NCSym \to Sym\) is defined by
\[\mathbf{m}_A \mapsto m_{\lambda(A)} \prod_i n_i(\lambda(A))!\]where \(\lambda(A)\) is the partition associated with \(A\) by taking the sizes of the parts and \(n_i(\mu)\) is the multiplicity of \(i\) in \(\mu\).
OUTPUT: an element of the symmetric functions in the monomial basis
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m[[1,3],[2]].to_symmetric_function() m[2, 1] sage: m[[1],[3],[2]].to_symmetric_function() 6*m[1, 1, 1]
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() >>> m[[Integer(1),Integer(3)],[Integer(2)]].to_symmetric_function() m[2, 1] >>> m[[Integer(1)],[Integer(3)],[Integer(2)]].to_symmetric_function() 6*m[1, 1, 1]
- coproduct_on_basis(A)[source]¶
Return the coproduct of a monomial basis element.
INPUT:
A
– set partition
OUTPUT:
The coproduct applied to the monomial symmetric function in non-commuting variables indexed by
A
expressed in the monomial basis.
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m[[1, 3], [2]].coproduct() m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3}, {2}} # m{} sage: m.coproduct_on_basis(SetPartition([])) m{} # m{} sage: m.coproduct_on_basis(SetPartition([[1,2,3]])) m{} # m{{1, 2, 3}} + m{{1, 2, 3}} # m{} sage: m[[1,5],[2,4],[3,7],[6]].coproduct() m{} # m{{1, 5}, {2, 4}, {3, 7}, {6}} + m{{1}} # m{{1, 5}, {2, 4}, {3, 6}} + 2*m{{1, 2}} # m{{1, 3}, {2, 5}, {4}} + m{{1, 2}} # m{{1, 4}, {2, 3}, {5}} + 2*m{{1, 2}, {3}} # m{{1, 3}, {2, 4}} + m{{1, 3}, {2}} # m{{1, 4}, {2, 3}} + 2*m{{1, 3}, {2, 4}} # m{{1, 2}, {3}} + 2*m{{1, 3}, {2, 5}, {4}} # m{{1, 2}} + m{{1, 4}, {2, 3}} # m{{1, 3}, {2}} + m{{1, 4}, {2, 3}, {5}} # m{{1, 2}} + m{{1, 5}, {2, 4}, {3, 6}} # m{{1}} + m{{1, 5}, {2, 4}, {3, 7}, {6}} # m{}
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() >>> m[[Integer(1), Integer(3)], [Integer(2)]].coproduct() m{} # m{{1, 3}, {2}} + m{{1}} # m{{1, 2}} + m{{1, 2}} # m{{1}} + m{{1, 3}, {2}} # m{} >>> m.coproduct_on_basis(SetPartition([])) m{} # m{} >>> m.coproduct_on_basis(SetPartition([[Integer(1),Integer(2),Integer(3)]])) m{} # m{{1, 2, 3}} + m{{1, 2, 3}} # m{} >>> m[[Integer(1),Integer(5)],[Integer(2),Integer(4)],[Integer(3),Integer(7)],[Integer(6)]].coproduct() m{} # m{{1, 5}, {2, 4}, {3, 7}, {6}} + m{{1}} # m{{1, 5}, {2, 4}, {3, 6}} + 2*m{{1, 2}} # m{{1, 3}, {2, 5}, {4}} + m{{1, 2}} # m{{1, 4}, {2, 3}, {5}} + 2*m{{1, 2}, {3}} # m{{1, 3}, {2, 4}} + m{{1, 3}, {2}} # m{{1, 4}, {2, 3}} + 2*m{{1, 3}, {2, 4}} # m{{1, 2}, {3}} + 2*m{{1, 3}, {2, 5}, {4}} # m{{1, 2}} + m{{1, 4}, {2, 3}} # m{{1, 3}, {2}} + m{{1, 4}, {2, 3}, {5}} # m{{1, 2}} + m{{1, 5}, {2, 4}, {3, 6}} # m{{1}} + m{{1, 5}, {2, 4}, {3, 7}, {6}} # m{}
- dual_basis()[source]¶
Return the dual basis to the monomial basis.
OUTPUT: the \(\mathbf{w}\) basis of the dual Hopf algebra
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: m.dual_basis() Dual symmetric functions in non-commuting variables over the Rational Field in the w basis
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).m() >>> m.dual_basis() Dual symmetric functions in non-commuting variables over the Rational Field in the w basis
- duality_pairing(x, y)[source]¶
Compute the pairing between an element of
self
and an element of the dual.INPUT:
x
– an element of symmetric functions in non-commuting variablesy
– an element of the dual of symmetric functions in non-commuting variables
OUTPUT: an element of the base ring of
self
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: m = NCSym.m() sage: w = m.dual_basis() sage: matrix([[m(A).duality_pairing(w(B)) for A in SetPartitions(3)] for B in SetPartitions(3)]) [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1] sage: (m[[1,2],[3]] + 3*m[[1,3],[2]]).duality_pairing(2*w[[1,3],[2]] + w[[1,2,3]] + 2*w[[1,2],[3]]) 8
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> m = NCSym.m() >>> w = m.dual_basis() >>> matrix([[m(A).duality_pairing(w(B)) for A in SetPartitions(Integer(3))] for B in SetPartitions(Integer(3))]) [1 0 0 0 0] [0 1 0 0 0] [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1] >>> (m[[Integer(1),Integer(2)],[Integer(3)]] + Integer(3)*m[[Integer(1),Integer(3)],[Integer(2)]]).duality_pairing(Integer(2)*w[[Integer(1),Integer(3)],[Integer(2)]] + w[[Integer(1),Integer(2),Integer(3)]] + Integer(2)*w[[Integer(1),Integer(2)],[Integer(3)]]) 8
- from_symmetric_function(f)[source]¶
Return the image of the symmetric function
f
inself
.This is performed by converting to the monomial basis and extending the method
sum_of_partitions()
linearly. This is a linear map from the symmetric functions to the symmetric functions in non-commuting variables that does not preserve the product or coproduct structure of the Hopf algebra.See also
INPUT:
f
– an element of the symmetric functions
OUTPUT: an element of the \(\mathbf{m}\) basis
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: mon = SymmetricFunctions(QQ).m() sage: elt = m.from_symmetric_function(mon[2,1,1]); elt 1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4}, {3}} + 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2}, {3}} sage: elt.to_symmetric_function() m[2, 1, 1] sage: e = SymmetricFunctionsNonCommutingVariables(QQ).e() sage: elm = SymmetricFunctions(QQ).e() sage: e(m.from_symmetric_function(elm[4])) 1/24*e{{1, 2, 3, 4}} sage: h = SymmetricFunctionsNonCommutingVariables(QQ).h() sage: hom = SymmetricFunctions(QQ).h() sage: h(m.from_symmetric_function(hom[4])) 1/24*h{{1, 2, 3, 4}} sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p() sage: pow = SymmetricFunctions(QQ).p() sage: p(m.from_symmetric_function(pow[4])) p{{1, 2, 3, 4}} sage: p(m.from_symmetric_function(pow[2,1])) 1/3*p{{1}, {2, 3}} + 1/3*p{{1, 2}, {3}} + 1/3*p{{1, 3}, {2}} sage: p([[1,2]])*p([[1]]) p{{1, 2}, {3}}
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).m() >>> mon = SymmetricFunctions(QQ).m() >>> elt = m.from_symmetric_function(mon[Integer(2),Integer(1),Integer(1)]); elt 1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4}, {3}} + 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2}, {3}} >>> elt.to_symmetric_function() m[2, 1, 1] >>> e = SymmetricFunctionsNonCommutingVariables(QQ).e() >>> elm = SymmetricFunctions(QQ).e() >>> e(m.from_symmetric_function(elm[Integer(4)])) 1/24*e{{1, 2, 3, 4}} >>> h = SymmetricFunctionsNonCommutingVariables(QQ).h() >>> hom = SymmetricFunctions(QQ).h() >>> h(m.from_symmetric_function(hom[Integer(4)])) 1/24*h{{1, 2, 3, 4}} >>> p = SymmetricFunctionsNonCommutingVariables(QQ).p() >>> pow = SymmetricFunctions(QQ).p() >>> p(m.from_symmetric_function(pow[Integer(4)])) p{{1, 2, 3, 4}} >>> p(m.from_symmetric_function(pow[Integer(2),Integer(1)])) 1/3*p{{1}, {2, 3}} + 1/3*p{{1, 2}, {3}} + 1/3*p{{1, 3}, {2}} >>> p([[Integer(1),Integer(2)]])*p([[Integer(1)]]) p{{1, 2}, {3}}
Check that \(\chi \circ \widetilde{\chi}\) is the identity on \(Sym\):
sage: all(m.from_symmetric_function(pow(la)).to_symmetric_function() == pow(la) ....: for la in Partitions(4)) True
>>> from sage.all import * >>> all(m.from_symmetric_function(pow(la)).to_symmetric_function() == pow(la) ... for la in Partitions(Integer(4))) True
- internal_coproduct_on_basis(A)[source]¶
Return the internal coproduct of a monomial basis element.
The internal coproduct is defined by
\[\Delta^{\odot}(\mathbf{m}_A) = \sum_{B \wedge C = A} \mathbf{m}_B \otimes \mathbf{m}_C\]where we sum over all pairs of set partitions \(B\) and \(C\) whose infimum is \(A\).
INPUT:
A
– set partition
OUTPUT: an element of the tensor square of the \(\mathbf{m}\) basis
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: m.internal_coproduct_on_basis(SetPartition([[1,3],[2]])) m{{1, 2, 3}} # m{{1, 3}, {2}} + m{{1, 3}, {2}} # m{{1, 2, 3}} + m{{1, 3}, {2}} # m{{1, 3}, {2}}
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() >>> m.internal_coproduct_on_basis(SetPartition([[Integer(1),Integer(3)],[Integer(2)]])) m{{1, 2, 3}} # m{{1, 3}, {2}} + m{{1, 3}, {2}} # m{{1, 2, 3}} + m{{1, 3}, {2}} # m{{1, 3}, {2}}
- product_on_basis(A, B)[source]¶
The product on monomial basis elements.
The product of the basis elements indexed by two set partitions \(A\) and \(B\) is the sum of the basis elements indexed by set partitions \(C\) such that \(C \wedge ([n] | [k]) = A | B\) where \(n = |A|\) and \(k = |B|\). Here \(A \wedge B\) is the infimum of \(A\) and \(B\) and \(A | B\) is the
SetPartition.pipe()
operation. Equivalently we can describe all \(C\) as matchings between the parts of \(A\) and \(B\) where if \(a \in A\) is matched with \(b \in B\), we take \(a \cup b\) instead of \(a\) and \(b\) in \(C\).INPUT:
A
,B
– set partitions
OUTPUT: an element of the \(\mathbf{m}\) basis
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() sage: A = SetPartition([[1], [2,3]]) sage: B = SetPartition([[1], [3], [2,4]]) sage: m.product_on_basis(A, B) m{{1}, {2, 3}, {4}, {5, 7}, {6}} + m{{1}, {2, 3, 4}, {5, 7}, {6}} + m{{1}, {2, 3, 5, 7}, {4}, {6}} + m{{1}, {2, 3, 6}, {4}, {5, 7}} + m{{1, 4}, {2, 3}, {5, 7}, {6}} + m{{1, 4}, {2, 3, 5, 7}, {6}} + m{{1, 4}, {2, 3, 6}, {5, 7}} + m{{1, 5, 7}, {2, 3}, {4}, {6}} + m{{1, 5, 7}, {2, 3, 4}, {6}} + m{{1, 5, 7}, {2, 3, 6}, {4}} + m{{1, 6}, {2, 3}, {4}, {5, 7}} + m{{1, 6}, {2, 3, 4}, {5, 7}} + m{{1, 6}, {2, 3, 5, 7}, {4}} sage: B = SetPartition([[1], [2]]) sage: m.product_on_basis(A, B) m{{1}, {2, 3}, {4}, {5}} + m{{1}, {2, 3, 4}, {5}} + m{{1}, {2, 3, 5}, {4}} + m{{1, 4}, {2, 3}, {5}} + m{{1, 4}, {2, 3, 5}} + m{{1, 5}, {2, 3}, {4}} + m{{1, 5}, {2, 3, 4}} sage: m.product_on_basis(A, SetPartition([])) m{{1}, {2, 3}}
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).monomial() >>> A = SetPartition([[Integer(1)], [Integer(2),Integer(3)]]) >>> B = SetPartition([[Integer(1)], [Integer(3)], [Integer(2),Integer(4)]]) >>> m.product_on_basis(A, B) m{{1}, {2, 3}, {4}, {5, 7}, {6}} + m{{1}, {2, 3, 4}, {5, 7}, {6}} + m{{1}, {2, 3, 5, 7}, {4}, {6}} + m{{1}, {2, 3, 6}, {4}, {5, 7}} + m{{1, 4}, {2, 3}, {5, 7}, {6}} + m{{1, 4}, {2, 3, 5, 7}, {6}} + m{{1, 4}, {2, 3, 6}, {5, 7}} + m{{1, 5, 7}, {2, 3}, {4}, {6}} + m{{1, 5, 7}, {2, 3, 4}, {6}} + m{{1, 5, 7}, {2, 3, 6}, {4}} + m{{1, 6}, {2, 3}, {4}, {5, 7}} + m{{1, 6}, {2, 3, 4}, {5, 7}} + m{{1, 6}, {2, 3, 5, 7}, {4}} >>> B = SetPartition([[Integer(1)], [Integer(2)]]) >>> m.product_on_basis(A, B) m{{1}, {2, 3}, {4}, {5}} + m{{1}, {2, 3, 4}, {5}} + m{{1}, {2, 3, 5}, {4}} + m{{1, 4}, {2, 3}, {5}} + m{{1, 4}, {2, 3, 5}} + m{{1, 5}, {2, 3}, {4}} + m{{1, 5}, {2, 3, 4}} >>> m.product_on_basis(A, SetPartition([])) m{{1}, {2, 3}}
- sum_of_partitions(la)[source]¶
Return the sum over all set partitions whose shape is
la
with a fixed coefficient \(C\) defined below.Fix a partition \(\lambda\), we define \(\lambda! := \prod_i \lambda_i!\) and \(\lambda^! := \prod_i m_i!\). Recall that \(|\lambda| = \sum_i \lambda_i\) and \(m_i\) is the number of parts of length \(i\) of \(\lambda\). Thus we defined the coefficient as
\[C := \frac{\lambda! \lambda^!}{|\lambda|!}.\]Hence we can define a lift \(\widetilde{\chi}\) from \(Sym\) to \(NCSym\) by
\[m_{\lambda} \mapsto C \sum_A \mathbf{m}_A\]where the sum is over all set partitions whose shape is \(\lambda\).
INPUT:
la
– integer partition
OUTPUT: an element of the \(\mathbf{m}\) basis
EXAMPLES:
sage: m = SymmetricFunctionsNonCommutingVariables(QQ).m() sage: m.sum_of_partitions(Partition([2,1,1])) 1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4}, {3}} + 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2}, {3}}
>>> from sage.all import * >>> m = SymmetricFunctionsNonCommutingVariables(QQ).m() >>> m.sum_of_partitions(Partition([Integer(2),Integer(1),Integer(1)])) 1/12*m{{1}, {2}, {3, 4}} + 1/12*m{{1}, {2, 3}, {4}} + 1/12*m{{1}, {2, 4}, {3}} + 1/12*m{{1, 2}, {3}, {4}} + 1/12*m{{1, 3}, {2}, {4}} + 1/12*m{{1, 4}, {2}, {3}}
- class powersum(NCSym)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the powersum basis.
The powersum basis is given by
\[\mathbf{p}_A = \sum_{A \leq B} \mathbf{m}_B,\]where we sum over all coarsenings of the set partition \(A\). If we allow our variables to commute, then \(\mathbf{p}_A\) goes to the usual powersum symmetric function \(p_{\lambda}\) whose (integer) partition \(\lambda\) is the shape of \(A\).
EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: p = NCSym.p() sage: x = p.an_element()**2; x 4*p{} + 8*p{{1}} + 4*p{{1}, {2}} + 6*p{{1}, {2, 3}} + 12*p{{1, 2}} + 6*p{{1, 2}, {3}} + 9*p{{1, 2}, {3, 4}} sage: x.to_symmetric_function() 4*p[] + 8*p[1] + 4*p[1, 1] + 12*p[2] + 12*p[2, 1] + 9*p[2, 2]
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> p = NCSym.p() >>> x = p.an_element()**Integer(2); x 4*p{} + 8*p{{1}} + 4*p{{1}, {2}} + 6*p{{1}, {2, 3}} + 12*p{{1, 2}} + 6*p{{1, 2}, {3}} + 9*p{{1, 2}, {3, 4}} >>> x.to_symmetric_function() 4*p[] + 8*p[1] + 4*p[1, 1] + 12*p[2] + 12*p[2, 1] + 9*p[2, 2]
- class Element[source]¶
Bases:
IndexedFreeModuleElement
An element in the powersum basis of \(NCSym\).
- to_symmetric_function()[source]¶
The projection of
self
to the symmetric functions.Take a symmetric function in non-commuting variables expressed in the \(\mathbf{p}\) basis, and return the projection of expressed in the powersum basis of symmetric functions.
The map \(\chi \colon NCSym \to Sym\) is given by
\[\mathbf{p}_A \mapsto p_{\lambda(A)}\]where \(\lambda(A)\) is the partition associated with \(A\) by taking the sizes of the parts.
OUTPUT: an element of symmetric functions in the power sum basis
EXAMPLES:
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).p() sage: p[[1,3],[2]].to_symmetric_function() p[2, 1] sage: p[[1],[3],[2]].to_symmetric_function() p[1, 1, 1]
>>> from sage.all import * >>> p = SymmetricFunctionsNonCommutingVariables(QQ).p() >>> p[[Integer(1),Integer(3)],[Integer(2)]].to_symmetric_function() p[2, 1] >>> p[[Integer(1)],[Integer(3)],[Integer(2)]].to_symmetric_function() p[1, 1, 1]
- antipode_on_basis(A)[source]¶
Return the result of the antipode applied to a powersum basis element.
Let \(A\) be a set partition. The antipode given in [LM2011] is
\[S(\mathbf{p}_A) = \sum_{\gamma} (-1)^{\ell(\gamma)} \mathbf{p}_{\gamma[A]}\]where we sum over all ordered set partitions (i.e. set compositions) of \([\ell(A)]\) and
\[\gamma[A] = A_{\gamma_1}^{\downarrow} | \cdots | A_{\gamma_{\ell(A)}}^{\downarrow}\]is the action of \(\gamma\) on \(A\) defined in
SetPartition.ordered_set_partition_action()
.INPUT:
A
– set partition
OUTPUT: an element in the basis
self
EXAMPLES:
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: p.antipode_on_basis(SetPartition([[1], [2,3]])) p{{1, 2}, {3}} sage: p.antipode_on_basis(SetPartition([])) p{} sage: F = p[[1,3],[5],[2,4]].coproduct() sage: F.apply_multilinear_morphism(lambda x,y: x.antipode()*y) 0
>>> from sage.all import * >>> p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() >>> p.antipode_on_basis(SetPartition([[Integer(1)], [Integer(2),Integer(3)]])) p{{1, 2}, {3}} >>> p.antipode_on_basis(SetPartition([])) p{} >>> F = p[[Integer(1),Integer(3)],[Integer(5)],[Integer(2),Integer(4)]].coproduct() >>> F.apply_multilinear_morphism(lambda x,y: x.antipode()*y) 0
- coproduct_on_basis(A)[source]¶
Return the coproduct of a monomial basis element.
INPUT:
A
– set partition
OUTPUT:
The coproduct applied to the monomial symmetric function in non-commuting variables indexed by
A
expressed in the monomial basis.
EXAMPLES:
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: p[[1, 3], [2]].coproduct() p{} # p{{1, 3}, {2}} + p{{1}} # p{{1, 2}} + p{{1, 2}} # p{{1}} + p{{1, 3}, {2}} # p{} sage: p.coproduct_on_basis(SetPartition([[1]])) p{} # p{{1}} + p{{1}} # p{} sage: p.coproduct_on_basis(SetPartition([])) p{} # p{}
>>> from sage.all import * >>> p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() >>> p[[Integer(1), Integer(3)], [Integer(2)]].coproduct() p{} # p{{1, 3}, {2}} + p{{1}} # p{{1, 2}} + p{{1, 2}} # p{{1}} + p{{1, 3}, {2}} # p{} >>> p.coproduct_on_basis(SetPartition([[Integer(1)]])) p{} # p{{1}} + p{{1}} # p{} >>> p.coproduct_on_basis(SetPartition([])) p{} # p{}
- internal_coproduct_on_basis(A)[source]¶
Return the internal coproduct of a powersum basis element.
The internal coproduct is defined by
\[\Delta^{\odot}(\mathbf{p}_A) = \mathbf{p}_A \otimes \mathbf{p}_A\]INPUT:
A
– set partition
OUTPUT: an element of the tensor square of
self
EXAMPLES:
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: p.internal_coproduct_on_basis(SetPartition([[1,3],[2]])) p{{1, 3}, {2}} # p{{1, 3}, {2}}
>>> from sage.all import * >>> p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() >>> p.internal_coproduct_on_basis(SetPartition([[Integer(1),Integer(3)],[Integer(2)]])) p{{1, 3}, {2}} # p{{1, 3}, {2}}
- primitive(A, i=1)[source]¶
Return the primitive associated to
A
inself
.Fix some \(i \in S\). Let \(A\) be an atomic set partition of \(S\), then the primitive \(p(A)\) given in [LM2011] is
\[p(A) = \sum_{\gamma} (-1)^{\ell(\gamma)-1} \mathbf{p}_{\gamma[A]}\]where we sum over all ordered set partitions of \([\ell(A)]\) such that \(i \in \gamma_1\) and \(\gamma[A]\) is the action of \(\gamma\) on \(A\) defined in
SetPartition.ordered_set_partition_action()
. If \(A\) is not atomic, then \(p(A) = 0\).See also
INPUT:
A
– set partitioni
– (default: 1) index in the base set forA
specifying which set of primitives this belongs to
OUTPUT: an element in the basis
self
EXAMPLES:
sage: p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() sage: elt = p.primitive(SetPartition([[1,3], [2]])); elt -p{{1, 2}, {3}} + p{{1, 3}, {2}} sage: elt.coproduct() -p{} # p{{1, 2}, {3}} + p{} # p{{1, 3}, {2}} - p{{1, 2}, {3}} # p{} + p{{1, 3}, {2}} # p{} sage: p.primitive(SetPartition([[1], [2,3]])) 0 sage: p.primitive(SetPartition([])) p{}
>>> from sage.all import * >>> p = SymmetricFunctionsNonCommutingVariables(QQ).powersum() >>> elt = p.primitive(SetPartition([[Integer(1),Integer(3)], [Integer(2)]])); elt -p{{1, 2}, {3}} + p{{1, 3}, {2}} >>> elt.coproduct() -p{} # p{{1, 2}, {3}} + p{} # p{{1, 3}, {2}} - p{{1, 2}, {3}} # p{} + p{{1, 3}, {2}} # p{} >>> p.primitive(SetPartition([[Integer(1)], [Integer(2),Integer(3)]])) 0 >>> p.primitive(SetPartition([])) p{}
- rho[source]¶
alias of
deformed_coarse_powersum
- class supercharacter(NCSym, q=2)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the supercharacter \(\chi\) basis.
This basis was defined in [BT13] as a \(q\)-deformation of the supercharacter basis.
\[\chi_A = \sum_B \chi_A(B) \mathbf{m}_B,\]where we sum over all set partitions \(A\) and \(\chi_A(B)\) is the evaluation of the supercharacter \(\chi_A\) on the superclass \(\mu_B\).
Note
The supercharacters considered in [BT13] are coarser than those considered by Aguiar et. al.
INPUT:
q
– (default:2
) the parameter \(q\)
EXAMPLES:
sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q) sage: chi[[1,3],[2]]*chi[[1,2]] chi{{1, 3}, {2}, {4, 5}} sage: chi[[1,3],[2]].coproduct() chi{} # chi{{1, 3}, {2}} + (2*q-2)*chi{{1}} # chi{{1}, {2}} + (3*q-2)*chi{{1}} # chi{{1, 2}} + (2*q-2)*chi{{1}, {2}} # chi{{1}} + (3*q-2)*chi{{1, 2}} # chi{{1}} + chi{{1, 3}, {2}} # chi{} sage: chi2 = NCSym.chi() sage: chi(chi2[[1,2],[3]]) ((-q+2)/q)*chi{{1}, {2}, {3}} + 2/q*chi{{1, 2}, {3}} sage: chi2 Symmetric functions in non-commuting variables over the Fraction Field of Univariate Polynomial Ring in q over Rational Field in the supercharacter basis with parameter q=2
>>> from sage.all import * >>> R = QQ['q'].fraction_field() >>> q = R.gen() >>> NCSym = SymmetricFunctionsNonCommutingVariables(R) >>> chi = NCSym.chi(q) >>> chi[[Integer(1),Integer(3)],[Integer(2)]]*chi[[Integer(1),Integer(2)]] chi{{1, 3}, {2}, {4, 5}} >>> chi[[Integer(1),Integer(3)],[Integer(2)]].coproduct() chi{} # chi{{1, 3}, {2}} + (2*q-2)*chi{{1}} # chi{{1}, {2}} + (3*q-2)*chi{{1}} # chi{{1, 2}} + (2*q-2)*chi{{1}, {2}} # chi{{1}} + (3*q-2)*chi{{1, 2}} # chi{{1}} + chi{{1, 3}, {2}} # chi{} >>> chi2 = NCSym.chi() >>> chi(chi2[[Integer(1),Integer(2)],[Integer(3)]]) ((-q+2)/q)*chi{{1}, {2}, {3}} + 2/q*chi{{1, 2}, {3}} >>> chi2 Symmetric functions in non-commuting variables over the Fraction Field of Univariate Polynomial Ring in q over Rational Field in the supercharacter basis with parameter q=2
- q()[source]¶
Return the deformation parameter \(q\) of
self
.EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: chi = NCSym.chi(5) sage: chi.q() 5 sage: R = QQ['q'].fraction_field() sage: q = R.gen() sage: NCSym = SymmetricFunctionsNonCommutingVariables(R) sage: chi = NCSym.chi(q) sage: chi.q() == q True
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> chi = NCSym.chi(Integer(5)) >>> chi.q() 5 >>> R = QQ['q'].fraction_field() >>> q = R.gen() >>> NCSym = SymmetricFunctionsNonCommutingVariables(R) >>> chi = NCSym.chi(q) >>> chi.q() == q True
- class x_basis(NCSym)[source]¶
Bases:
NCSymBasis_abstract
The Hopf algebra of symmetric functions in non-commuting variables in the \(\mathbf{x}\) basis.
This basis is defined in [BHRZ06] by the formula:
\[\mathbf{x}_A = \sum_{B \leq A} \mu(B, A) \mathbf{p}_B\]and has the following properties:
\[\mathbf{x}_A \mathbf{x}_B = \mathbf{x}_{A|B}, \quad \quad \Delta^{\odot}(\mathbf{x}_C) = \sum_{A \vee B = C} \mathbf{x}_A \otimes \mathbf{x}_B.\]EXAMPLES:
sage: NCSym = SymmetricFunctionsNonCommutingVariables(QQ) sage: x = NCSym.x() sage: x[[1,3],[2,4]]*x[[1,2,3]] x{{1, 3}, {2, 4}, {5, 6, 7}} sage: x[[1,2],[3]].internal_coproduct() x{{1}, {2}, {3}} # x{{1, 2}, {3}} + x{{1, 2}, {3}} # x{{1}, {2}, {3}} + x{{1, 2}, {3}} # x{{1, 2}, {3}}
>>> from sage.all import * >>> NCSym = SymmetricFunctionsNonCommutingVariables(QQ) >>> x = NCSym.x() >>> x[[Integer(1),Integer(3)],[Integer(2),Integer(4)]]*x[[Integer(1),Integer(2),Integer(3)]] x{{1, 3}, {2, 4}, {5, 6, 7}} >>> x[[Integer(1),Integer(2)],[Integer(3)]].internal_coproduct() x{{1}, {2}, {3}} # x{{1, 2}, {3}} + x{{1, 2}, {3}} # x{{1}, {2}, {3}} + x{{1, 2}, {3}} # x{{1, 2}, {3}}
- sage.combinat.ncsym.ncsym.matchings(A, B)[source]¶
Iterate through all matchings of the sets \(A\) and \(B\).
EXAMPLES:
sage: from sage.combinat.ncsym.ncsym import matchings sage: list(matchings([1, 2, 3], [-1, -2])) [[[1], [2], [3], [-1], [-2]], [[1], [2], [3, -1], [-2]], [[1], [2], [3, -2], [-1]], [[1], [2, -1], [3], [-2]], [[1], [2, -1], [3, -2]], [[1], [2, -2], [3], [-1]], [[1], [2, -2], [3, -1]], [[1, -1], [2], [3], [-2]], [[1, -1], [2], [3, -2]], [[1, -1], [2, -2], [3]], [[1, -2], [2], [3], [-1]], [[1, -2], [2], [3, -1]], [[1, -2], [2, -1], [3]]]
>>> from sage.all import * >>> from sage.combinat.ncsym.ncsym import matchings >>> list(matchings([Integer(1), Integer(2), Integer(3)], [-Integer(1), -Integer(2)])) [[[1], [2], [3], [-1], [-2]], [[1], [2], [3, -1], [-2]], [[1], [2], [3, -2], [-1]], [[1], [2, -1], [3], [-2]], [[1], [2, -1], [3, -2]], [[1], [2, -2], [3], [-1]], [[1], [2, -2], [3, -1]], [[1, -1], [2], [3], [-2]], [[1, -1], [2], [3, -2]], [[1, -1], [2, -2], [3]], [[1, -2], [2], [3], [-1]], [[1, -2], [2], [3, -1]], [[1, -2], [2, -1], [3]]]
- sage.combinat.ncsym.ncsym.nesting(la, nu)[source]¶
Return the nesting number of
la
inside ofnu
.If we consider a set partition \(A\) as a set of arcs \(i - j\) where \(i\) and \(j\) are in the same part of \(A\). Define
\[\operatorname{nst}_{\lambda}^{\nu} = \#\{ i < j < k < l \mid i - l \in \nu, j - k \in \lambda \},\]and this corresponds to the number of arcs of \(\lambda\) strictly contained inside of \(\nu\).
EXAMPLES:
sage: from sage.combinat.ncsym.ncsym import nesting sage: nu = SetPartition([[1,4], [2], [3]]) sage: mu = SetPartition([[1,4], [2,3]]) sage: nesting(set(mu).difference(nu), nu) 1 sage: A = SetPartition([[1], [2,5], [3,4]]) sage: B = SetPartition([[1,3,4], [2,5]]) sage: nesting(A, B) 1 sage: nesting(B, A) 1
>>> from sage.all import * >>> from sage.combinat.ncsym.ncsym import nesting >>> nu = SetPartition([[Integer(1),Integer(4)], [Integer(2)], [Integer(3)]]) >>> mu = SetPartition([[Integer(1),Integer(4)], [Integer(2),Integer(3)]]) >>> nesting(set(mu).difference(nu), nu) 1 >>> A = SetPartition([[Integer(1)], [Integer(2),Integer(5)], [Integer(3),Integer(4)]]) >>> B = SetPartition([[Integer(1),Integer(3),Integer(4)], [Integer(2),Integer(5)]]) >>> nesting(A, B) 1 >>> nesting(B, A) 1
sage: lst = list(SetPartitions(4)) sage: d = {} sage: for i, nu in enumerate(lst): ....: for mu in nu.coarsenings(): ....: if set(nu.arcs()).issubset(mu.arcs()): ....: d[i, lst.index(mu)] = nesting(set(mu).difference(nu), nu) sage: matrix(d) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
>>> from sage.all import * >>> lst = list(SetPartitions(Integer(4))) >>> d = {} >>> for i, nu in enumerate(lst): ... for mu in nu.coarsenings(): ... if set(nu.arcs()).issubset(mu.arcs()): ... d[i, lst.index(mu)] = nesting(set(mu).difference(nu), nu) >>> matrix(d) [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 1 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0] [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]