# $$\nu$$-Dyck Words#

A class of the $$\nu$$-Dyck word, see [PRV2017] for details.

AUTHORS:

• Aram Dermenjian (2020-09-26)

This file is based off the class DyckWords written by Mike Hansen, Dan Drake, Florent Hivert, Christian Stump, Mike Zabrocki, Jean–Baptiste Priez and Travis Scrimshaw

class sage.combinat.nu_dyck_word.NuDyckWord(parent, dw, latex_options=None)[source]#

A $$\nu$$-Dyck word.

Given a lattice path $$\nu$$ in the $$\ZZ^2$$ grid starting at the origin $$(0,0)$$ consisting of North $$N = (0,1)$$ and East $$E = (1,0)$$ steps, a $$\nu$$-Dyck path is a lattice path in the $$\ZZ^2$$ grid starting at the origin $$(0,0)$$ and ending at the same coordinate as $$\nu$$ such that it is weakly above $$\nu$$. A $$\nu$$-Dyck word is the representation of a $$\nu$$-Dyck path where a North step is represented by a 1 and an East step is represented by a 0.

INPUT:

• k1 – A path for the $$\nu$$-Dyck word

• k2 – A path for $$\nu$$

EXAMPLES:

sage: dw = NuDyckWord([1,0,1,0],[1,0,0,1]); dw
[1, 0, 1, 0]
sage: print(dw)
NENE
sage: dw.height()
2

sage: dw = NuDyckWord('1010',[1,0,0,1]); dw
[1, 0, 1, 0]

sage: dw = NuDyckWord('NENE',[1,0,0,1]); dw
[1, 0, 1, 0]

sage: NuDyckWord([1,0,1,0],[1,0,0,1]).pretty_print()
__
_|x
| . .

sage: from sage.combinat.nu_dyck_word import update_ndw_symbols
sage: update_ndw_symbols(0,1)
sage: dw = NuDyckWord('0101001','0110010'); dw
[0, 1, 0, 1, 0, 0, 1]
sage: dw.pp()
__
|x
_| .
_|x  .
| . . .
sage: update_ndw_symbols(1,0)

>>> from sage.all import *
>>> dw = NuDyckWord([Integer(1),Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(0),Integer(1)]); dw
[1, 0, 1, 0]
>>> print(dw)
NENE
>>> dw.height()
2

>>> dw = NuDyckWord('1010',[Integer(1),Integer(0),Integer(0),Integer(1)]); dw
[1, 0, 1, 0]

>>> dw = NuDyckWord('NENE',[Integer(1),Integer(0),Integer(0),Integer(1)]); dw
[1, 0, 1, 0]

>>> NuDyckWord([Integer(1),Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(0),Integer(1)]).pretty_print()
__
_|x
| . .

>>> from sage.combinat.nu_dyck_word import update_ndw_symbols
>>> update_ndw_symbols(Integer(0),Integer(1))
>>> dw = NuDyckWord('0101001','0110010'); dw
[0, 1, 0, 1, 0, 0, 1]
>>> dw.pp()
__
|x
_| .
_|x  .
| . . .
>>> update_ndw_symbols(Integer(1),Integer(0))

can_mutate(i)[source]#

Return True/False based off if mutable at height $$i$$.

Can only mutate if an east step is followed by a north step at height $$i$$.

OUTPUT:

Whether we can mutate at height of $$i$$.

EXAMPLES:

sage: NDW = NuDyckWord('10010100','00000111')
sage: NDW.can_mutate(1)
False
sage: NDW.can_mutate(3)
5

>>> from sage.all import *
>>> NDW = NuDyckWord('10010100','00000111')
>>> NDW.can_mutate(Integer(1))
False
>>> NDW.can_mutate(Integer(3))
5

height()[source]#

Return the height of self.

The height is the number of north steps.

EXAMPLES:

sage: NuDyckWord('1101110011010010001101111000110000',
....: '1010101010101010101010101010101010').height()
17

>>> from sage.all import *
>>> NuDyckWord('1101110011010010001101111000110000',
... '1010101010101010101010101010101010').height()
17

heights()[source]#

Return the heights of each point on self.

We view the Dyck word as a Dyck path from $$(0,0)$$ to $$(x,y)$$ in the first quadrant by letting 1’s represent steps in the direction $$(0,1)$$ and 0’s represent steps in the direction $$(1,0)$$.

The heights is the sequence of the $$y$$-coordinates of all $$x+y$$ lattice points along the path.

EXAMPLES:

sage: NuDyckWord('010','010').heights()
[0, 0, 1, 1]
sage: NuDyckWord('110100','101010').heights()
[0, 1, 2, 2, 3, 3, 3]

>>> from sage.all import *
>>> NuDyckWord('010','010').heights()
[0, 0, 1, 1]
>>> NuDyckWord('110100','101010').heights()
[0, 1, 2, 2, 3, 3, 3]

horizontal_distance()[source]#

Return a list of how far each point is from $$\nu$$.

EXAMPLES:

sage: NDW = NuDyckWord('10010100','00000111')
sage: NDW.horizontal_distance()
[5, 5, 4, 3, 3, 2, 2, 1, 0]
sage: NDW = NuDyckWord('10010100','00001011')
sage: NDW.horizontal_distance()
[4, 5, 4, 3, 3, 2, 2, 1, 0]
sage: NDW = NuDyckWord('10011001000','00100101001')
sage: NDW.horizontal_distance()
[2, 4, 3, 2, 3, 5, 4, 3, 3, 2, 1, 0]

>>> from sage.all import *
>>> NDW = NuDyckWord('10010100','00000111')
>>> NDW.horizontal_distance()
[5, 5, 4, 3, 3, 2, 2, 1, 0]
>>> NDW = NuDyckWord('10010100','00001011')
>>> NDW.horizontal_distance()
[4, 5, 4, 3, 3, 2, 2, 1, 0]
>>> NDW = NuDyckWord('10011001000','00100101001')
>>> NDW.horizontal_distance()
[2, 4, 3, 2, 3, 5, 4, 3, 3, 2, 1, 0]

latex_options()[source]#

Return the latex options for use in the _latex_ function as a dictionary.

The default values are set using the options.

• color – (default: black) the line color.

• line width – (default: 2*tikz_scale) value representing the line width.

• nu_options – (default: 'rounded corners=1, color=red, line width=1') str to indicate what the tikz options should be for path of $$\nu$$.

• points_color – (default: 'black') str to indicate color points should be drawn with.

• show_grid – (default: True) boolean value to indicate if grid should be shown.

• show_nu – (default: True) boolean value to indicate if $$\nu$$ should be shown.

• show_points – (default: False) boolean value to indicate if points should be shown on path.

• tikz_scale – (default: 1) scale for use with the tikz package.

EXAMPLES:

sage: NDW = NuDyckWord('010','010')
sage: NDW.latex_options()
{'color': black,
'line width': 2,
'nu_options': rounded corners=1, color=red, line width=1,
'points_color': black,
'show_grid': True,
'show_nu': True,
'show_points': False,
'tikz_scale': 1}

>>> from sage.all import *
>>> NDW = NuDyckWord('010','010')
>>> NDW.latex_options()
{'color': black,
'line width': 2,
'nu_options': rounded corners=1, color=red, line width=1,
'points_color': black,
'show_grid': True,
'show_nu': True,
'show_points': False,
'tikz_scale': 1}


Todo

This should probably be merged into NuDyckWord.options.

length()[source]#

Return the length of self.

The length is the total number of steps.

EXAMPLES:

sage: NDW = NuDyckWord('10011001000','00100101001')
sage: NDW.length()
11

>>> from sage.all import *
>>> NDW = NuDyckWord('10011001000','00100101001')
>>> NDW.length()
11

mutate(i)[source]#

Return a new $$\nu$$-Dyck Word if possible.

If at height $$i$$ we have an east step E meeting a north step N then we calculate all horizontal distances from this point until we find the first point that has the same horizontal distance to $$\nu$$. We let

• d is everything up until EN (not including EN)

• f be everything between N and the point with the same horizontal distance (including N)

• g is everything after f

EXAMPLES:

sage: NDW = NuDyckWord('10010100','00000111')
sage: NDW.mutate(1)
sage: NDW.mutate(3)
[1, 0, 0, 1, 1, 0, 0, 0]

>>> from sage.all import *
>>> NDW = NuDyckWord('10010100','00000111')
>>> NDW.mutate(Integer(1))
>>> NDW.mutate(Integer(3))
[1, 0, 0, 1, 1, 0, 0, 0]

path()[source]#

Return the underlying path object.

EXAMPLES:

sage: NDW = NuDyckWord('10011001000','00100101001')
sage: NDW.path()
Path: 10011001000

>>> from sage.all import *
>>> NDW = NuDyckWord('10011001000','00100101001')
>>> NDW.path()
Path: 10011001000

plot(**kwds)[source]#

Plot a $$\nu$$-Dyck word as a continuous path.

EXAMPLES:

sage: NDW = NuDyckWord('010','010')
sage: NDW.plot()                                                            # needs sage.plot
Graphics object consisting of 1 graphics primitive

>>> from sage.all import *
>>> NDW = NuDyckWord('010','010')
>>> NDW.plot()                                                            # needs sage.plot
Graphics object consisting of 1 graphics primitive

points()[source]#

Return an iterator for the points on the $$\nu$$-Dyck path.

EXAMPLES:

sage: list(NuDyckWord('110111001101001000110111100011000',
....: '101010101010101010101010101010101')._path.points())
[(0, 0),
(0, 1),
(0, 2),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 5),
(3, 5),
(3, 6),
(3, 7),
(4, 7),
(4, 8),
(5, 8),
(6, 8),
(6, 9),
(7, 9),
(8, 9),
(9, 9),
(9, 10),
(9, 11),
(10, 11),
(10, 12),
(10, 13),
(10, 14),
(10, 15),
(11, 15),
(12, 15),
(13, 15),
(13, 16),
(13, 17),
(14, 17),
(15, 17),
(16, 17)]

>>> from sage.all import *
>>> list(NuDyckWord('110111001101001000110111100011000',
... '101010101010101010101010101010101')._path.points())
[(0, 0),
(0, 1),
(0, 2),
(1, 2),
(1, 3),
(1, 4),
(1, 5),
(2, 5),
(3, 5),
(3, 6),
(3, 7),
(4, 7),
(4, 8),
(5, 8),
(6, 8),
(6, 9),
(7, 9),
(8, 9),
(9, 9),
(9, 10),
(9, 11),
(10, 11),
(10, 12),
(10, 13),
(10, 14),
(10, 15),
(11, 15),
(12, 15),
(13, 15),
(13, 16),
(13, 17),
(14, 17),
(15, 17),
(16, 17)]

pp(style=None, labelling=None)[source]#

Display a NuDyckWord as a lattice path in the $$\ZZ^2$$ grid.

If the style is “N-E”, then a cell below the diagonal is indicated by a period, whereas a cell below the path but above the diagonal is indicated by an x. If a list of labels is included, they are displayed along the vertical edges of the Dyck path.

INPUT:

• style – (default: None) can either be:

• None to use the option default

• “N-E” to show self as a path of north and east steps, or

• labelling – (if style is “N-E”) a list of labels assigned to the up steps in self.

• underpath – (if style is “N-E”, default: True) If True, an x to show the boxes between $$\nu$$ and the $$\nu$$-Dyck Path.

EXAMPLES:

sage: for ND in NuDyckWords('101010'): ND.pretty_print()
__
_| .
_| . .
| . . .
__
___| .
|x  . .
| . . .
____
|x  .
_| . .
| . . .
____
_|x  .
|x  . .
| . . .
______
|x x  .
|x  . .
| . . .

>>> from sage.all import *
>>> for ND in NuDyckWords('101010'): ND.pretty_print()
__
_| .
_| . .
| . . .
__
___| .
|x  . .
| . . .
____
|x  .
_| . .
| . . .
____
_|x  .
|x  . .
| . . .
______
|x x  .
|x  . .
| . . .

sage: nu = [1,0,1,0,1,0,1,0,1,0,1,0]
sage: ND = NuDyckWord([1,1,1,0,1,0,0,1,1,0,0,0],nu)
sage: ND.pretty_print()
______
|x x  .
___|x  . .
_|x x  . . .
|x x  . . . .
|x  . . . . .
| . . . . . .

>>> from sage.all import *
>>> nu = [Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]
>>> ND = NuDyckWord([Integer(1),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0),Integer(0)],nu)
>>> ND.pretty_print()
______
|x x  .
___|x  . .
_|x x  . . .
|x x  . . . .
|x  . . . . .
| . . . . . .

sage: NuDyckWord([1,1,0,0,1,0],[1,0,1,0,1,0]).pretty_print(
....: labelling=[1,3,2])
__
___| . 2
|x  . . 3
| . . . 1

>>> from sage.all import *
>>> NuDyckWord([Integer(1),Integer(1),Integer(0),Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]).pretty_print(
... labelling=[Integer(1),Integer(3),Integer(2)])
__
___| . 2
|x  . . 3
| . . . 1

sage: NuDyckWord('1101110011010010001101111000110000',
....: '1010101010101010101010101010101010').pretty_print(
....: labelling=list(range(1,18)))
________
|x x x  . 17
_____|x x  . . 16
|x x x x  . . . 15
|x x x  . . . . 14
|x x  . . . . . 13
_|x  . . . . . . 12
|x  . . . . . . . 11
_____| . . . . . . . . 10
___|x x  . . . . . . . . .  9
_|x x x  . . . . . . . . . .  8
|x x x  . . . . . . . . . . .  7
___|x x  . . . . . . . . . . . .  6
|x x x  . . . . . . . . . . . . .  5
|x x  . . . . . . . . . . . . . .  4
_|x  . . . . . . . . . . . . . . .  3
|x  . . . . . . . . . . . . . . . .  2
| . . . . . . . . . . . . . . . . .  1

>>> from sage.all import *
>>> NuDyckWord('1101110011010010001101111000110000',
... '1010101010101010101010101010101010').pretty_print(
... labelling=list(range(Integer(1),Integer(18))))
________
|x x x  . 17
_____|x x  . . 16
|x x x x  . . . 15
|x x x  . . . . 14
|x x  . . . . . 13
_|x  . . . . . . 12
|x  . . . . . . . 11
_____| . . . . . . . . 10
___|x x  . . . . . . . . .  9
_|x x x  . . . . . . . . . .  8
|x x x  . . . . . . . . . . .  7
___|x x  . . . . . . . . . . . .  6
|x x x  . . . . . . . . . . . . .  5
|x x  . . . . . . . . . . . . . .  4
_|x  . . . . . . . . . . . . . . .  3
|x  . . . . . . . . . . . . . . . .  2
| . . . . . . . . . . . . . . . . .  1

sage: NuDyckWord().pretty_print()
.

>>> from sage.all import *
>>> NuDyckWord().pretty_print()
.

pretty_print(style=None, labelling=None)[source]#

Display a NuDyckWord as a lattice path in the $$\ZZ^2$$ grid.

If the style is “N-E”, then a cell below the diagonal is indicated by a period, whereas a cell below the path but above the diagonal is indicated by an x. If a list of labels is included, they are displayed along the vertical edges of the Dyck path.

INPUT:

• style – (default: None) can either be:

• None to use the option default

• “N-E” to show self as a path of north and east steps, or

• labelling – (if style is “N-E”) a list of labels assigned to the up steps in self.

• underpath – (if style is “N-E”, default: True) If True, an x to show the boxes between $$\nu$$ and the $$\nu$$-Dyck Path.

EXAMPLES:

sage: for ND in NuDyckWords('101010'): ND.pretty_print()
__
_| .
_| . .
| . . .
__
___| .
|x  . .
| . . .
____
|x  .
_| . .
| . . .
____
_|x  .
|x  . .
| . . .
______
|x x  .
|x  . .
| . . .

>>> from sage.all import *
>>> for ND in NuDyckWords('101010'): ND.pretty_print()
__
_| .
_| . .
| . . .
__
___| .
|x  . .
| . . .
____
|x  .
_| . .
| . . .
____
_|x  .
|x  . .
| . . .
______
|x x  .
|x  . .
| . . .

sage: nu = [1,0,1,0,1,0,1,0,1,0,1,0]
sage: ND = NuDyckWord([1,1,1,0,1,0,0,1,1,0,0,0],nu)
sage: ND.pretty_print()
______
|x x  .
___|x  . .
_|x x  . . .
|x x  . . . .
|x  . . . . .
| . . . . . .

>>> from sage.all import *
>>> nu = [Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]
>>> ND = NuDyckWord([Integer(1),Integer(1),Integer(1),Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(1),Integer(0),Integer(0),Integer(0)],nu)
>>> ND.pretty_print()
______
|x x  .
___|x  . .
_|x x  . . .
|x x  . . . .
|x  . . . . .
| . . . . . .

sage: NuDyckWord([1,1,0,0,1,0],[1,0,1,0,1,0]).pretty_print(
....: labelling=[1,3,2])
__
___| . 2
|x  . . 3
| . . . 1

>>> from sage.all import *
>>> NuDyckWord([Integer(1),Integer(1),Integer(0),Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1),Integer(0),Integer(1),Integer(0)]).pretty_print(
... labelling=[Integer(1),Integer(3),Integer(2)])
__
___| . 2
|x  . . 3
| . . . 1

sage: NuDyckWord('1101110011010010001101111000110000',
....: '1010101010101010101010101010101010').pretty_print(
....: labelling=list(range(1,18)))
________
|x x x  . 17
_____|x x  . . 16
|x x x x  . . . 15
|x x x  . . . . 14
|x x  . . . . . 13
_|x  . . . . . . 12
|x  . . . . . . . 11
_____| . . . . . . . . 10
___|x x  . . . . . . . . .  9
_|x x x  . . . . . . . . . .  8
|x x x  . . . . . . . . . . .  7
___|x x  . . . . . . . . . . . .  6
|x x x  . . . . . . . . . . . . .  5
|x x  . . . . . . . . . . . . . .  4
_|x  . . . . . . . . . . . . . . .  3
|x  . . . . . . . . . . . . . . . .  2
| . . . . . . . . . . . . . . . . .  1

>>> from sage.all import *
>>> NuDyckWord('1101110011010010001101111000110000',
... '1010101010101010101010101010101010').pretty_print(
... labelling=list(range(Integer(1),Integer(18))))
________
|x x x  . 17
_____|x x  . . 16
|x x x x  . . . 15
|x x x  . . . . 14
|x x  . . . . . 13
_|x  . . . . . . 12
|x  . . . . . . . 11
_____| . . . . . . . . 10
___|x x  . . . . . . . . .  9
_|x x x  . . . . . . . . . .  8
|x x x  . . . . . . . . . . .  7
___|x x  . . . . . . . . . . . .  6
|x x x  . . . . . . . . . . . . .  5
|x x  . . . . . . . . . . . . . .  4
_|x  . . . . . . . . . . . . . . .  3
|x  . . . . . . . . . . . . . . . .  2
| . . . . . . . . . . . . . . . . .  1

sage: NuDyckWord().pretty_print()
.

>>> from sage.all import *
>>> NuDyckWord().pretty_print()
.

set_latex_options(D)[source]#

Set the latex options for use in the _latex_ function.

The default values are set in the __init__ function.

• color – (default: black) the line color.

• line width – (default: $$2 \times$$ tikz_scale) value representing the line width.

• nu_options – (default: 'rounded corners=1, color=red, line width=1') str to indicate what the tikz options should be for path of $$\nu$$.

• points_color – (default: 'black') str to indicate color points should be drawn with.

• show_grid – (default: True) boolean value to indicate if grid should be shown.

• show_nu – (default: True) boolean value to indicate if $$\nu$$ should be shown.

• show_points – (default: False) boolean value to indicate if points should be shown on path.

• tikz_scale – (default: 1) scale for use with the tikz package.

INPUT:

• D – a dictionary with a list of latex parameters to change

EXAMPLES:

sage: NDW = NuDyckWord('010','010')
sage: NDW.set_latex_options({"tikz_scale":2})
sage: NDW.set_latex_options({"color":"blue", "show_points":True})

>>> from sage.all import *
>>> NDW = NuDyckWord('010','010')
>>> NDW.set_latex_options({"tikz_scale":Integer(2)})
>>> NDW.set_latex_options({"color":"blue", "show_points":True})


Todo

This should probably be merged into NuDyckWord.options.

width()[source]#

Return the width of self.

The width is the number of east steps.

EXAMPLES:

sage: NuDyckWord('110111001101001000110111100011000',
....: '101010101010101010101010101010101').width()
16

>>> from sage.all import *
>>> NuDyckWord('110111001101001000110111100011000',
... '101010101010101010101010101010101').width()
16

widths()[source]#

Return the widths of each point on self.

We view the Dyck word as a Dyck path from $$(0,0)$$ to $$(x,y)$$ in the first quadrant by letting 1’s represent steps in the direction $$(0,1)$$ and 0’s represent steps in the direction $$(1,0)$$.

The widths is the sequence of the $$x$$-coordinates of all $$x+y$$ lattice points along the path.

EXAMPLES:

sage: NuDyckWord('010','010').widths()
[0, 1, 1, 2]
sage: NuDyckWord('110100','101010').widths()
[0, 0, 0, 1, 1, 2, 3]

>>> from sage.all import *
>>> NuDyckWord('010','010').widths()
[0, 1, 1, 2]
>>> NuDyckWord('110100','101010').widths()
[0, 0, 0, 1, 1, 2, 3]

class sage.combinat.nu_dyck_word.NuDyckWords(nu=())[source]#

Bases: Parent

$$\nu$$-Dyck words.

Given a lattice path $$\nu$$ in the $$\ZZ^2$$ grid starting at the origin $$(0,0)$$ consisting of North $$N = (0,1)$$ and East $$E = (1,0)$$ steps, a $$\nu$$-Dyck path is a lattice path in theZZ^2 grid starting at the origin $$(0,0)$$ and ending at the same coordinate as $$\nu$$ such that it is weakly above $$\nu$$. A $$\nu$$-Dyck word is the representation of a $$\nu$$-Dyck path where a North step is represented by a 1 and an East step is represented by a 0.

INPUT:

• nu – the base lattice path.

EXAMPLES:

sage: NDW = NuDyckWords('1010'); NDW
[1, 0, 1, 0] Dyck words
sage: [1,0,1,0] in NDW
True
sage: [1,1,0,0] in NDW
True
sage: [1,0,0,1] in NDW
False
sage: [0,1,0,1] in NDW
False
sage: NDW.cardinality()
2

>>> from sage.all import *
>>> NDW = NuDyckWords('1010'); NDW
[1, 0, 1, 0] Dyck words
>>> [Integer(1),Integer(0),Integer(1),Integer(0)] in NDW
True
>>> [Integer(1),Integer(1),Integer(0),Integer(0)] in NDW
True
>>> [Integer(1),Integer(0),Integer(0),Integer(1)] in NDW
False
>>> [Integer(0),Integer(1),Integer(0),Integer(1)] in NDW
False
>>> NDW.cardinality()
2

Element[source]#

alias of NuDyckWord

cardinality()[source]#

Return the number of $$\nu$$-Dyck words.

EXAMPLES:

sage: NDW = NuDyckWords('101010'); NDW.cardinality()
5
sage: NDW = NuDyckWords('1010010'); NDW.cardinality()
7
sage: NDW = NuDyckWords('100100100'); NDW.cardinality()
12

>>> from sage.all import *
>>> NDW = NuDyckWords('101010'); NDW.cardinality()
5
>>> NDW = NuDyckWords('1010010'); NDW.cardinality()
7
>>> NDW = NuDyckWords('100100100'); NDW.cardinality()
12

options = Current options for NuDyckWords   - ascii_art:               pretty_output   - diagram_style:           grid   - display:                 list   - latex_color:             black   - latex_line_width_scalar: 2   - latex_nu_options:        rounded corners=1, color=red, line width=1   - latex_points_color:      black   - latex_show_grid:         True   - latex_show_nu:           True   - latex_show_points:       False   - latex_tikz_scale:        1[source]#
sage.combinat.nu_dyck_word.path_weakly_above_other(path, other)[source]#

Test if path is weakly above other.

A path $$P$$ is wealy above another path $$Q$$ if $$P$$ and $$Q$$ are the same length and if any prefix of length $$n$$ of $$Q$$ contains more North steps than the prefix of length $$n$$ of $$P$$.

INPUT:

• path – The path to verify is weakly above the other path.

• other – The other path to verify is weakly below the path.

OUTPUT:

bool

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import path_weakly_above_other
sage: path_weakly_above_other('1001','0110')
False
sage: path_weakly_above_other('1001','0101')
True
sage: path_weakly_above_other('1111','0101')
False
sage: path_weakly_above_other('111100','0101')
False

>>> from sage.all import *
>>> from sage.combinat.nu_dyck_word import path_weakly_above_other
>>> path_weakly_above_other('1001','0110')
False
>>> path_weakly_above_other('1001','0101')
True
>>> path_weakly_above_other('1111','0101')
False
>>> path_weakly_above_other('111100','0101')
False

sage.combinat.nu_dyck_word.replace_dyck_char(x)[source]#

A map sending an opening character ('1', 'N', and '(') to ndw_open_symbol, a closing character ('0', 'E', and ')') to ndw_close_symbol, and raising an error on any input other than one of the opening or closing characters.

This is the inverse map of replace_dyck_symbol().

INPUT:

• x – string; a '1', '0', 'N', 'E', '(' or ')'

OUTPUT:

• If x is an opening character, replace x with the constant ndw_open_symbol.

• If x is a closing character, replace x with the constant ndw_close_symbol.

• Raise a ValueError if x is neither an opening nor a closing character.

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import replace_dyck_char
sage: replace_dyck_char('(')
1
sage: replace_dyck_char(')')
0
sage: replace_dyck_char(1)
Traceback (most recent call last):
...
ValueError

>>> from sage.all import *
>>> from sage.combinat.nu_dyck_word import replace_dyck_char
>>> replace_dyck_char('(')
1
>>> replace_dyck_char(')')
0
>>> replace_dyck_char(Integer(1))
Traceback (most recent call last):
...
ValueError

sage.combinat.nu_dyck_word.replace_dyck_symbol(x, open_char='N', close_char='E')[source]#

A map sending ndw_open_symbol to open_char and ndw_close_symbol to close_char, and raising an error on any input other than ndw_open_symbol and ndw_close_symbol. The values of the constants ndw_open_symbol and ndw_close_symbol are subject to change.

This is the inverse map of replace_dyck_char().

INPUT:

• x – either ndw_open_symbol or ndw_close_symbol.

• open_char – str (optional) default 'N'

• close_char – str (optional) default 'E'

OUTPUT:

• If x is ndw_open_symbol, replace x with open_char.

• If x is ndw_close_symbol, replace x with close_char.

• If x is neither ndw_open_symbol nor ndw_close_symbol, a ValueError is raised.

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import replace_dyck_symbol
sage: replace_dyck_symbol(1)
'N'
sage: replace_dyck_symbol(0)
'E'
sage: replace_dyck_symbol(3)
Traceback (most recent call last):
...
ValueError

>>> from sage.all import *
>>> from sage.combinat.nu_dyck_word import replace_dyck_symbol
>>> replace_dyck_symbol(Integer(1))
'N'
>>> replace_dyck_symbol(Integer(0))
'E'
>>> replace_dyck_symbol(Integer(3))
Traceback (most recent call last):
...
ValueError

sage.combinat.nu_dyck_word.to_word_path(word)[source]#

Convert input into a word path over an appropriate alphabet.

Helper function.

INPUT:

• word – word to convert to wordpath

OUTPUT:

• A FiniteWordPath_north_east object.

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import to_word_path
sage: wp = to_word_path('NEENENEN'); wp
Path: 10010101
sage: from sage.combinat.words.paths import FiniteWordPath_north_east
sage: isinstance(wp,FiniteWordPath_north_east)
True
sage: to_word_path('1001')
Path: 1001
sage: to_word_path([0,1,0,0,1,0])
Path: 010010

>>> from sage.all import *
>>> from sage.combinat.nu_dyck_word import to_word_path
>>> wp = to_word_path('NEENENEN'); wp
Path: 10010101
>>> from sage.combinat.words.paths import FiniteWordPath_north_east
>>> isinstance(wp,FiniteWordPath_north_east)
True
>>> to_word_path('1001')
Path: 1001
>>> to_word_path([Integer(0),Integer(1),Integer(0),Integer(0),Integer(1),Integer(0)])
Path: 010010

sage.combinat.nu_dyck_word.update_ndw_symbols(os, cs)[source]#

A way to alter the open and close symbols from sage.

INPUT:

• os – the open symbol

• cs – the close symbol

EXAMPLES:

sage: from sage.combinat.nu_dyck_word import update_ndw_symbols
sage: update_ndw_symbols(0,1)
sage: dw = NuDyckWord('0101001','0110010'); dw
[0, 1, 0, 1, 0, 0, 1]

sage: dw = NuDyckWord('1010110','1001101'); dw
Traceback (most recent call last):
...
ValueError: invalid nu-Dyck word
sage: update_ndw_symbols(1,0)

>>> from sage.all import *
>>> from sage.combinat.nu_dyck_word import update_ndw_symbols
>>> update_ndw_symbols(Integer(0),Integer(1))
>>> dw = NuDyckWord('0101001','0110010'); dw
[0, 1, 0, 1, 0, 0, 1]

>>> dw = NuDyckWord('1010110','1001101'); dw
Traceback (most recent call last):
...
ValueError: invalid nu-Dyck word
>>> update_ndw_symbols(Integer(1),Integer(0))