Integer compositions¶
A composition \(c\) of a nonnegative integer \(n\) is a list of positive integers (the parts of the composition) with total sum \(n\).
This module provides tools for manipulating compositions and enumerated sets of compositions.
EXAMPLES:
sage: Composition([5, 3, 1, 3])
[5, 3, 1, 3]
sage: list(Compositions(4))
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], [4]]
>>> from sage.all import *
>>> Composition([Integer(5), Integer(3), Integer(1), Integer(3)])
[5, 3, 1, 3]
>>> list(Compositions(Integer(4)))
[[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], [4]]
AUTHORS:
Mike Hansen, Nicolas M. Thiéry
MuPAD-Combinat developers (algorithms and design inspiration)
Travis Scrimshaw (2013-02-03): Removed
CombinatorialClass
- class sage.combinat.composition.Composition(parent, lst)[source]¶
Bases:
CombinatorialElement
Integer compositions.
A composition of a nonnegative integer \(n\) is a list \((i_1, \ldots, i_k)\) of positive integers with total sum \(n\).
EXAMPLES:
The simplest way to create a composition is by specifying its entries as a list, tuple (or other iterable):
sage: Composition([3,1,2]) [3, 1, 2] sage: Composition((3,1,2)) [3, 1, 2] sage: Composition(i for i in range(2,5)) [2, 3, 4]
>>> from sage.all import * >>> Composition([Integer(3),Integer(1),Integer(2)]) [3, 1, 2] >>> Composition((Integer(3),Integer(1),Integer(2))) [3, 1, 2] >>> Composition(i for i in range(Integer(2),Integer(5))) [2, 3, 4]
You can also create a composition from its code. The code of a composition \((i_1, i_2, \ldots, i_k)\) of \(n\) is a list of length \(n\) that consists of a \(1\) followed by \(i_1-1\) zeros, then a \(1\) followed by \(i_2-1\) zeros, and so on.
sage: Composition([4,1,2,3,5]).to_code() [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] sage: Composition(code=_) [4, 1, 2, 3, 5] sage: Composition([3,1,2,3,5]).to_code() [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] sage: Composition(code=_) [3, 1, 2, 3, 5]
>>> from sage.all import * >>> Composition([Integer(4),Integer(1),Integer(2),Integer(3),Integer(5)]).to_code() [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] >>> Composition(code=_) [4, 1, 2, 3, 5] >>> Composition([Integer(3),Integer(1),Integer(2),Integer(3),Integer(5)]).to_code() [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] >>> Composition(code=_) [3, 1, 2, 3, 5]
You can also create the composition of \(n\) corresponding to a subset of \(\{1, 2, \ldots, n-1\}\) under the bijection that maps the composition \((i_1, i_2, \ldots, i_k)\) of \(n\) to the subset \(\{i_1, i_1 + i_2, i_1 + i_2 + i_3, \ldots, i_1 + \cdots + i_{k-1}\}\) (see
to_subset()
):sage: Composition(from_subset=({1, 2, 4}, 5)) [1, 1, 2, 1] sage: Composition([1, 1, 2, 1]).to_subset() {1, 2, 4}
>>> from sage.all import * >>> Composition(from_subset=({Integer(1), Integer(2), Integer(4)}, Integer(5))) [1, 1, 2, 1] >>> Composition([Integer(1), Integer(1), Integer(2), Integer(1)]).to_subset() {1, 2, 4}
The following notation equivalently specifies the composition from the set \(\{i_1 - 1, i_1 + i_2 - 1, i_1 + i_2 + i_3 - 1, \dots, i_1 + \cdots + i_{k-1} - 1, n-1\}\) or \(\{i_1 - 1, i_1 + i_2 - 1, i_1 + i_2 + i_3 - 1, \dots, i_1 + \cdots + i_{k-1} - 1\}\) and \(n\). This provides compatibility with Python’s \(0\)-indexing.
sage: Composition(descents=[1,0,4,8,11]) [1, 1, 3, 4, 3] sage: Composition(descents=[0,1,3,4]) [1, 1, 2, 1] sage: Composition(descents=([0,1,3],5)) [1, 1, 2, 1] sage: Composition(descents=({0,1,3},5)) [1, 1, 2, 1]
>>> from sage.all import * >>> Composition(descents=[Integer(1),Integer(0),Integer(4),Integer(8),Integer(11)]) [1, 1, 3, 4, 3] >>> Composition(descents=[Integer(0),Integer(1),Integer(3),Integer(4)]) [1, 1, 2, 1] >>> Composition(descents=([Integer(0),Integer(1),Integer(3)],Integer(5))) [1, 1, 2, 1] >>> Composition(descents=({Integer(0),Integer(1),Integer(3)},Integer(5))) [1, 1, 2, 1]
An integer composition may be regarded as a sequence. Thus it is an instance of the Python abstract base class
Sequence
allows us to check if objects behave “like” sequences based on implemented methods. Note thatcollections.abc.Sequence
is not the same assage.structure.sequence.Sequence
:sage: import collections.abc sage: C = Composition([3,2,3]) sage: isinstance(C, collections.abc.Sequence) True sage: issubclass(C.__class__, collections.abc.Sequence) True
>>> from sage.all import * >>> import collections.abc >>> C = Composition([Integer(3),Integer(2),Integer(3)]) >>> isinstance(C, collections.abc.Sequence) True >>> issubclass(C.__class__, collections.abc.Sequence) True
Typically, instances of
collections.abc.Sequence
have a.count
method.Composition.count
counts the number of parts of a specified size:sage: C.count(3) 2
>>> from sage.all import * >>> C.count(Integer(3)) 2
EXAMPLES:
sage: C = Composition([3,1,2]) sage: TestSuite(C).run()
>>> from sage.all import * >>> C = Composition([Integer(3),Integer(1),Integer(2)]) >>> TestSuite(C).run()
- complement()[source]¶
Return the complement of the composition
self
.The complement of a composition \(I\) is defined as follows:
If \(I\) is the empty composition, then the complement is the empty composition as well. Otherwise, let \(S\) be the descent set of \(I\) (that is, the subset \(\{ i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_{k-1} \}\) of \(\{ 1, 2, \ldots, |I|-1 \}\), where \(I\) is written as \((i_1, i_2, \ldots, i_k)\)). Then, the complement of \(I\) is defined as the composition of size \(|I|\) whose descent set is \(\{ 1, 2, \ldots, |I|-1 \} \setminus S\).
The complement of a composition \(I\) also is the reverse composition (
reversed()
) of the conjugate (conjugate()
) of \(I\).EXAMPLES:
sage: Composition([1, 1, 3, 1, 2, 1, 3]).conjugate() [1, 1, 3, 3, 1, 3] sage: Composition([1, 1, 3, 1, 2, 1, 3]).complement() [3, 1, 3, 3, 1, 1]
>>> from sage.all import * >>> Composition([Integer(1), Integer(1), Integer(3), Integer(1), Integer(2), Integer(1), Integer(3)]).conjugate() [1, 1, 3, 3, 1, 3] >>> Composition([Integer(1), Integer(1), Integer(3), Integer(1), Integer(2), Integer(1), Integer(3)]).complement() [3, 1, 3, 3, 1, 1]
- conjugate()[source]¶
Return the conjugate of the composition
self
.The conjugate of a composition \(I\) is defined as the complement (see
complement()
) of the reverse composition (seereversed()
) of \(I\).An equivalent definition of the conjugate goes by saying that the ribbon shape of the conjugate of a composition \(I\) is the conjugate of the ribbon shape of \(I\). (The ribbon shape of a composition is returned by
to_skew_partition()
.)This implementation uses the algorithm from mupad-combinat.
EXAMPLES:
sage: Composition([1, 1, 3, 1, 2, 1, 3]).conjugate() [1, 1, 3, 3, 1, 3]
>>> from sage.all import * >>> Composition([Integer(1), Integer(1), Integer(3), Integer(1), Integer(2), Integer(1), Integer(3)]).conjugate() [1, 1, 3, 3, 1, 3]
The ribbon shape of the conjugate of \(I\) is the conjugate of the ribbon shape of \(I\):
sage: all( I.conjugate().to_skew_partition() # needs sage.combinat ....: == I.to_skew_partition().conjugate() ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( I.conjugate().to_skew_partition() # needs sage.combinat ... == I.to_skew_partition().conjugate() ... for I in Compositions(Integer(4)) ) True
- count(n)[source]¶
Return the number of parts of size
n
.EXAMPLES:
sage: C = Composition([3,2,3]) sage: C.count(3) 2 sage: C.count(2) 1 sage: C.count(1) 0
>>> from sage.all import * >>> C = Composition([Integer(3),Integer(2),Integer(3)]) >>> C.count(Integer(3)) 2 >>> C.count(Integer(2)) 1 >>> C.count(Integer(1)) 0
- descents(final_descent=False)[source]¶
This gives one fewer than the partial sums of the composition.
This is here to maintain some sort of backward compatibility, even through the original implementation was broken (it gave the wrong answer). The same information can be found in
partial_sums()
.See also
INPUT:
final_descent
– boolean (default:False
)
OUTPUT:
the list of partial sums of
self
with each part decremented by \(1\). This includes the sum of all entries whenfinal_descent
isTrue
.
EXAMPLES:
sage: c = Composition([2,1,3,2]) sage: c.descents() [1, 2, 5] sage: c.descents(final_descent=True) [1, 2, 5, 7]
>>> from sage.all import * >>> c = Composition([Integer(2),Integer(1),Integer(3),Integer(2)]) >>> c.descents() [1, 2, 5] >>> c.descents(final_descent=True) [1, 2, 5, 7]
- fatten(grouping)[source]¶
Return the composition fatter than
self
, obtained by grouping together consecutive parts according togrouping
.INPUT:
grouping
– a composition whose sum is the length ofself
EXAMPLES:
Let us start with the composition:
sage: c = Composition([4,5,2,7,1])
>>> from sage.all import * >>> c = Composition([Integer(4),Integer(5),Integer(2),Integer(7),Integer(1)])
With
grouping
equal to \((1, \ldots, 1)\), \(c\) is left unchanged:sage: c.fatten(Composition([1,1,1,1,1])) [4, 5, 2, 7, 1]
>>> from sage.all import * >>> c.fatten(Composition([Integer(1),Integer(1),Integer(1),Integer(1),Integer(1)])) [4, 5, 2, 7, 1]
With
grouping
equal to \((\ell)\) where \(\ell\) is the length of \(c\), this yields the coarsest composition above \(c\):sage: c.fatten(Composition([5])) [19]
>>> from sage.all import * >>> c.fatten(Composition([Integer(5)])) [19]
Other values for
grouping
yield (all the) other compositions coarser than \(c\):sage: c.fatten(Composition([2,1,2])) [9, 2, 8] sage: c.fatten(Composition([3,1,1])) [11, 7, 1]
>>> from sage.all import * >>> c.fatten(Composition([Integer(2),Integer(1),Integer(2)])) [9, 2, 8] >>> c.fatten(Composition([Integer(3),Integer(1),Integer(1)])) [11, 7, 1]
- fatter()[source]¶
Return the set of compositions which are fatter than
self
.Complexity for generation: \(O(|c|)\) memory, \(O(|r|)\) time where \(|c|\) is the size of
self
and \(r\) is the result.EXAMPLES:
sage: C = Composition([4,5,2]).fatter() sage: C.cardinality() 4 sage: list(C) [[4, 5, 2], [4, 7], [9, 2], [11]]
>>> from sage.all import * >>> C = Composition([Integer(4),Integer(5),Integer(2)]).fatter() >>> C.cardinality() 4 >>> list(C) [[4, 5, 2], [4, 7], [9, 2], [11]]
Some extreme cases:
sage: list(Composition([5]).fatter()) [[5]] sage: list(Composition([]).fatter()) [[]] sage: list(Composition([1,1,1,1]).fatter()) == list(Compositions(4)) True
>>> from sage.all import * >>> list(Composition([Integer(5)]).fatter()) [[5]] >>> list(Composition([]).fatter()) [[]] >>> list(Composition([Integer(1),Integer(1),Integer(1),Integer(1)]).fatter()) == list(Compositions(Integer(4))) True
- finer()[source]¶
Return the set of compositions which are finer than
self
.EXAMPLES:
sage: C = Composition([3,2]).finer() sage: C.cardinality() 8 sage: C.list() [[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 1, 1], [1, 2, 2], [2, 1, 1, 1], [2, 1, 2], [3, 1, 1], [3, 2]] sage: Composition([]).finer() {[]}
>>> from sage.all import * >>> C = Composition([Integer(3),Integer(2)]).finer() >>> C.cardinality() 8 >>> C.list() [[1, 1, 1, 1, 1], [1, 1, 1, 2], [1, 2, 1, 1], [1, 2, 2], [2, 1, 1, 1], [2, 1, 2], [3, 1, 1], [3, 2]] >>> Composition([]).finer() {[]}
- inf(other, check=True)[source]¶
Return the meet of
self
with a compositionother
of the same size.The meet of two compositions \(I\) and \(J\) of size \(n\) is the finest composition of \(n\) which is coarser than each of \(I\) and \(J\). It can be described as the composition whose descent set is the intersection of the descent sets of \(I\) and \(J\).
INPUT:
other
– composition of same size asself
check
– boolean (default:True
); whether to check the input compositions for having the same size
OUTPUT: the meet of the compositions
self
andother
EXAMPLES:
sage: Composition([3, 1, 1, 3, 1]).meet([4, 3, 2]) [4, 5] sage: Composition([9, 6]).meet([1, 3, 6, 3, 2]) [15] sage: Composition([9, 6]).meet([1, 3, 5, 1, 3, 2]) [9, 6] sage: Composition([1, 1, 1, 1, 1]).meet([3, 2]) [3, 2] sage: Composition([4, 2]).meet([3, 3]) [6] sage: Composition([]).meet([]) [] sage: Composition([1]).meet([1]) [1]
>>> from sage.all import * >>> Composition([Integer(3), Integer(1), Integer(1), Integer(3), Integer(1)]).meet([Integer(4), Integer(3), Integer(2)]) [4, 5] >>> Composition([Integer(9), Integer(6)]).meet([Integer(1), Integer(3), Integer(6), Integer(3), Integer(2)]) [15] >>> Composition([Integer(9), Integer(6)]).meet([Integer(1), Integer(3), Integer(5), Integer(1), Integer(3), Integer(2)]) [9, 6] >>> Composition([Integer(1), Integer(1), Integer(1), Integer(1), Integer(1)]).meet([Integer(3), Integer(2)]) [3, 2] >>> Composition([Integer(4), Integer(2)]).meet([Integer(3), Integer(3)]) [6] >>> Composition([]).meet([]) [] >>> Composition([Integer(1)]).meet([Integer(1)]) [1]
Let us verify on small examples that the meet of \(I\) and \(J\) is coarser than both of \(I\) and \(J\):
sage: all( all( I.is_finer(I.meet(J)) and ....: J.is_finer(I.meet(J)) ....: for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( I.is_finer(I.meet(J)) and ... J.is_finer(I.meet(J)) ... for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
and is the finest composition to do so:
sage: all( all( all( I.meet(J).is_finer(K) ....: for K in I.fatter() ....: if J.is_finer(K) ) ....: for J in Compositions(3) ) ....: for I in Compositions(3) ) True
>>> from sage.all import * >>> all( all( all( I.meet(J).is_finer(K) ... for K in I.fatter() ... if J.is_finer(K) ) ... for J in Compositions(Integer(3)) ) ... for I in Compositions(Integer(3)) ) True
The descent set of the meet of \(I\) and \(J\) is the intersection of the descent sets of \(I\) and \(J\):
sage: def test_meet(n): ....: return all( all( I.to_subset().intersection(J.to_subset()) ....: == I.meet(J).to_subset() ....: for J in Compositions(n) ) ....: for I in Compositions(n) ) sage: all( test_meet(n) for n in range(1, 5) ) True
>>> from sage.all import * >>> def test_meet(n): ... return all( all( I.to_subset().intersection(J.to_subset()) ... == I.meet(J).to_subset() ... for J in Compositions(n) ) ... for I in Compositions(n) ) >>> all( test_meet(n) for n in range(Integer(1), Integer(5)) ) True
See also
AUTHORS:
Darij Grinberg (2013-09-05)
- is_finer(co2)[source]¶
Return
True
if the compositionself
is finer than the compositionco2
; otherwise, returnFalse
.EXAMPLES:
sage: Composition([4,1,2]).is_finer([3,1,3]) False sage: Composition([3,1,3]).is_finer([4,1,2]) False sage: Composition([1,2,2,1,1,2]).is_finer([5,1,3]) True sage: Composition([2,2,2]).is_finer([4,2]) True
>>> from sage.all import * >>> Composition([Integer(4),Integer(1),Integer(2)]).is_finer([Integer(3),Integer(1),Integer(3)]) False >>> Composition([Integer(3),Integer(1),Integer(3)]).is_finer([Integer(4),Integer(1),Integer(2)]) False >>> Composition([Integer(1),Integer(2),Integer(2),Integer(1),Integer(1),Integer(2)]).is_finer([Integer(5),Integer(1),Integer(3)]) True >>> Composition([Integer(2),Integer(2),Integer(2)]).is_finer([Integer(4),Integer(2)]) True
- join(other, check=True)[source]¶
Return the join of
self
with a compositionother
of the same size.The join of two compositions \(I\) and \(J\) of size \(n\) is the coarsest composition of \(n\) which refines each of \(I\) and \(J\). It can be described as the composition whose descent set is the union of the descent sets of \(I\) and \(J\). It is also the concatenation of \(I_1, I_2, \cdots , I_m\), where \(I = I_1 \bullet I_2 \bullet \ldots \bullet I_m\) is the ribbon decomposition of \(I\) with respect to \(J\) (see
ribbon_decomposition()
).INPUT:
other
– composition of same size asself
check
– boolean (default:True
); whether to check the input compositions for having the same size
OUTPUT: the join of the compositions
self
andother
EXAMPLES:
sage: Composition([3, 1, 1, 3, 1]).join([4, 3, 2]) [3, 1, 1, 2, 1, 1] sage: Composition([9, 6]).join([1, 3, 6, 3, 2]) [1, 3, 5, 1, 3, 2] sage: Composition([9, 6]).join([1, 3, 5, 1, 3, 2]) [1, 3, 5, 1, 3, 2] sage: Composition([1, 1, 1, 1, 1]).join([3, 2]) [1, 1, 1, 1, 1] sage: Composition([4, 2]).join([3, 3]) [3, 1, 2] sage: Composition([]).join([]) []
>>> from sage.all import * >>> Composition([Integer(3), Integer(1), Integer(1), Integer(3), Integer(1)]).join([Integer(4), Integer(3), Integer(2)]) [3, 1, 1, 2, 1, 1] >>> Composition([Integer(9), Integer(6)]).join([Integer(1), Integer(3), Integer(6), Integer(3), Integer(2)]) [1, 3, 5, 1, 3, 2] >>> Composition([Integer(9), Integer(6)]).join([Integer(1), Integer(3), Integer(5), Integer(1), Integer(3), Integer(2)]) [1, 3, 5, 1, 3, 2] >>> Composition([Integer(1), Integer(1), Integer(1), Integer(1), Integer(1)]).join([Integer(3), Integer(2)]) [1, 1, 1, 1, 1] >>> Composition([Integer(4), Integer(2)]).join([Integer(3), Integer(3)]) [3, 1, 2] >>> Composition([]).join([]) []
Let us verify on small examples that the join of \(I\) and \(J\) refines both of \(I\) and \(J\):
sage: all( all( I.join(J).is_finer(I) and ....: I.join(J).is_finer(J) ....: for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( I.join(J).is_finer(I) and ... I.join(J).is_finer(J) ... for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
and is the coarsest composition to do so:
sage: all( all( all( K.is_finer(I.join(J)) ....: for K in I.finer() ....: if K.is_finer(J) ) ....: for J in Compositions(3) ) ....: for I in Compositions(3) ) True
>>> from sage.all import * >>> all( all( all( K.is_finer(I.join(J)) ... for K in I.finer() ... if K.is_finer(J) ) ... for J in Compositions(Integer(3)) ) ... for I in Compositions(Integer(3)) ) True
Let us check that the join of \(I\) and \(J\) is indeed the concatenation of \(I_1, I_2, \cdots , I_m\), where \(I = I_1 \bullet I_2 \bullet \ldots \bullet I_m\) is the ribbon decomposition of \(I\) with respect to \(J\):
sage: all( all( Composition.sum(I.ribbon_decomposition(J)[0]) ....: == I.join(J) for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( Composition.sum(I.ribbon_decomposition(J)[Integer(0)]) ... == I.join(J) for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
Also, the descent set of the join of \(I\) and \(J\) is the union of the descent sets of \(I\) and \(J\):
sage: all( all( I.to_subset().union(J.to_subset()) ....: == I.join(J).to_subset() ....: for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( I.to_subset().union(J.to_subset()) ... == I.join(J).to_subset() ... for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
See also
AUTHORS:
Darij Grinberg (2013-09-05)
- major_index()[source]¶
Return the major index of
self
. The major index is defined as the sum of the descents.EXAMPLES:
sage: Composition([1, 1, 3, 1, 2, 1, 3]).major_index() 31
>>> from sage.all import * >>> Composition([Integer(1), Integer(1), Integer(3), Integer(1), Integer(2), Integer(1), Integer(3)]).major_index() 31
- meet(other, check=True)[source]¶
Return the meet of
self
with a compositionother
of the same size.The meet of two compositions \(I\) and \(J\) of size \(n\) is the finest composition of \(n\) which is coarser than each of \(I\) and \(J\). It can be described as the composition whose descent set is the intersection of the descent sets of \(I\) and \(J\).
INPUT:
other
– composition of same size asself
check
– boolean (default:True
); whether to check the input compositions for having the same size
OUTPUT: the meet of the compositions
self
andother
EXAMPLES:
sage: Composition([3, 1, 1, 3, 1]).meet([4, 3, 2]) [4, 5] sage: Composition([9, 6]).meet([1, 3, 6, 3, 2]) [15] sage: Composition([9, 6]).meet([1, 3, 5, 1, 3, 2]) [9, 6] sage: Composition([1, 1, 1, 1, 1]).meet([3, 2]) [3, 2] sage: Composition([4, 2]).meet([3, 3]) [6] sage: Composition([]).meet([]) [] sage: Composition([1]).meet([1]) [1]
>>> from sage.all import * >>> Composition([Integer(3), Integer(1), Integer(1), Integer(3), Integer(1)]).meet([Integer(4), Integer(3), Integer(2)]) [4, 5] >>> Composition([Integer(9), Integer(6)]).meet([Integer(1), Integer(3), Integer(6), Integer(3), Integer(2)]) [15] >>> Composition([Integer(9), Integer(6)]).meet([Integer(1), Integer(3), Integer(5), Integer(1), Integer(3), Integer(2)]) [9, 6] >>> Composition([Integer(1), Integer(1), Integer(1), Integer(1), Integer(1)]).meet([Integer(3), Integer(2)]) [3, 2] >>> Composition([Integer(4), Integer(2)]).meet([Integer(3), Integer(3)]) [6] >>> Composition([]).meet([]) [] >>> Composition([Integer(1)]).meet([Integer(1)]) [1]
Let us verify on small examples that the meet of \(I\) and \(J\) is coarser than both of \(I\) and \(J\):
sage: all( all( I.is_finer(I.meet(J)) and ....: J.is_finer(I.meet(J)) ....: for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( I.is_finer(I.meet(J)) and ... J.is_finer(I.meet(J)) ... for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
and is the finest composition to do so:
sage: all( all( all( I.meet(J).is_finer(K) ....: for K in I.fatter() ....: if J.is_finer(K) ) ....: for J in Compositions(3) ) ....: for I in Compositions(3) ) True
>>> from sage.all import * >>> all( all( all( I.meet(J).is_finer(K) ... for K in I.fatter() ... if J.is_finer(K) ) ... for J in Compositions(Integer(3)) ) ... for I in Compositions(Integer(3)) ) True
The descent set of the meet of \(I\) and \(J\) is the intersection of the descent sets of \(I\) and \(J\):
sage: def test_meet(n): ....: return all( all( I.to_subset().intersection(J.to_subset()) ....: == I.meet(J).to_subset() ....: for J in Compositions(n) ) ....: for I in Compositions(n) ) sage: all( test_meet(n) for n in range(1, 5) ) True
>>> from sage.all import * >>> def test_meet(n): ... return all( all( I.to_subset().intersection(J.to_subset()) ... == I.meet(J).to_subset() ... for J in Compositions(n) ) ... for I in Compositions(n) ) >>> all( test_meet(n) for n in range(Integer(1), Integer(5)) ) True
See also
AUTHORS:
Darij Grinberg (2013-09-05)
- near_concatenation(other)[source]¶
Return the near-concatenation of two nonempty compositions
self
andother
.The near-concatenation \(I \odot J\) of two nonempty compositions \(I\) and \(J\) is defined as the composition \((i_1, i_2, \ldots , i_{n-1}, i_n + j_1, j_2, j_3, \ldots , j_m)\), where \((i_1, i_2, \ldots , i_n) = I\) and \((j_1, j_2, \ldots , j_m) = J\).
This method returns
None
if one of the two input compositions is empty.EXAMPLES:
sage: Composition([1, 1, 3]).near_concatenation(Composition([4, 1, 2])) [1, 1, 7, 1, 2] sage: Composition([6]).near_concatenation(Composition([1, 5])) [7, 5] sage: Composition([1, 5]).near_concatenation(Composition([6])) [1, 11]
>>> from sage.all import * >>> Composition([Integer(1), Integer(1), Integer(3)]).near_concatenation(Composition([Integer(4), Integer(1), Integer(2)])) [1, 1, 7, 1, 2] >>> Composition([Integer(6)]).near_concatenation(Composition([Integer(1), Integer(5)])) [7, 5] >>> Composition([Integer(1), Integer(5)]).near_concatenation(Composition([Integer(6)])) [1, 11]
- partial_sums(final=True)[source]¶
The partial sums of the sequence defined by the entries of the composition.
If \(I = (i_1, \ldots, i_m)\) is a composition, then the partial sums of the entries of the composition are \([i_1, i_1 + i_2, \ldots, i_1 + i_2 + \cdots + i_m]\).
INPUT:
final
– boolean (default:True
); whether or not to include the final partial sum, which is always the size of the composition
See also
EXAMPLES:
sage: Composition([1,1,3,1,2,1,3]).partial_sums() [1, 2, 5, 6, 8, 9, 12]
>>> from sage.all import * >>> Composition([Integer(1),Integer(1),Integer(3),Integer(1),Integer(2),Integer(1),Integer(3)]).partial_sums() [1, 2, 5, 6, 8, 9, 12]
With
final = False
, the last partial sum is not included:sage: Composition([1,1,3,1,2,1,3]).partial_sums(final=False) [1, 2, 5, 6, 8, 9]
>>> from sage.all import * >>> Composition([Integer(1),Integer(1),Integer(3),Integer(1),Integer(2),Integer(1),Integer(3)]).partial_sums(final=False) [1, 2, 5, 6, 8, 9]
- peaks()[source]¶
Return a list of the peaks of the composition
self
.The peaks of a composition are the descents which do not immediately follow another descent.
EXAMPLES:
sage: Composition([1, 1, 3, 1, 2, 1, 3]).peaks() [4, 7]
>>> from sage.all import * >>> Composition([Integer(1), Integer(1), Integer(3), Integer(1), Integer(2), Integer(1), Integer(3)]).peaks() [4, 7]
- refinement_splitting(J)[source]¶
Return the refinement splitting of
self
according toJ
.INPUT:
J
– a composition such thatself
is finer thanJ
OUTPUT:
the unique list of compositions \((I^{(p)})_{p=1, \ldots , m}\), obtained by splitting \(I\), such that \(|I^{(p)}| = J_p\) for all \(p = 1, \ldots, m\).
See also
EXAMPLES:
sage: Composition([1,2,2,1,1,2]).refinement_splitting([5,1,3]) [[1, 2, 2], [1], [1, 2]] sage: Composition([]).refinement_splitting([]) [] sage: Composition([3]).refinement_splitting([2]) Traceback (most recent call last): ... ValueError: compositions self (= [3]) and J (= [2]) must be of the same size sage: Composition([2,1]).refinement_splitting([1,2]) Traceback (most recent call last): ... ValueError: composition J (= [2, 1]) does not refine self (= [1, 2])
>>> from sage.all import * >>> Composition([Integer(1),Integer(2),Integer(2),Integer(1),Integer(1),Integer(2)]).refinement_splitting([Integer(5),Integer(1),Integer(3)]) [[1, 2, 2], [1], [1, 2]] >>> Composition([]).refinement_splitting([]) [] >>> Composition([Integer(3)]).refinement_splitting([Integer(2)]) Traceback (most recent call last): ... ValueError: compositions self (= [3]) and J (= [2]) must be of the same size >>> Composition([Integer(2),Integer(1)]).refinement_splitting([Integer(1),Integer(2)]) Traceback (most recent call last): ... ValueError: composition J (= [2, 1]) does not refine self (= [1, 2])
- refinement_splitting_lengths(J)[source]¶
Return the lengths of the compositions in the refinement splitting of
self
according toJ
.See also
refinement_splitting()
for the definition of refinement splittingEXAMPLES:
sage: Composition([1,2,2,1,1,2]).refinement_splitting_lengths([5,1,3]) [3, 1, 2] sage: Composition([]).refinement_splitting_lengths([]) [] sage: Composition([3]).refinement_splitting_lengths([2]) Traceback (most recent call last): ... ValueError: compositions self (= [3]) and J (= [2]) must be of the same size sage: Composition([2,1]).refinement_splitting_lengths([1,2]) Traceback (most recent call last): ... ValueError: composition J (= [2, 1]) does not refine self (= [1, 2])
>>> from sage.all import * >>> Composition([Integer(1),Integer(2),Integer(2),Integer(1),Integer(1),Integer(2)]).refinement_splitting_lengths([Integer(5),Integer(1),Integer(3)]) [3, 1, 2] >>> Composition([]).refinement_splitting_lengths([]) [] >>> Composition([Integer(3)]).refinement_splitting_lengths([Integer(2)]) Traceback (most recent call last): ... ValueError: compositions self (= [3]) and J (= [2]) must be of the same size >>> Composition([Integer(2),Integer(1)]).refinement_splitting_lengths([Integer(1),Integer(2)]) Traceback (most recent call last): ... ValueError: composition J (= [2, 1]) does not refine self (= [1, 2])
- reversed()[source]¶
Return the reverse composition of
self
.The reverse composition of a composition \((i_1, i_2, \ldots, i_k)\) is defined as the composition \((i_k, i_{k-1}, \ldots, i_1)\).
EXAMPLES:
sage: Composition([1, 1, 3, 1, 2, 1, 3]).reversed() [3, 1, 2, 1, 3, 1, 1]
>>> from sage.all import * >>> Composition([Integer(1), Integer(1), Integer(3), Integer(1), Integer(2), Integer(1), Integer(3)]).reversed() [3, 1, 2, 1, 3, 1, 1]
- ribbon_decomposition(other, check=True)[source]¶
Return a pair describing the ribbon decomposition of a composition
self
with respect to a compositionother
of the same size.If \(I\) and \(J\) are two compositions of the same nonzero size, then the ribbon decomposition of \(I\) with respect to \(J\) is defined as follows: Write \(I\) and \(J\) as \(I = (i_1, i_2, \ldots , i_n)\) and \(J = (j_1, j_2, \ldots , j_m)\). Then, the equality \(I = I_1 \bullet I_2 \bullet \ldots \bullet I_m\) holds for a unique \(m\)-tuple \((I_1, I_2, \ldots , I_m)\) of compositions such that each \(I_k\) has size \(j_k\) and for a unique choice of \(m-1\) signs \(\bullet\) each of which is either the concatenation sign \(\cdot\) or the near-concatenation sign \(\odot\) (see
__add__()
andnear_concatenation()
for the definitions of these two signs). This \(m\)-tuple and this choice of signs together are said to form the ribbon decomposition of \(I\) with respect to \(J\). If \(I\) and \(J\) are empty, then the same definition applies, except that there are \(0\) rather than \(m-1\) signs.See Section 4.8 of [NCSF1].
INPUT:
other
– composition of same size asself
check
– boolean (default:True
); whether to check the input compositions for having the same size
OUTPUT:
a pair
(u, v)
, whereu
is a tuple of compositions (corresponding to the \(m\)-tuple \((I_1, I_2, \ldots , I_m)\) in the above definition), andv
is a tuple of \(0`s and `1`s (encoding the choice of signs `\bullet\) in the above definition, with a \(0\) standing for \(\cdot\) and a \(1\) standing for \(\odot\)).
EXAMPLES:
sage: Composition([3, 1, 1, 3, 1]).ribbon_decomposition([4, 3, 2]) (([3, 1], [1, 2], [1, 1]), (0, 1)) sage: Composition([9, 6]).ribbon_decomposition([1, 3, 6, 3, 2]) (([1], [3], [5, 1], [3], [2]), (1, 1, 1, 1)) sage: Composition([9, 6]).ribbon_decomposition([1, 3, 5, 1, 3, 2]) (([1], [3], [5], [1], [3], [2]), (1, 1, 0, 1, 1)) sage: Composition([1, 1, 1, 1, 1]).ribbon_decomposition([3, 2]) (([1, 1, 1], [1, 1]), (0,)) sage: Composition([4, 2]).ribbon_decomposition([6]) (([4, 2],), ()) sage: Composition([]).ribbon_decomposition([]) ((), ())
>>> from sage.all import * >>> Composition([Integer(3), Integer(1), Integer(1), Integer(3), Integer(1)]).ribbon_decomposition([Integer(4), Integer(3), Integer(2)]) (([3, 1], [1, 2], [1, 1]), (0, 1)) >>> Composition([Integer(9), Integer(6)]).ribbon_decomposition([Integer(1), Integer(3), Integer(6), Integer(3), Integer(2)]) (([1], [3], [5, 1], [3], [2]), (1, 1, 1, 1)) >>> Composition([Integer(9), Integer(6)]).ribbon_decomposition([Integer(1), Integer(3), Integer(5), Integer(1), Integer(3), Integer(2)]) (([1], [3], [5], [1], [3], [2]), (1, 1, 0, 1, 1)) >>> Composition([Integer(1), Integer(1), Integer(1), Integer(1), Integer(1)]).ribbon_decomposition([Integer(3), Integer(2)]) (([1, 1, 1], [1, 1]), (0,)) >>> Composition([Integer(4), Integer(2)]).ribbon_decomposition([Integer(6)]) (([4, 2],), ()) >>> Composition([]).ribbon_decomposition([]) ((), ())
Let us check that the defining property \(I = I_1 \bullet I_2 \bullet \ldots \bullet I_m\) is satisfied:
sage: def compose_back(u, v): ....: comp = u[0] ....: r = len(v) ....: if len(u) != r + 1: ....: raise ValueError("something is wrong") ....: for i in range(r): ....: if v[i] == 0: ....: comp += u[i + 1] ....: else: ....: comp = comp.near_concatenation(u[i + 1]) ....: return comp sage: all( all( all( compose_back(*(I.ribbon_decomposition(J))) == I ....: for J in Compositions(n) ) ....: for I in Compositions(n) ) ....: for n in range(1, 5) ) True
>>> from sage.all import * >>> def compose_back(u, v): ... comp = u[Integer(0)] ... r = len(v) ... if len(u) != r + Integer(1): ... raise ValueError("something is wrong") ... for i in range(r): ... if v[i] == Integer(0): ... comp += u[i + Integer(1)] ... else: ... comp = comp.near_concatenation(u[i + Integer(1)]) ... return comp >>> all( all( all( compose_back(*(I.ribbon_decomposition(J))) == I ... for J in Compositions(n) ) ... for I in Compositions(n) ) ... for n in range(Integer(1), Integer(5)) ) True
AUTHORS:
Darij Grinberg (2013-08-29)
- shuffle_product(other, overlap=False)[source]¶
The (overlapping) shuffles of
self
andother
.Suppose \(I = (i_1, \ldots, i_k)\) and \(J = (j_1, \ldots, j_l)\) are two compositions. A shuffle of \(I\) and \(J\) is a composition of length \(k + l\) that contains both \(I\) and \(J\) as subsequences.
More generally, an overlapping shuffle of \(I\) and \(J\) is obtained by distributing the elements of \(I\) and \(J\) (preserving the relative ordering of these elements) among the positions of an empty list; an element of \(I\) and an element of \(J\) are permitted to share the same position, in which case they are replaced by their sum. In particular, a shuffle of \(I\) and \(J\) is an overlapping shuffle of \(I\) and \(J\).
INPUT:
other
– compositionoverlap
– boolean (default:False
); ifTrue
, the overlapping shuffle product is returned
OUTPUT:
An enumerated set (allowing for multiplicities)
EXAMPLES:
The shuffle product of \([2,2]\) and \([1,1,3]\):
sage: alph = Composition([2,2]) sage: beta = Composition([1,1,3]) sage: S = alph.shuffle_product(beta); S # needs sage.combinat Shuffle product of [2, 2] and [1, 1, 3] sage: S.list() # needs sage.combinat [[2, 2, 1, 1, 3], [2, 1, 2, 1, 3], [2, 1, 1, 2, 3], [2, 1, 1, 3, 2], [1, 2, 2, 1, 3], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 2], [1, 1, 3, 2, 2]]
>>> from sage.all import * >>> alph = Composition([Integer(2),Integer(2)]) >>> beta = Composition([Integer(1),Integer(1),Integer(3)]) >>> S = alph.shuffle_product(beta); S # needs sage.combinat Shuffle product of [2, 2] and [1, 1, 3] >>> S.list() # needs sage.combinat [[2, 2, 1, 1, 3], [2, 1, 2, 1, 3], [2, 1, 1, 2, 3], [2, 1, 1, 3, 2], [1, 2, 2, 1, 3], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 2], [1, 1, 3, 2, 2]]
The overlapping shuffle product of \([2,2]\) and \([1,1,3]\):
sage: alph = Composition([2,2]) sage: beta = Composition([1,1,3]) sage: O = alph.shuffle_product(beta, overlap=True); O # needs sage.combinat Overlapping shuffle product of [2, 2] and [1, 1, 3] sage: O.list() # needs sage.combinat [[2, 2, 1, 1, 3], [2, 1, 2, 1, 3], [2, 1, 1, 2, 3], [2, 1, 1, 3, 2], [1, 2, 2, 1, 3], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 2], [1, 1, 3, 2, 2], [3, 2, 1, 3], [2, 3, 1, 3], [3, 1, 2, 3], [2, 1, 3, 3], [3, 1, 3, 2], [2, 1, 1, 5], [1, 3, 2, 3], [1, 2, 3, 3], [1, 3, 3, 2], [1, 2, 1, 5], [1, 1, 5, 2], [1, 1, 2, 5], [3, 3, 3], [3, 1, 5], [1, 3, 5]]
>>> from sage.all import * >>> alph = Composition([Integer(2),Integer(2)]) >>> beta = Composition([Integer(1),Integer(1),Integer(3)]) >>> O = alph.shuffle_product(beta, overlap=True); O # needs sage.combinat Overlapping shuffle product of [2, 2] and [1, 1, 3] >>> O.list() # needs sage.combinat [[2, 2, 1, 1, 3], [2, 1, 2, 1, 3], [2, 1, 1, 2, 3], [2, 1, 1, 3, 2], [1, 2, 2, 1, 3], [1, 2, 1, 2, 3], [1, 2, 1, 3, 2], [1, 1, 2, 2, 3], [1, 1, 2, 3, 2], [1, 1, 3, 2, 2], [3, 2, 1, 3], [2, 3, 1, 3], [3, 1, 2, 3], [2, 1, 3, 3], [3, 1, 3, 2], [2, 1, 1, 5], [1, 3, 2, 3], [1, 2, 3, 3], [1, 3, 3, 2], [1, 2, 1, 5], [1, 1, 5, 2], [1, 1, 2, 5], [3, 3, 3], [3, 1, 5], [1, 3, 5]]
Note that the shuffle product of two compositions can include the same composition more than once since a composition can be a shuffle of two compositions in several ways. For example:
sage: # needs sage.combinat sage: w1 = Composition([1]) sage: S = w1.shuffle_product(w1); S Shuffle product of [1] and [1] sage: S.list() [[1, 1], [1, 1]] sage: O = w1.shuffle_product(w1, overlap=True); O Overlapping shuffle product of [1] and [1] sage: O.list() [[1, 1], [1, 1], [2]]
>>> from sage.all import * >>> # needs sage.combinat >>> w1 = Composition([Integer(1)]) >>> S = w1.shuffle_product(w1); S Shuffle product of [1] and [1] >>> S.list() [[1, 1], [1, 1]] >>> O = w1.shuffle_product(w1, overlap=True); O Overlapping shuffle product of [1] and [1] >>> O.list() [[1, 1], [1, 1], [2]]
- size()[source]¶
Return the size of
self
, that is the sum of its parts.EXAMPLES:
sage: Composition([7,1,3]).size() 11
>>> from sage.all import * >>> Composition([Integer(7),Integer(1),Integer(3)]).size() 11
- specht_module(base_ring=None)[source]¶
Return the Specht module corresponding to
self
.EXAMPLES:
sage: SM = Composition([1,2,2]).specht_module(QQ); SM # needs sage.combinat sage.modules Specht module of [(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)] over Rational Field sage: s = SymmetricFunctions(QQ).s() # needs sage.combinat sage.modules sage: s(SM.frobenius_image()) # needs sage.combinat sage.modules s[2, 2, 1]
>>> from sage.all import * >>> SM = Composition([Integer(1),Integer(2),Integer(2)]).specht_module(QQ); SM # needs sage.combinat sage.modules Specht module of [(0, 0), (1, 0), (1, 1), (2, 0), (2, 1)] over Rational Field >>> s = SymmetricFunctions(QQ).s() # needs sage.combinat sage.modules >>> s(SM.frobenius_image()) # needs sage.combinat sage.modules s[2, 2, 1]
- specht_module_dimension(base_ring=None)[source]¶
Return the dimension of the Specht module corresponding to
self
.INPUT:
base_ring
– (default: \(\QQ\)) the base ring
EXAMPLES:
sage: Composition([1,2,2]).specht_module_dimension() # needs sage.combinat sage.modules 5 sage: Composition([1,2,2]).specht_module_dimension(GF(2)) # needs sage.combinat sage.modules sage.rings.finite_rings 5
>>> from sage.all import * >>> Composition([Integer(1),Integer(2),Integer(2)]).specht_module_dimension() # needs sage.combinat sage.modules 5 >>> Composition([Integer(1),Integer(2),Integer(2)]).specht_module_dimension(GF(Integer(2))) # needs sage.combinat sage.modules sage.rings.finite_rings 5
- static sum(compositions)[source]¶
Return the concatenation of the given compositions.
INPUT:
compositions
– list (or iterable) of compositions
EXAMPLES:
sage: Composition.sum([Composition([1, 1, 3]), Composition([4, 1, 2]), Composition([3,1])]) [1, 1, 3, 4, 1, 2, 3, 1]
>>> from sage.all import * >>> Composition.sum([Composition([Integer(1), Integer(1), Integer(3)]), Composition([Integer(4), Integer(1), Integer(2)]), Composition([Integer(3),Integer(1)])]) [1, 1, 3, 4, 1, 2, 3, 1]
Any iterable can be provided as input:
sage: Composition.sum([Composition([i,i]) for i in [4,1,3]]) [4, 4, 1, 1, 3, 3]
>>> from sage.all import * >>> Composition.sum([Composition([i,i]) for i in [Integer(4),Integer(1),Integer(3)]]) [4, 4, 1, 1, 3, 3]
Empty inputs are handled gracefully:
sage: Composition.sum([]) == Composition([]) True
>>> from sage.all import * >>> Composition.sum([]) == Composition([]) True
- sup(other, check=True)[source]¶
Return the join of
self
with a compositionother
of the same size.The join of two compositions \(I\) and \(J\) of size \(n\) is the coarsest composition of \(n\) which refines each of \(I\) and \(J\). It can be described as the composition whose descent set is the union of the descent sets of \(I\) and \(J\). It is also the concatenation of \(I_1, I_2, \cdots , I_m\), where \(I = I_1 \bullet I_2 \bullet \ldots \bullet I_m\) is the ribbon decomposition of \(I\) with respect to \(J\) (see
ribbon_decomposition()
).INPUT:
other
– composition of same size asself
check
– boolean (default:True
); whether to check the input compositions for having the same size
OUTPUT: the join of the compositions
self
andother
EXAMPLES:
sage: Composition([3, 1, 1, 3, 1]).join([4, 3, 2]) [3, 1, 1, 2, 1, 1] sage: Composition([9, 6]).join([1, 3, 6, 3, 2]) [1, 3, 5, 1, 3, 2] sage: Composition([9, 6]).join([1, 3, 5, 1, 3, 2]) [1, 3, 5, 1, 3, 2] sage: Composition([1, 1, 1, 1, 1]).join([3, 2]) [1, 1, 1, 1, 1] sage: Composition([4, 2]).join([3, 3]) [3, 1, 2] sage: Composition([]).join([]) []
>>> from sage.all import * >>> Composition([Integer(3), Integer(1), Integer(1), Integer(3), Integer(1)]).join([Integer(4), Integer(3), Integer(2)]) [3, 1, 1, 2, 1, 1] >>> Composition([Integer(9), Integer(6)]).join([Integer(1), Integer(3), Integer(6), Integer(3), Integer(2)]) [1, 3, 5, 1, 3, 2] >>> Composition([Integer(9), Integer(6)]).join([Integer(1), Integer(3), Integer(5), Integer(1), Integer(3), Integer(2)]) [1, 3, 5, 1, 3, 2] >>> Composition([Integer(1), Integer(1), Integer(1), Integer(1), Integer(1)]).join([Integer(3), Integer(2)]) [1, 1, 1, 1, 1] >>> Composition([Integer(4), Integer(2)]).join([Integer(3), Integer(3)]) [3, 1, 2] >>> Composition([]).join([]) []
Let us verify on small examples that the join of \(I\) and \(J\) refines both of \(I\) and \(J\):
sage: all( all( I.join(J).is_finer(I) and ....: I.join(J).is_finer(J) ....: for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( I.join(J).is_finer(I) and ... I.join(J).is_finer(J) ... for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
and is the coarsest composition to do so:
sage: all( all( all( K.is_finer(I.join(J)) ....: for K in I.finer() ....: if K.is_finer(J) ) ....: for J in Compositions(3) ) ....: for I in Compositions(3) ) True
>>> from sage.all import * >>> all( all( all( K.is_finer(I.join(J)) ... for K in I.finer() ... if K.is_finer(J) ) ... for J in Compositions(Integer(3)) ) ... for I in Compositions(Integer(3)) ) True
Let us check that the join of \(I\) and \(J\) is indeed the concatenation of \(I_1, I_2, \cdots , I_m\), where \(I = I_1 \bullet I_2 \bullet \ldots \bullet I_m\) is the ribbon decomposition of \(I\) with respect to \(J\):
sage: all( all( Composition.sum(I.ribbon_decomposition(J)[0]) ....: == I.join(J) for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( Composition.sum(I.ribbon_decomposition(J)[Integer(0)]) ... == I.join(J) for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
Also, the descent set of the join of \(I\) and \(J\) is the union of the descent sets of \(I\) and \(J\):
sage: all( all( I.to_subset().union(J.to_subset()) ....: == I.join(J).to_subset() ....: for J in Compositions(4) ) ....: for I in Compositions(4) ) True
>>> from sage.all import * >>> all( all( I.to_subset().union(J.to_subset()) ... == I.join(J).to_subset() ... for J in Compositions(Integer(4)) ) ... for I in Compositions(Integer(4)) ) True
See also
AUTHORS:
Darij Grinberg (2013-09-05)
- to_code()[source]¶
Return the code of the composition
self
.The code of a composition \(I\) is a list of length \(\mathrm{size}(I)\) of 1s and 0s such that there is a 1 wherever a new part starts. (Exceptional case: When the composition is empty, the code is
[0]
.)EXAMPLES:
sage: Composition([4,1,2,3,5]).to_code() [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]
>>> from sage.all import * >>> Composition([Integer(4),Integer(1),Integer(2),Integer(3),Integer(5)]).to_code() [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0]
- to_partition()[source]¶
Return the partition obtained by sorting
self
into decreasing order.EXAMPLES:
sage: Composition([2,1,3]).to_partition() # needs sage.combinat [3, 2, 1] sage: Composition([4,2,2]).to_partition() # needs sage.combinat [4, 2, 2] sage: Composition([]).to_partition() # needs sage.combinat []
>>> from sage.all import * >>> Composition([Integer(2),Integer(1),Integer(3)]).to_partition() # needs sage.combinat [3, 2, 1] >>> Composition([Integer(4),Integer(2),Integer(2)]).to_partition() # needs sage.combinat [4, 2, 2] >>> Composition([]).to_partition() # needs sage.combinat []
- to_skew_partition(overlap=1)[source]¶
Return the skew partition obtained from
self
.This is a skew partition whose rows have the entries of
self
as their length, taken in reverse order (so the first entry ofself
is the length of the lowermost row, etc.). The parameteroverlap
indicates the number of cells on each row that are directly below cells of the previous row. When it is set to \(1\) (its default value), the result is the ribbon shape ofself
.EXAMPLES:
sage: # needs sage.combinat sage: Composition([3,4,1]).to_skew_partition() [6, 6, 3] / [5, 2] sage: Composition([3,4,1]).to_skew_partition(overlap=0) [8, 7, 3] / [7, 3] sage: Composition([]).to_skew_partition() [] / [] sage: Composition([1,2]).to_skew_partition() [2, 1] / [] sage: Composition([2,1]).to_skew_partition() [2, 2] / [1]
>>> from sage.all import * >>> # needs sage.combinat >>> Composition([Integer(3),Integer(4),Integer(1)]).to_skew_partition() [6, 6, 3] / [5, 2] >>> Composition([Integer(3),Integer(4),Integer(1)]).to_skew_partition(overlap=Integer(0)) [8, 7, 3] / [7, 3] >>> Composition([]).to_skew_partition() [] / [] >>> Composition([Integer(1),Integer(2)]).to_skew_partition() [2, 1] / [] >>> Composition([Integer(2),Integer(1)]).to_skew_partition() [2, 2] / [1]
- to_subset(final=False)[source]¶
The subset corresponding to
self
under the bijection (see below) between compositions of \(n\) and subsets of \(\{1, 2, \ldots, n-1\}\).The bijection maps a composition \((i_1, \ldots, i_k)\) of \(n\) to \(\{i_1, i_1 + i_2, i_1 + i_2 + i_3, \ldots, i_1 + \cdots + i_{k-1}\}\).
INPUT:
final
– boolean (default:False
); whether or not to include the final partial sum, which is always the size of the composition
See also
EXAMPLES:
sage: Composition([1,1,3,1,2,1,3]).to_subset() {1, 2, 5, 6, 8, 9} sage: for I in Compositions(3): print(I.to_subset()) {1, 2} {1} {2} {}
>>> from sage.all import * >>> Composition([Integer(1),Integer(1),Integer(3),Integer(1),Integer(2),Integer(1),Integer(3)]).to_subset() {1, 2, 5, 6, 8, 9} >>> for I in Compositions(Integer(3)): print(I.to_subset()) {1, 2} {1} {2} {}
With
final=True
, the sum of all the elements of the composition is included in the subset:sage: Composition([1,1,3,1,2,1,3]).to_subset(final=True) {1, 2, 5, 6, 8, 9, 12}
>>> from sage.all import * >>> Composition([Integer(1),Integer(1),Integer(3),Integer(1),Integer(2),Integer(1),Integer(3)]).to_subset(final=True) {1, 2, 5, 6, 8, 9, 12}
- wll_gt(co2)[source]¶
Return
True
if the compositionself
is greater than the compositionco2
with respect to the wll-ordering; otherwise, returnFalse
.The wll-ordering is a total order on the set of all compositions defined as follows: A composition \(I\) is greater than a composition \(J\) if and only if one of the following conditions holds:
The size of \(I\) is greater than the size of \(J\).
The size of \(I\) equals the size of \(J\), but the length of \(I\) is greater than the length of \(J\).
The size of \(I\) equals the size of \(J\), and the length of \(I\) equals the length of \(J\), but \(I\) is lexicographically greater than \(J\).
(“wll-ordering” is short for “weight, length, lexicographic ordering”.)
EXAMPLES:
sage: Composition([4,1,2]).wll_gt([3,1,3]) True sage: Composition([7]).wll_gt([4,1,2]) False sage: Composition([8]).wll_gt([4,1,2]) True sage: Composition([3,2,2,2]).wll_gt([5,2]) True sage: Composition([]).wll_gt([3]) False sage: Composition([2,1]).wll_gt([2,1]) False sage: Composition([2,2,2]).wll_gt([4,2]) True sage: Composition([4,2]).wll_gt([2,2,2]) False sage: Composition([1,1,2]).wll_gt([2,2]) True sage: Composition([2,2]).wll_gt([1,3]) True sage: Composition([2,1,2]).wll_gt([]) True
>>> from sage.all import * >>> Composition([Integer(4),Integer(1),Integer(2)]).wll_gt([Integer(3),Integer(1),Integer(3)]) True >>> Composition([Integer(7)]).wll_gt([Integer(4),Integer(1),Integer(2)]) False >>> Composition([Integer(8)]).wll_gt([Integer(4),Integer(1),Integer(2)]) True >>> Composition([Integer(3),Integer(2),Integer(2),Integer(2)]).wll_gt([Integer(5),Integer(2)]) True >>> Composition([]).wll_gt([Integer(3)]) False >>> Composition([Integer(2),Integer(1)]).wll_gt([Integer(2),Integer(1)]) False >>> Composition([Integer(2),Integer(2),Integer(2)]).wll_gt([Integer(4),Integer(2)]) True >>> Composition([Integer(4),Integer(2)]).wll_gt([Integer(2),Integer(2),Integer(2)]) False >>> Composition([Integer(1),Integer(1),Integer(2)]).wll_gt([Integer(2),Integer(2)]) True >>> Composition([Integer(2),Integer(2)]).wll_gt([Integer(1),Integer(3)]) True >>> Composition([Integer(2),Integer(1),Integer(2)]).wll_gt([]) True
- class sage.combinat.composition.Compositions(is_infinite=False, category=None)[source]¶
Bases:
UniqueRepresentation
,Parent
Set of integer compositions.
A composition \(c\) of a nonnegative integer \(n\) is a list of positive integers with total sum \(n\).
See also
EXAMPLES:
There are 8 compositions of 4:
sage: Compositions(4).cardinality() 8
>>> from sage.all import * >>> Compositions(Integer(4)).cardinality() 8
Here is the list of them:
sage: Compositions(4).list() [[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], [4]]
>>> from sage.all import * >>> Compositions(Integer(4)).list() [[1, 1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3], [2, 1, 1], [2, 2], [3, 1], [4]]
You can use the
.first()
method to get the ‘first’ composition of a number:sage: Compositions(4).first() [1, 1, 1, 1]
>>> from sage.all import * >>> Compositions(Integer(4)).first() [1, 1, 1, 1]
You can also calculate the ‘next’ composition given the current one:
sage: Compositions(4).next([1,1,2]) [1, 2, 1]
>>> from sage.all import * >>> Compositions(Integer(4)).next([Integer(1),Integer(1),Integer(2)]) [1, 2, 1]
If \(n\) is not specified, this returns the combinatorial class of all (nonnegative) integer compositions:
sage: Compositions() Compositions of nonnegative integers sage: [] in Compositions() True sage: [2,3,1] in Compositions() True sage: [-2,3,1] in Compositions() False
>>> from sage.all import * >>> Compositions() Compositions of nonnegative integers >>> [] in Compositions() True >>> [Integer(2),Integer(3),Integer(1)] in Compositions() True >>> [-Integer(2),Integer(3),Integer(1)] in Compositions() False
If \(n\) is specified, it returns the class of compositions of \(n\):
sage: Compositions(3) Compositions of 3 sage: list(Compositions(3)) [[1, 1, 1], [1, 2], [2, 1], [3]] sage: Compositions(3).cardinality() 4
>>> from sage.all import * >>> Compositions(Integer(3)) Compositions of 3 >>> list(Compositions(Integer(3))) [[1, 1, 1], [1, 2], [2, 1], [3]] >>> Compositions(Integer(3)).cardinality() 4
The following examples show how to test whether or not an object is a composition:
sage: [3,4] in Compositions() True sage: [3,4] in Compositions(7) True sage: [3,4] in Compositions(5) False
>>> from sage.all import * >>> [Integer(3),Integer(4)] in Compositions() True >>> [Integer(3),Integer(4)] in Compositions(Integer(7)) True >>> [Integer(3),Integer(4)] in Compositions(Integer(5)) False
Similarly, one can check whether or not an object is a composition which satisfies further constraints:
sage: [4,2] in Compositions(6, inner=[2,2]) True sage: [4,2] in Compositions(6, inner=[2,3]) False sage: [4,1] in Compositions(5, inner=[2,1], max_slope = 0) True
>>> from sage.all import * >>> [Integer(4),Integer(2)] in Compositions(Integer(6), inner=[Integer(2),Integer(2)]) True >>> [Integer(4),Integer(2)] in Compositions(Integer(6), inner=[Integer(2),Integer(3)]) False >>> [Integer(4),Integer(1)] in Compositions(Integer(5), inner=[Integer(2),Integer(1)], max_slope = Integer(0)) True
An example with incompatible constraints:
sage: [4,2] in Compositions(6, inner=[2,2], min_part=3) False
>>> from sage.all import * >>> [Integer(4),Integer(2)] in Compositions(Integer(6), inner=[Integer(2),Integer(2)], min_part=Integer(3)) False
The options
length
,min_length
, andmax_length
can be used to set length constraints on the compositions. For example, the compositions of 4 of length equal to, at least, and at most 2 are given by:sage: Compositions(4, length=2).list() [[3, 1], [2, 2], [1, 3]] sage: Compositions(4, min_length=2).list() [[3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]] sage: Compositions(4, max_length=2).list() [[4], [3, 1], [2, 2], [1, 3]]
>>> from sage.all import * >>> Compositions(Integer(4), length=Integer(2)).list() [[3, 1], [2, 2], [1, 3]] >>> Compositions(Integer(4), min_length=Integer(2)).list() [[3, 1], [2, 2], [2, 1, 1], [1, 3], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]] >>> Compositions(Integer(4), max_length=Integer(2)).list() [[4], [3, 1], [2, 2], [1, 3]]
Setting both
min_length
andmax_length
to the same value is equivalent to settinglength
to this value:sage: Compositions(4, min_length=2, max_length=2).list() [[3, 1], [2, 2], [1, 3]]
>>> from sage.all import * >>> Compositions(Integer(4), min_length=Integer(2), max_length=Integer(2)).list() [[3, 1], [2, 2], [1, 3]]
The options
inner
andouter
can be used to set part-by-part containment constraints. The list of compositions of 4 bounded above by[3,1,2]
is given by:sage: list(Compositions(4, outer=[3,1,2])) [[3, 1], [2, 1, 1], [1, 1, 2]]
>>> from sage.all import * >>> list(Compositions(Integer(4), outer=[Integer(3),Integer(1),Integer(2)])) [[3, 1], [2, 1, 1], [1, 1, 2]]
outer
setsmax_length
to the length of its argument. Moreover, the parts ofouter
may be infinite to clear the constraint on specific parts. This is the list of compositions of 4 of length at most 3 such that the first and third parts are at most 1:sage: Compositions(4, outer=[1,oo,1]).list() [[1, 3], [1, 2, 1]]
>>> from sage.all import * >>> Compositions(Integer(4), outer=[Integer(1),oo,Integer(1)]).list() [[1, 3], [1, 2, 1]]
This is the list of compositions of 4 bounded below by
[1,1,1]
:sage: Compositions(4, inner=[1,1,1]).list() [[2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
>>> from sage.all import * >>> Compositions(Integer(4), inner=[Integer(1),Integer(1),Integer(1)]).list() [[2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
The options
min_slope
andmax_slope
can be used to set constraints on the slope, that is the differencep[i+1]-p[i]
of two consecutive parts. The following is the list of weakly increasing compositions of 4:sage: Compositions(4, min_slope=0).list() [[4], [2, 2], [1, 3], [1, 1, 2], [1, 1, 1, 1]]
>>> from sage.all import * >>> Compositions(Integer(4), min_slope=Integer(0)).list() [[4], [2, 2], [1, 3], [1, 1, 2], [1, 1, 1, 1]]
Here are the weakly decreasing ones:
sage: Compositions(4, max_slope=0).list() [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
>>> from sage.all import * >>> Compositions(Integer(4), max_slope=Integer(0)).list() [[4], [3, 1], [2, 2], [2, 1, 1], [1, 1, 1, 1]]
The following is the list of compositions of 4 such that two consecutive parts differ by at most one:
sage: Compositions(4, min_slope=-1, max_slope=1).list() [[4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
>>> from sage.all import * >>> Compositions(Integer(4), min_slope=-Integer(1), max_slope=Integer(1)).list() [[4], [2, 2], [2, 1, 1], [1, 2, 1], [1, 1, 2], [1, 1, 1, 1]]
The constraints can be combined together in all reasonable ways. This is the list of compositions of 5 of length between 2 and 4 such that the difference between consecutive parts is between -2 and 1:
sage: Compositions(5, max_slope=1, min_slope=-2, min_length=2, max_length=4).list() [[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [2, 1, 1, 1], [1, 2, 2], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2]]
>>> from sage.all import * >>> Compositions(Integer(5), max_slope=Integer(1), min_slope=-Integer(2), min_length=Integer(2), max_length=Integer(4)).list() [[3, 2], [3, 1, 1], [2, 3], [2, 2, 1], [2, 1, 2], [2, 1, 1, 1], [1, 2, 2], [1, 2, 1, 1], [1, 1, 2, 1], [1, 1, 1, 2]]
We can do the same thing with an outer constraint:
sage: Compositions(5, max_slope=1, min_slope=-2, min_length=2, max_length=4, outer=[2,5,2]).list() [[2, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2]]
>>> from sage.all import * >>> Compositions(Integer(5), max_slope=Integer(1), min_slope=-Integer(2), min_length=Integer(2), max_length=Integer(4), outer=[Integer(2),Integer(5),Integer(2)]).list() [[2, 3], [2, 2, 1], [2, 1, 2], [1, 2, 2]]
However, providing incoherent constraints may yield strange results. It is up to the user to ensure that the inner and outer compositions themselves satisfy the parts and slope constraints.
Note that setting
min_part=0
is not allowed:sage: Compositions(2, length=3, min_part=0) Traceback (most recent call last): ... ValueError: setting min_part=0 is not allowed for Compositions
>>> from sage.all import * >>> Compositions(Integer(2), length=Integer(3), min_part=Integer(0)) Traceback (most recent call last): ... ValueError: setting min_part=0 is not allowed for Compositions
Instead you must use
IntegerVectors
:sage: list(IntegerVectors(2, 3)) [[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]
>>> from sage.all import * >>> list(IntegerVectors(Integer(2), Integer(3))) [[2, 0, 0], [1, 1, 0], [1, 0, 1], [0, 2, 0], [0, 1, 1], [0, 0, 2]]
The generation algorithm is constant amortized time, and handled by the generic tool
IntegerListsLex
.- Element[source]¶
alias of
Composition
- from_code(code)[source]¶
Return the composition from its code. The code of a composition \(I\) is a list of length \(\mathrm{size}(I)\) consisting of 1s and 0s such that there is a 1 wherever a new part starts. (Exceptional case: When the composition is empty, the code is
[0]
.)EXAMPLES:
sage: Composition([4,1,2,3,5]).to_code() [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] sage: Compositions().from_code(_) [4, 1, 2, 3, 5] sage: Composition([3,1,2,3,5]).to_code() [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] sage: Compositions().from_code(_) [3, 1, 2, 3, 5]
>>> from sage.all import * >>> Composition([Integer(4),Integer(1),Integer(2),Integer(3),Integer(5)]).to_code() [1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] >>> Compositions().from_code(_) [4, 1, 2, 3, 5] >>> Composition([Integer(3),Integer(1),Integer(2),Integer(3),Integer(5)]).to_code() [1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0] >>> Compositions().from_code(_) [3, 1, 2, 3, 5]
- from_descents(descents, nps=None)[source]¶
Return a composition from the list of descents.
INPUT:
descents
– an iterablenps
– integer orNone
(default:None
)
OUTPUT:
The composition of
nps
whose descents are listed indescents
, assuming thatnps
is notNone
(otherwise, the last element ofdescents
is removed fromdescents
, andnps
is set to be this last element plus 1).
EXAMPLES:
sage: [x-1 for x in Composition([1, 1, 3, 4, 3]).to_subset()] [0, 1, 4, 8] sage: Compositions().from_descents([1,0,4,8],12) [1, 1, 3, 4, 3] sage: Compositions().from_descents([1,0,4,8,11]) [1, 1, 3, 4, 3]
>>> from sage.all import * >>> [x-Integer(1) for x in Composition([Integer(1), Integer(1), Integer(3), Integer(4), Integer(3)]).to_subset()] [0, 1, 4, 8] >>> Compositions().from_descents([Integer(1),Integer(0),Integer(4),Integer(8)],Integer(12)) [1, 1, 3, 4, 3] >>> Compositions().from_descents([Integer(1),Integer(0),Integer(4),Integer(8),Integer(11)]) [1, 1, 3, 4, 3]
- from_subset(S, n)[source]¶
The composition of \(n\) corresponding to the subset
S
of \(\{1, 2, \ldots, n-1\}\) under the bijection that maps the composition \((i_1, i_2, \ldots, i_k)\) of \(n\) to the subset \(\{i_1, i_1 + i_2, i_1 + i_2 + i_3, \ldots, i_1 + \cdots + i_{k-1}\}\) (seeComposition.to_subset()
).INPUT:
S
– an iterable, a subset of \(\{1, 2, \ldots, n-1\}\)n
– integer
EXAMPLES:
sage: Compositions().from_subset([2,1,5,9], 12) [1, 1, 3, 4, 3] sage: Compositions().from_subset({2,1,5,9}, 12) [1, 1, 3, 4, 3] sage: Compositions().from_subset([], 12) [12] sage: Compositions().from_subset([], 0) []
>>> from sage.all import * >>> Compositions().from_subset([Integer(2),Integer(1),Integer(5),Integer(9)], Integer(12)) [1, 1, 3, 4, 3] >>> Compositions().from_subset({Integer(2),Integer(1),Integer(5),Integer(9)}, Integer(12)) [1, 1, 3, 4, 3] >>> Compositions().from_subset([], Integer(12)) [12] >>> Compositions().from_subset([], Integer(0)) []
- class sage.combinat.composition.Compositions_all[source]¶
Bases:
Compositions
Class of all compositions.
- subset(size=None)[source]¶
Return the set of compositions of the given size.
EXAMPLES:
sage: C = Compositions() sage: C.subset(4) Compositions of 4 sage: C.subset(size=3) Compositions of 3
>>> from sage.all import * >>> C = Compositions() >>> C.subset(Integer(4)) Compositions of 4 >>> C.subset(size=Integer(3)) Compositions of 3
- class sage.combinat.composition.Compositions_constraints(*args, **kwds)[source]¶
Bases:
IntegerListsLex
- class sage.combinat.composition.Compositions_n(n)[source]¶
Bases:
Compositions
Class of compositions of a fixed \(n\).
- random_element()[source]¶
Return a random
Composition
with uniform probability.This method generates a random binary word starting with a 1 and then uses the bijection between compositions and their code.
EXAMPLES:
sage: Compositions(5).random_element() # random [2, 1, 1, 1] sage: Compositions(0).random_element() [] sage: Compositions(1).random_element() [1]
>>> from sage.all import * >>> Compositions(Integer(5)).random_element() # random [2, 1, 1, 1] >>> Compositions(Integer(0)).random_element() [] >>> Compositions(Integer(1)).random_element() [1]