Weyl Character Rings#

class sage.combinat.root_system.weyl_characters.WeightRing(parent, prefix)[source]#

Bases: CombinatorialFreeModule

The weight ring, which is the group algebra over a weight lattice.

A Weyl character may be regarded as an element of the weight ring. In fact, an element of the weight ring is an element of the Weyl character ring if and only if it is invariant under the action of the Weyl group.

The advantage of the weight ring over the Weyl character ring is that one may conduct calculations in the weight ring that involve sums of weights that are not Weyl group invariant.

EXAMPLES:

sage: A2 = WeylCharacterRing(['A',2])
sage: a2 = WeightRing(A2)
sage: wd = prod(a2(x/2)-a2(-x/2) for x in a2.space().positive_roots()); wd
a2(-1,1,0) - a2(-1,0,1) - a2(1,-1,0) + a2(1,0,-1) + a2(0,-1,1) - a2(0,1,-1)
sage: chi = A2([5,3,0]); chi
A2(5,3,0)
sage: a2(chi)
a2(1,2,5) + 2*a2(1,3,4) + 2*a2(1,4,3) + a2(1,5,2) + a2(2,1,5)
+ 2*a2(2,2,4) + 3*a2(2,3,3) + 2*a2(2,4,2) + a2(2,5,1) + 2*a2(3,1,4)
+ 3*a2(3,2,3) + 3*a2(3,3,2) + 2*a2(3,4,1) + a2(3,5,0) + a2(3,0,5)
+ 2*a2(4,1,3) + 2*a2(4,2,2) + 2*a2(4,3,1) + a2(4,4,0) + a2(4,0,4)
+ a2(5,1,2) + a2(5,2,1) + a2(5,3,0) + a2(5,0,3) + a2(0,3,5)
+ a2(0,4,4) + a2(0,5,3)
sage: a2(chi)*wd
-a2(-1,3,6) + a2(-1,6,3) + a2(3,-1,6) - a2(3,6,-1) - a2(6,-1,3) + a2(6,3,-1)
sage: sum((-1)^w.length()*a2([6,3,-1]).weyl_group_action(w) for w in a2.space().weyl_group())
-a2(-1,3,6) + a2(-1,6,3) + a2(3,-1,6) - a2(3,6,-1) - a2(6,-1,3) + a2(6,3,-1)
sage: a2(chi)*wd == sum((-1)^w.length()*a2([6,3,-1]).weyl_group_action(w) for w in a2.space().weyl_group())
True
>>> from sage.all import *
>>> A2 = WeylCharacterRing(['A',Integer(2)])
>>> a2 = WeightRing(A2)
>>> wd = prod(a2(x/Integer(2))-a2(-x/Integer(2)) for x in a2.space().positive_roots()); wd
a2(-1,1,0) - a2(-1,0,1) - a2(1,-1,0) + a2(1,0,-1) + a2(0,-1,1) - a2(0,1,-1)
>>> chi = A2([Integer(5),Integer(3),Integer(0)]); chi
A2(5,3,0)
>>> a2(chi)
a2(1,2,5) + 2*a2(1,3,4) + 2*a2(1,4,3) + a2(1,5,2) + a2(2,1,5)
+ 2*a2(2,2,4) + 3*a2(2,3,3) + 2*a2(2,4,2) + a2(2,5,1) + 2*a2(3,1,4)
+ 3*a2(3,2,3) + 3*a2(3,3,2) + 2*a2(3,4,1) + a2(3,5,0) + a2(3,0,5)
+ 2*a2(4,1,3) + 2*a2(4,2,2) + 2*a2(4,3,1) + a2(4,4,0) + a2(4,0,4)
+ a2(5,1,2) + a2(5,2,1) + a2(5,3,0) + a2(5,0,3) + a2(0,3,5)
+ a2(0,4,4) + a2(0,5,3)
>>> a2(chi)*wd
-a2(-1,3,6) + a2(-1,6,3) + a2(3,-1,6) - a2(3,6,-1) - a2(6,-1,3) + a2(6,3,-1)
>>> sum((-Integer(1))**w.length()*a2([Integer(6),Integer(3),-Integer(1)]).weyl_group_action(w) for w in a2.space().weyl_group())
-a2(-1,3,6) + a2(-1,6,3) + a2(3,-1,6) - a2(3,6,-1) - a2(6,-1,3) + a2(6,3,-1)
>>> a2(chi)*wd == sum((-Integer(1))**w.length()*a2([Integer(6),Integer(3),-Integer(1)]).weyl_group_action(w) for w in a2.space().weyl_group())
True
class Element[source]#

Bases: IndexedFreeModuleElement

A class for weight ring elements.

cartan_type()[source]#

Return the Cartan type.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2([0,1,0]).cartan_type()
['A', 2]
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> a2 = WeightRing(A2)
>>> a2([Integer(0),Integer(1),Integer(0)]).cartan_type()
['A', 2]
character()[source]#

Assuming that self is invariant under the Weyl group, this will express it as a linear combination of characters. If self is not Weyl group invariant, this method will not terminate.

EXAMPLES:

sage: A2 = WeylCharacterRing(['A',2])
sage: a2 = WeightRing(A2)
sage: W = a2.space().weyl_group()
sage: mu = a2(2,1,0)
sage: nu = sum(mu.weyl_group_action(w) for w in W) ; nu
a2(1,2,0) + a2(1,0,2) + a2(2,1,0) + a2(2,0,1) + a2(0,1,2) + a2(0,2,1)
sage: nu.character()
-2*A2(1,1,1) + A2(2,1,0)
>>> from sage.all import *
>>> A2 = WeylCharacterRing(['A',Integer(2)])
>>> a2 = WeightRing(A2)
>>> W = a2.space().weyl_group()
>>> mu = a2(Integer(2),Integer(1),Integer(0))
>>> nu = sum(mu.weyl_group_action(w) for w in W) ; nu
a2(1,2,0) + a2(1,0,2) + a2(2,1,0) + a2(2,0,1) + a2(0,1,2) + a2(0,2,1)
>>> nu.character()
-2*A2(1,1,1) + A2(2,1,0)
demazure(w, debug=False)[source]#

Return the result of applying the Demazure operator \(\partial_w\) to self.

INPUT:

  • w – a Weyl group element, or its reduced word

If \(w = s_i\) is a simple reflection, the operation \(\partial_w\) sends the weight \(\lambda\) to

\[\frac{\lambda - s_i \cdot \lambda + \alpha_i}{1 + \alpha_i},\]

where the numerator is divisible the denominator in the weight ring. This is extended by multiplicativity to all \(w\) in the Weyl group.

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: b2 = WeightRing(B2)
sage: b2(1,0).demazure([1])
b2(1,0) + b2(-1,2)
sage: b2(1,0).demazure([2])
b2(1,0)
sage: r = b2(1,0).demazure([1,2]); r
b2(1,0) + b2(-1,2)
sage: r.demazure([1])
b2(1,0) + b2(-1,2)
sage: r.demazure([2])
b2(0,0) + b2(1,0) + b2(1,-2) + b2(-1,2)
>>> from sage.all import *
>>> B2 = WeylCharacterRing("B2",style="coroots")
>>> b2 = WeightRing(B2)
>>> b2(Integer(1),Integer(0)).demazure([Integer(1)])
b2(1,0) + b2(-1,2)
>>> b2(Integer(1),Integer(0)).demazure([Integer(2)])
b2(1,0)
>>> r = b2(Integer(1),Integer(0)).demazure([Integer(1),Integer(2)]); r
b2(1,0) + b2(-1,2)
>>> r.demazure([Integer(1)])
b2(1,0) + b2(-1,2)
>>> r.demazure([Integer(2)])
b2(0,0) + b2(1,0) + b2(1,-2) + b2(-1,2)
demazure_lusztig(i, v)[source]#

Return the result of applying the Demazure-Lusztig operator \(T_i\) to self.

INPUT:

  • i – an element of the index set (or a reduced word or Weyl group element)

  • v – an element of the base ring

If \(R\) is the parent WeightRing, the Demazure-Lusztig operator \(T_i\) is the linear map \(R \to R\) that sends (for a weight \(\lambda\)) \(R(\lambda)\) to

\[(R(\alpha_i)-1)^{-1} \bigl(R(\lambda) - R(s_i\lambda) - v(R(\lambda) - R(\alpha_i + s_i \lambda)) \bigr)\]

where the numerator is divisible by the denominator in \(R\). The Demazure-Lusztig operators give a representation of the Iwahori–Hecke algebra associated to the Weyl group. See

  • Lusztig, Equivariant \(K\)-theory and representations of Hecke algebras, Proc. Amer. Math. Soc. 94 (1985), no. 2, 337-342.

  • Cherednik, Nonsymmetric Macdonald polynomials. IMRN 10, 483-515 (1995).

In the examples, we confirm the braid and quadratic relations for type \(B_2\).

EXAMPLES:

sage: P.<v> = PolynomialRing(QQ)
sage: B2 = WeylCharacterRing("B2",style="coroots",base_ring=P); b2 = B2.ambient()
sage: def T1(f): return f.demazure_lusztig(1,v)
sage: def T2(f): return f.demazure_lusztig(2,v)
sage: T1(T2(T1(T2(b2(1,-1)))))
(v^2-v)*b2(0,-1) + v^2*b2(-1,1)
sage: [T1(T1(f))==(v-1)*T1(f)+v*f for f in [b2(0,0), b2(1,0), b2(2,3)]]
[True, True, True]
sage: [T1(T2(T1(T2(b2(i,j))))) == T2(T1(T2(T1(b2(i,j))))) for i in [-2..2] for j in [-1,1]]
[True, True, True, True, True, True, True, True, True, True]
>>> from sage.all import *
>>> P = PolynomialRing(QQ, names=('v',)); (v,) = P._first_ngens(1)
>>> B2 = WeylCharacterRing("B2",style="coroots",base_ring=P); b2 = B2.ambient()
>>> def T1(f): return f.demazure_lusztig(Integer(1),v)
>>> def T2(f): return f.demazure_lusztig(Integer(2),v)
>>> T1(T2(T1(T2(b2(Integer(1),-Integer(1))))))
(v^2-v)*b2(0,-1) + v^2*b2(-1,1)
>>> [T1(T1(f))==(v-Integer(1))*T1(f)+v*f for f in [b2(Integer(0),Integer(0)), b2(Integer(1),Integer(0)), b2(Integer(2),Integer(3))]]
[True, True, True]
>>> [T1(T2(T1(T2(b2(i,j))))) == T2(T1(T2(T1(b2(i,j))))) for i in (ellipsis_range(-Integer(2),Ellipsis,Integer(2))) for j in [-Integer(1),Integer(1)]]
[True, True, True, True, True, True, True, True, True, True]

Instead of an index \(i\) one may use a reduced word or Weyl group element:

sage: b2(1,0).demazure_lusztig([2,1],v)==T2(T1(b2(1,0)))
True
sage: W = B2.space().weyl_group(prefix="s")
sage: [s1,s2]=W.simple_reflections()
sage: b2(1,0).demazure_lusztig(s2*s1,v)==T2(T1(b2(1,0)))
True
>>> from sage.all import *
>>> b2(Integer(1),Integer(0)).demazure_lusztig([Integer(2),Integer(1)],v)==T2(T1(b2(Integer(1),Integer(0))))
True
>>> W = B2.space().weyl_group(prefix="s")
>>> [s1,s2]=W.simple_reflections()
>>> b2(Integer(1),Integer(0)).demazure_lusztig(s2*s1,v)==T2(T1(b2(Integer(1),Integer(0))))
True
scale(k)[source]#

Multiply a weight by \(k\).

The operation is extended by linearity to the weight ring.

INPUT:

  • k – a nonzero integer

EXAMPLES:

sage: g2 = WeylCharacterRing("G2",style="coroots").ambient()
sage: g2(2,3).scale(2)
g2(4,6)
>>> from sage.all import *
>>> g2 = WeylCharacterRing("G2",style="coroots").ambient()
>>> g2(Integer(2),Integer(3)).scale(Integer(2))
g2(4,6)
shift(mu)[source]#

Add \(\mu\) to any weight.

Extended by linearity to the weight ring.

INPUT:

  • mu – a weight

EXAMPLES:

sage: g2 = WeylCharacterRing("G2",style="coroots").ambient()
sage: [g2(1,2).shift(fw) for fw in g2.fundamental_weights()]
[g2(2,2), g2(1,3)]
>>> from sage.all import *
>>> g2 = WeylCharacterRing("G2",style="coroots").ambient()
>>> [g2(Integer(1),Integer(2)).shift(fw) for fw in g2.fundamental_weights()]
[g2(2,2), g2(1,3)]
weyl_group_action(w)[source]#

Return the action of the Weyl group element w on self.

EXAMPLES:

sage: G2 = WeylCharacterRing(['G',2])
sage: g2 = WeightRing(G2)
sage: L = g2.space()
sage: [fw1, fw2] = L.fundamental_weights()
sage: sum(g2(fw2).weyl_group_action(w) for w in L.weyl_group())
2*g2(-2,1,1) + 2*g2(-1,-1,2) + 2*g2(-1,2,-1) + 2*g2(1,-2,1) + 2*g2(1,1,-2) + 2*g2(2,-1,-1)
>>> from sage.all import *
>>> G2 = WeylCharacterRing(['G',Integer(2)])
>>> g2 = WeightRing(G2)
>>> L = g2.space()
>>> [fw1, fw2] = L.fundamental_weights()
>>> sum(g2(fw2).weyl_group_action(w) for w in L.weyl_group())
2*g2(-2,1,1) + 2*g2(-1,-1,2) + 2*g2(-1,2,-1) + 2*g2(1,-2,1) + 2*g2(1,1,-2) + 2*g2(2,-1,-1)
cartan_type()[source]#

Return the Cartan type.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: WeightRing(A2).cartan_type()
['A', 2]
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> WeightRing(A2).cartan_type()
['A', 2]
fundamental_weights()[source]#

Return the fundamental weights.

EXAMPLES:

sage: WeightRing(WeylCharacterRing("G2")).fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}
>>> from sage.all import *
>>> WeightRing(WeylCharacterRing("G2")).fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}
one_basis()[source]#

Return the index of \(1\).

EXAMPLES:

sage: A3 = WeylCharacterRing("A3")
sage: WeightRing(A3).one_basis()
(0, 0, 0, 0)
sage: WeightRing(A3).one()
a3(0,0,0,0)
>>> from sage.all import *
>>> A3 = WeylCharacterRing("A3")
>>> WeightRing(A3).one_basis()
(0, 0, 0, 0)
>>> WeightRing(A3).one()
a3(0,0,0,0)
parent()[source]#

Return the parent Weyl character ring.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2.parent()
The Weyl Character Ring of Type A2 with Integer Ring coefficients
sage: a2.parent() == A2
True
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> a2 = WeightRing(A2)
>>> a2.parent()
The Weyl Character Ring of Type A2 with Integer Ring coefficients
>>> a2.parent() == A2
True
positive_roots()[source]#

Return the positive roots.

EXAMPLES:

sage: WeightRing(WeylCharacterRing("G2")).positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]
>>> from sage.all import *
>>> WeightRing(WeylCharacterRing("G2")).positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]
product_on_basis(a, b)[source]#

Return the product of basis elements indexed by a and b.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2(1,0,0) * a2(0,1,0) # indirect doctest
a2(1,1,0)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> a2 = WeightRing(A2)
>>> a2(Integer(1),Integer(0),Integer(0)) * a2(Integer(0),Integer(1),Integer(0)) # indirect doctest
a2(1,1,0)
simple_roots()[source]#

Return the simple roots.

EXAMPLES:

sage: WeightRing(WeylCharacterRing("G2")).simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}
>>> from sage.all import *
>>> WeightRing(WeylCharacterRing("G2")).simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}
some_elements()[source]#

Return some elements of self.

EXAMPLES:

sage: A3 = WeylCharacterRing("A3")
sage: a3 = WeightRing(A3)
sage: a3.some_elements()
[a3(1,0,0,0), a3(1,1,0,0), a3(1,1,1,0)]
>>> from sage.all import *
>>> A3 = WeylCharacterRing("A3")
>>> a3 = WeightRing(A3)
>>> a3.some_elements()
[a3(1,0,0,0), a3(1,1,0,0), a3(1,1,1,0)]
space()[source]#

Return the weight space realization associated to self.

EXAMPLES:

sage: E8 = WeylCharacterRing(['E',8])
sage: e8 = WeightRing(E8)
sage: e8.space()
Ambient space of the Root system of type ['E', 8]
>>> from sage.all import *
>>> E8 = WeylCharacterRing(['E',Integer(8)])
>>> e8 = WeightRing(E8)
>>> e8.space()
Ambient space of the Root system of type ['E', 8]
weyl_character_ring()[source]#

Return the parent Weyl Character Ring.

A synonym for self.parent().

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: a2.weyl_character_ring()
The Weyl Character Ring of Type A2 with Integer Ring coefficients
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> a2 = WeightRing(A2)
>>> a2.weyl_character_ring()
The Weyl Character Ring of Type A2 with Integer Ring coefficients
wt_repr(wt)[source]#

Return a string representing the irreducible character with highest weight vector wt.

Uses coroot notation if the associated Weyl character ring is defined with style="coroots".

EXAMPLES:

sage: G2 = WeylCharacterRing("G2")
sage: [G2.ambient().wt_repr(x) for x in G2.fundamental_weights()]
['g2(1,0,-1)', 'g2(2,-1,-1)']
sage: G2 = WeylCharacterRing("G2",style="coroots")
sage: [G2.ambient().wt_repr(x) for x in G2.fundamental_weights()]
['g2(1,0)', 'g2(0,1)']
>>> from sage.all import *
>>> G2 = WeylCharacterRing("G2")
>>> [G2.ambient().wt_repr(x) for x in G2.fundamental_weights()]
['g2(1,0,-1)', 'g2(2,-1,-1)']
>>> G2 = WeylCharacterRing("G2",style="coroots")
>>> [G2.ambient().wt_repr(x) for x in G2.fundamental_weights()]
['g2(1,0)', 'g2(0,1)']
class sage.combinat.root_system.weyl_characters.WeylCharacterRing(ct, base_ring=Integer Ring, prefix=None, style='lattice', k=None, conjugate=False, cyclotomic_order=None, fusion_labels=None, inject_variables=False)[source]#

Bases: CombinatorialFreeModule

A class for rings of Weyl characters.

Let \(K\) be a compact Lie group, which we assume is semisimple and simply-connected. Its complexified Lie algebra \(L\) is the Lie algebra of a complex analytic Lie group \(G\). The following three categories are equivalent: finite-dimensional representations of \(K\); finite-dimensional representations of \(L\); and finite-dimensional analytic representations of \(G\). In every case, there is a parametrization of the irreducible representations by their highest weight vectors. For this theory of Weyl, see (for example):

  • Adams, Lectures on Lie groups

  • Broecker and Tom Dieck, Representations of Compact Lie groups

  • Bump, Lie Groups

  • Fulton and Harris, Representation Theory

  • Goodman and Wallach, Representations and Invariants of the Classical Groups

  • Hall, Lie Groups, Lie Algebras and Representations

  • Humphreys, Introduction to Lie Algebras and their representations

  • Procesi, Lie Groups

  • Samelson, Notes on Lie Algebras

  • Varadarajan, Lie groups, Lie algebras, and their representations

  • Zhelobenko, Compact Lie Groups and their Representations.

Computations that you can do with these include computing their weight multiplicities, products (thus decomposing the tensor product of a representation into irreducibles) and branching rules (restriction to a smaller group).

There is associated with \(K\), \(L\) or \(G\) as above a lattice, the weight lattice, whose elements (called weights) are characters of a Cartan subgroup or subalgebra. There is an action of the Weyl group \(W\) on the lattice, and elements of a fixed fundamental domain for \(W\), the positive Weyl chamber, are called dominant. There is for each representation a unique highest dominant weight that occurs with nonzero multiplicity with respect to a certain partial order, and it is called the highest weight vector.

EXAMPLES:

sage: L = RootSystem("A2").ambient_space()
sage: [fw1,fw2] = L.fundamental_weights()
sage: R = WeylCharacterRing(['A',2], prefix="R")
sage: [R(1),R(fw1),R(fw2)]
[R(0,0,0), R(1,0,0), R(1,1,0)]
>>> from sage.all import *
>>> L = RootSystem("A2").ambient_space()
>>> [fw1,fw2] = L.fundamental_weights()
>>> R = WeylCharacterRing(['A',Integer(2)], prefix="R")
>>> [R(Integer(1)),R(fw1),R(fw2)]
[R(0,0,0), R(1,0,0), R(1,1,0)]

Here R(1), R(fw1), and R(fw2) are irreducible representations with highest weight vectors \(0\), \(\Lambda_1\), and \(\Lambda_2\) respectively (the first two fundamental weights).

For type \(A\) (also \(G_2\), \(F_4\), \(E_6\) and \(E_7\)) we will take as the weight lattice not the weight lattice of the semisimple group, but for a larger one. For type \(A\), this means we are concerned with the representation theory of \(K = U(n)\) or \(G = GL(n, \CC)\) rather than \(SU(n)\) or \(SU(n, \CC)\). This is useful since the representation theory of \(GL(n)\) is ubiquitous, and also since we may then represent the fundamental weights (in sage.combinat.root_system.root_system) by vectors with integer entries. If you are only interested in \(SL(3)\), say, use WeylCharacterRing(['A',2]) as above but be aware that R([a,b,c]) and R([a+1,b+1,c+1]) represent the same character of \(SL(3)\) since R([1,1,1]) is the determinant.

For more information, see the thematic tutorial Lie Methods and Related Combinatorics in Sage, available at:

https://doc.sagemath.org/html/en/thematic_tutorials/lie.html

class Element[source]#

Bases: IndexedFreeModuleElement

A class for Weyl characters.

adams_operation(r)[source]#

Return the \(r\)-th Adams operation of self.

INPUT:

  • r – a positive integer

This is a virtual character, whose weights are the weights of self, each multiplied by \(r\).

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2(1,1,0).adams_operator(3)
A2(2,2,2) - A2(3,2,1) + A2(3,3,0)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> A2(Integer(1),Integer(1),Integer(0)).adams_operator(Integer(3))
A2(2,2,2) - A2(3,2,1) + A2(3,3,0)
adams_operator(r)[source]#

Return the \(r\)-th Adams operation of self.

INPUT:

  • r – a positive integer

This is a virtual character, whose weights are the weights of self, each multiplied by \(r\).

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2(1,1,0).adams_operator(3)
A2(2,2,2) - A2(3,2,1) + A2(3,3,0)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> A2(Integer(1),Integer(1),Integer(0)).adams_operator(Integer(3))
A2(2,2,2) - A2(3,2,1) + A2(3,3,0)
branch(S, rule='default')[source]#

Return the restriction of the character to the subalgebra.

If no rule is specified, we will try to specify one.

INPUT:

  • S – a Weyl character ring for a Lie subgroup or subalgebra

  • rule – a branching rule

See branch_weyl_character() for more information about branching rules.

EXAMPLES:

sage: B3 = WeylCharacterRing(['B',3])
sage: A2 = WeylCharacterRing(['A',2])
sage: [B3(w).branch(A2,rule="levi") for w in B3.fundamental_weights()]
[A2(0,0,0) + A2(1,0,0) + A2(0,0,-1),
A2(0,0,0) + A2(1,0,0) + A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1) + A2(0,0,-1),
A2(-1/2,-1/2,-1/2) + A2(1/2,-1/2,-1/2) + A2(1/2,1/2,-1/2) + A2(1/2,1/2,1/2)]
>>> from sage.all import *
>>> B3 = WeylCharacterRing(['B',Integer(3)])
>>> A2 = WeylCharacterRing(['A',Integer(2)])
>>> [B3(w).branch(A2,rule="levi") for w in B3.fundamental_weights()]
[A2(0,0,0) + A2(1,0,0) + A2(0,0,-1),
A2(0,0,0) + A2(1,0,0) + A2(1,1,0) + A2(1,0,-1) + A2(0,-1,-1) + A2(0,0,-1),
A2(-1/2,-1/2,-1/2) + A2(1/2,-1/2,-1/2) + A2(1/2,1/2,-1/2) + A2(1/2,1/2,1/2)]
cartan_type()[source]#

Return the Cartan type of self.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2([1,0,0]).cartan_type()
['A', 2]
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> A2([Integer(1),Integer(0),Integer(0)]).cartan_type()
['A', 2]
degree()[source]#

Return the degree of self.

This is the dimension of the associated module.

EXAMPLES:

sage: B3 = WeylCharacterRing(['B',3])
sage: [B3(x).degree() for x in B3.fundamental_weights()]
[7, 21, 8]
>>> from sage.all import *
>>> B3 = WeylCharacterRing(['B',Integer(3)])
>>> [B3(x).degree() for x in B3.fundamental_weights()]
[7, 21, 8]
dual()[source]#

The involution that replaces a representation with its contragredient. (For Fusion rings, this is the conjugation map.)

EXAMPLES:

sage: A3 = WeylCharacterRing("A3", style="coroots")
sage: A3(1,0,0)^2
A3(0,1,0) + A3(2,0,0)
sage: (A3(1,0,0)^2).dual()
A3(0,1,0) + A3(0,0,2)
>>> from sage.all import *
>>> A3 = WeylCharacterRing("A3", style="coroots")
>>> A3(Integer(1),Integer(0),Integer(0))**Integer(2)
A3(0,1,0) + A3(2,0,0)
>>> (A3(Integer(1),Integer(0),Integer(0))**Integer(2)).dual()
A3(0,1,0) + A3(0,0,2)
exterior_power(k)[source]#

Return the \(k\)-th exterior power of self.

INPUT:

  • k – a nonnegative integer

The algorithm is based on the identity \(k e_k = \sum_{r=1}^k (-1)^{k-1} p_k e_{k-r}\) relating the power-sum and elementary symmetric polynomials. Applying this to the eigenvalues of an element of the parent Lie group in the representation self, the \(e_k\) become exterior powers and the \(p_k\) become Adams operations, giving an efficient recursive implementation.

EXAMPLES:

sage: B3 = WeylCharacterRing("B3",style="coroots")
sage: spin = B3(0,0,1)
sage: spin.exterior_power(6)
B3(1,0,0) + B3(0,1,0)
>>> from sage.all import *
>>> B3 = WeylCharacterRing("B3",style="coroots")
>>> spin = B3(Integer(0),Integer(0),Integer(1))
>>> spin.exterior_power(Integer(6))
B3(1,0,0) + B3(0,1,0)
exterior_square()[source]#

Return the exterior square of the character.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: A2(1,0).exterior_square()
A2(0,1)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2",style="coroots")
>>> A2(Integer(1),Integer(0)).exterior_square()
A2(0,1)
frobenius_schur_indicator()[source]#

Return:

  • \(1\) if the representation is real (orthogonal)

  • \(-1\) if the representation is quaternionic (symplectic)

  • \(0\) if the representation is complex (not self dual)

The Frobenius-Schur indicator of a character \(\chi\) of a compact group \(G\) is the Haar integral over the group of \(\chi(g^2)\). Its value is 1, -1 or 0. This method computes it for irreducible characters of compact Lie groups by checking whether the symmetric and exterior square characters contain the trivial character.

Todo

Try to compute this directly without actually calculating the full symmetric and exterior squares.

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: B2(1,0).frobenius_schur_indicator()
 1
sage: B2(0,1).frobenius_schur_indicator()
 -1
>>> from sage.all import *
>>> B2 = WeylCharacterRing("B2",style="coroots")
>>> B2(Integer(1),Integer(0)).frobenius_schur_indicator()
 1
>>> B2(Integer(0),Integer(1)).frobenius_schur_indicator()
 -1
highest_weight()[source]#

Return the parametrizing dominant weight of an irreducible character.

This method is only available for basis elements.

EXAMPLES:

sage: G2 = WeylCharacterRing("G2", style="coroots")
sage: [x.highest_weight() for x in [G2(1,0),G2(0,1)]]
[(1, 0, -1), (2, -1, -1)]
>>> from sage.all import *
>>> G2 = WeylCharacterRing("G2", style="coroots")
>>> [x.highest_weight() for x in [G2(Integer(1),Integer(0)),G2(Integer(0),Integer(1))]]
[(1, 0, -1), (2, -1, -1)]
inner_product(other)[source]#

Compute the inner product with another character.

The irreducible characters are an orthonormal basis with respect to the usual inner product of characters, interpreted as functions on a compact Lie group, by Schur orthogonality.

INPUT:

  • other – another character

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: [f1,f2] = A2.fundamental_weights()
sage: r1 = A2(f1)*A2(f2); r1
A2(1,1,1) + A2(2,1,0)
sage: r2 = A2(f1)^3; r2
A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0)
sage: r1.inner_product(r2)
3
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> [f1,f2] = A2.fundamental_weights()
>>> r1 = A2(f1)*A2(f2); r1
A2(1,1,1) + A2(2,1,0)
>>> r2 = A2(f1)**Integer(3); r2
A2(1,1,1) + 2*A2(2,1,0) + A2(3,0,0)
>>> r1.inner_product(r2)
3
invariant_degree()[source]#

Return the multiplicity of the trivial representation in self.

Multiplicities of other irreducibles may be obtained using multiplicity().

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: rep = A2(1,0)^2*A2(0,1)^2; rep
2*A2(0,0) + A2(0,3) + 4*A2(1,1) + A2(3,0) + A2(2,2)
sage: rep.invariant_degree()
2
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2",style="coroots")
>>> rep = A2(Integer(1),Integer(0))**Integer(2)*A2(Integer(0),Integer(1))**Integer(2); rep
2*A2(0,0) + A2(0,3) + 4*A2(1,1) + A2(3,0) + A2(2,2)
>>> rep.invariant_degree()
2
is_irreducible()[source]#

Return whether self is an irreducible character.

EXAMPLES:

sage: B3 = WeylCharacterRing(['B',3])
sage: [B3(x).is_irreducible() for x in B3.fundamental_weights()]
[True, True, True]
sage: sum(B3(x) for x in B3.fundamental_weights()).is_irreducible()
False
>>> from sage.all import *
>>> B3 = WeylCharacterRing(['B',Integer(3)])
>>> [B3(x).is_irreducible() for x in B3.fundamental_weights()]
[True, True, True]
>>> sum(B3(x) for x in B3.fundamental_weights()).is_irreducible()
False
multiplicity(other)[source]#

Return the multiplicity of the irreducible other in self.

INPUT:

  • other – an irreducible character

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: rep = B2(1,1)^2; rep
B2(0,0) + B2(1,0) + 2*B2(0,2) + B2(2,0) + 2*B2(1,2) + B2(0,4) + B2(3,0) + B2(2,2)
sage: rep.multiplicity(B2(0,2))
2
>>> from sage.all import *
>>> B2 = WeylCharacterRing("B2",style="coroots")
>>> rep = B2(Integer(1),Integer(1))**Integer(2); rep
B2(0,0) + B2(1,0) + 2*B2(0,2) + B2(2,0) + 2*B2(1,2) + B2(0,4) + B2(3,0) + B2(2,2)
>>> rep.multiplicity(B2(Integer(0),Integer(2)))
2
symmetric_power(k)[source]#

Return the \(k\)-th symmetric power of self.

INPUT:

  • \(k\) – a nonnegative integer

The algorithm is based on the identity \(k h_k = \sum_{r=1}^k p_k h_{k-r}\) relating the power-sum and complete symmetric polynomials. Applying this to the eigenvalues of an element of the parent Lie group in the representation self, the \(h_k\) become symmetric powers and the \(p_k\) become Adams operations, giving an efficient recursive implementation.

EXAMPLES:

sage: B3 = WeylCharacterRing("B3",style="coroots")
sage: spin = B3(0,0,1)
sage: spin.symmetric_power(6)
B3(0,0,0) + B3(0,0,2) + B3(0,0,4) + B3(0,0,6)
>>> from sage.all import *
>>> B3 = WeylCharacterRing("B3",style="coroots")
>>> spin = B3(Integer(0),Integer(0),Integer(1))
>>> spin.symmetric_power(Integer(6))
B3(0,0,0) + B3(0,0,2) + B3(0,0,4) + B3(0,0,6)
symmetric_square()[source]#

Return the symmetric square of the character.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: A2(1,0).symmetric_square()
A2(2,0)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2",style="coroots")
>>> A2(Integer(1),Integer(0)).symmetric_square()
A2(2,0)
weight_multiplicities()[source]#

Return the dictionary of weight multiplicities for the Weyl character self.

The character does not have to be irreducible.

EXAMPLES:

sage: B2 = WeylCharacterRing("B2",style="coroots")
sage: B2(0,1).weight_multiplicities()
{(-1/2, -1/2): 1, (-1/2, 1/2): 1, (1/2, -1/2): 1, (1/2, 1/2): 1}
>>> from sage.all import *
>>> B2 = WeylCharacterRing("B2",style="coroots")
>>> B2(Integer(0),Integer(1)).weight_multiplicities()
{(-1/2, -1/2): 1, (-1/2, 1/2): 1, (1/2, -1/2): 1, (1/2, 1/2): 1}
adjoint_representation()[source]#

Return the adjoint representation as an element of the WeylCharacterRing.

EXAMPLES:

sage: G2 = WeylCharacterRing("G2",style="coroots")
sage: G2.adjoint_representation()
G2(0,1)
>>> from sage.all import *
>>> G2 = WeylCharacterRing("G2",style="coroots")
>>> G2.adjoint_representation()
G2(0,1)
affine_reflect(wt, k=0)[source]#

Return the reflection of wt in the hyperplane \(\theta\).

Optionally, this also shifts by a multiple \(k\) of \(\theta\).

INPUT:

  • wt – a weight

  • k – (optional) a positive integer

EXAMPLES:

sage: B22 = FusionRing("B2",2)
sage: fw = B22.fundamental_weights(); fw
Finite family {1: (1, 0), 2: (1/2, 1/2)}
sage: [B22.affine_reflect(x,2) for x in fw]
[(2, 1), (3/2, 3/2)]
>>> from sage.all import *
>>> B22 = FusionRing("B2",Integer(2))
>>> fw = B22.fundamental_weights(); fw
Finite family {1: (1, 0), 2: (1/2, 1/2)}
>>> [B22.affine_reflect(x,Integer(2)) for x in fw]
[(2, 1), (3/2, 3/2)]
ambient()[source]#

Return the weight ring of self.

EXAMPLES:

sage: WeylCharacterRing("A2").ambient()
The Weight ring attached to The Weyl Character Ring of Type A2 with Integer Ring coefficients
>>> from sage.all import *
>>> WeylCharacterRing("A2").ambient()
The Weight ring attached to The Weyl Character Ring of Type A2 with Integer Ring coefficients
base_ring()[source]#

Return the base ring of self.

EXAMPLES:

sage: R = WeylCharacterRing(['A',3], base_ring = CC); R.base_ring()
Complex Field with 53 bits of precision
>>> from sage.all import *
>>> R = WeylCharacterRing(['A',Integer(3)], base_ring = CC); R.base_ring()
Complex Field with 53 bits of precision
cartan_type()[source]#

Return the Cartan type of self.

EXAMPLES:

sage: WeylCharacterRing("A2").cartan_type()
['A', 2]
>>> from sage.all import *
>>> WeylCharacterRing("A2").cartan_type()
['A', 2]
char_from_weights(mdict)[source]#

Construct a Weyl character from an invariant linear combination of weights.

INPUT:

  • mdict – a dictionary mapping weights to coefficients, and representing a linear combination of weights which shall be invariant under the action of the Weyl group

OUTPUT: the corresponding Weyl character

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: v = A2._space([3,1,0]); v
(3, 1, 0)
sage: d = dict([(x,1) for x in v.orbit()]); d
{(1, 3, 0): 1,
 (1, 0, 3): 1,
 (3, 1, 0): 1,
 (3, 0, 1): 1,
 (0, 1, 3): 1,
 (0, 3, 1): 1}
sage: A2.char_from_weights(d)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> v = A2._space([Integer(3),Integer(1),Integer(0)]); v
(3, 1, 0)
>>> d = dict([(x,Integer(1)) for x in v.orbit()]); d
{(1, 3, 0): 1,
 (1, 0, 3): 1,
 (3, 1, 0): 1,
 (3, 0, 1): 1,
 (0, 1, 3): 1,
 (0, 3, 1): 1}
>>> A2.char_from_weights(d)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
demazure_character(hwv, word, debug=False)[source]#

Compute the Demazure character.

INPUT:

  • hwv – a (usually dominant) weight

  • word – a Weyl group word

Produces the Demazure character with highest weight hwv and word as an element of the weight ring. Only available if style="coroots". The Demazure operators are also available as methods of WeightRing elements, and as methods of crystals. Given a CrystalOfTableaux with given highest weight vector, the Demazure method on the crystal will give the equivalent of this method, except that the Demazure character of the crystal is given as a sum of monomials instead of an element of the WeightRing.

See WeightRing.Element.demazure() and sage.categories.classical_crystals.ClassicalCrystals.ParentMethods.demazure_character()

EXAMPLES:

sage: A2 = WeylCharacterRing("A2",style="coroots")
sage: h = sum(A2.fundamental_weights()); h
(2, 1, 0)
sage: A2.demazure_character(h,word=[1,2])
a2(0,0) + a2(-2,1) + a2(2,-1) + a2(1,1) + a2(-1,2)
sage: A2.demazure_character((1,1),word=[1,2])
a2(0,0) + a2(-2,1) + a2(2,-1) + a2(1,1) + a2(-1,2)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2",style="coroots")
>>> h = sum(A2.fundamental_weights()); h
(2, 1, 0)
>>> A2.demazure_character(h,word=[Integer(1),Integer(2)])
a2(0,0) + a2(-2,1) + a2(2,-1) + a2(1,1) + a2(-1,2)
>>> A2.demazure_character((Integer(1),Integer(1)),word=[Integer(1),Integer(2)])
a2(0,0) + a2(-2,1) + a2(2,-1) + a2(1,1) + a2(-1,2)
dot_reduce(a)[source]#

Auxiliary function for product_on_basis().

Return a pair \([\epsilon, b]\) where \(b\) is a dominant weight and \(\epsilon\) is 0, 1 or -1. To describe \(b\), let \(w\) be an element of the Weyl group such that \(w(a + \rho)\) is dominant. If \(w(a + \rho) - \rho\) is dominant, then \(\epsilon\) is the sign of \(w\) and \(b\) is \(w(a + \rho) - \rho\). Otherwise, \(\epsilon\) is zero.

INPUT:

  • a – a weight

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: weights = sorted(A2(2,1,0).weight_multiplicities().keys(), key=str); weights
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
sage: [A2.dot_reduce(x) for x in weights]
[[0, (0, 0, 0)], [-1, (1, 1, 1)], [-1, (1, 1, 1)], [1, (1, 1, 1)], [0, (0, 0, 0)], [0, (0, 0, 0)], [1, (2, 1, 0)]]
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> weights = sorted(A2(Integer(2),Integer(1),Integer(0)).weight_multiplicities().keys(), key=str); weights
[(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)]
>>> [A2.dot_reduce(x) for x in weights]
[[0, (0, 0, 0)], [-1, (1, 1, 1)], [-1, (1, 1, 1)], [1, (1, 1, 1)], [0, (0, 0, 0)], [0, (0, 0, 0)], [1, (2, 1, 0)]]
dynkin_diagram()[source]#

Return the Dynkin diagram of self.

EXAMPLES:

sage: WeylCharacterRing("E7").dynkin_diagram()
        O 2
        |
        |
O---O---O---O---O---O
1   3   4   5   6   7
E7
>>> from sage.all import *
>>> WeylCharacterRing("E7").dynkin_diagram()
        O 2
        |
        |
O---O---O---O---O---O
1   3   4   5   6   7
E7
extended_dynkin_diagram()[source]#

Return the extended Dynkin diagram, which is the Dynkin diagram of the corresponding untwisted affine type.

EXAMPLES:

sage: WeylCharacterRing("E7").extended_dynkin_diagram()
            O 2
            |
            |
O---O---O---O---O---O---O
0   1   3   4   5   6   7
E7~
>>> from sage.all import *
>>> WeylCharacterRing("E7").extended_dynkin_diagram()
            O 2
            |
            |
O---O---O---O---O---O---O
0   1   3   4   5   6   7
E7~
fundamental_weights()[source]#

Return the fundamental weights.

EXAMPLES:

sage: WeylCharacterRing("G2").fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}
>>> from sage.all import *
>>> WeylCharacterRing("G2").fundamental_weights()
Finite family {1: (1, 0, -1), 2: (2, -1, -1)}
highest_root()[source]#

Return the highest root.

EXAMPLES:

sage: WeylCharacterRing("G2").highest_root()
 (2, -1, -1)
>>> from sage.all import *
>>> WeylCharacterRing("G2").highest_root()
 (2, -1, -1)
irr_repr(hwv)[source]#

Return a string representing the irreducible character with highest weight vector hwv.

EXAMPLES:

sage: B3 = WeylCharacterRing("B3")
sage: [B3.irr_repr(v) for v in B3.fundamental_weights()]
['B3(1,0,0)', 'B3(1,1,0)', 'B3(1/2,1/2,1/2)']
sage: B3 = WeylCharacterRing("B3", style="coroots")
sage: [B3.irr_repr(v) for v in B3.fundamental_weights()]
['B3(1,0,0)', 'B3(0,1,0)', 'B3(0,0,1)']
>>> from sage.all import *
>>> B3 = WeylCharacterRing("B3")
>>> [B3.irr_repr(v) for v in B3.fundamental_weights()]
['B3(1,0,0)', 'B3(1,1,0)', 'B3(1/2,1/2,1/2)']
>>> B3 = WeylCharacterRing("B3", style="coroots")
>>> [B3.irr_repr(v) for v in B3.fundamental_weights()]
['B3(1,0,0)', 'B3(0,1,0)', 'B3(0,0,1)']
level(wt)[source]#

Return the level of the weight, defined to be the value of the weight on the coroot associated with the highest root.

EXAMPLES:

sage: R = FusionRing("F4",2); [R.level(x) for x in R.fundamental_weights()]
[2, 3, 2, 1]
sage: [CartanType("F4~").dual().a()[x] for x in [1..4]]
[2, 3, 2, 1]
>>> from sage.all import *
>>> R = FusionRing("F4",Integer(2)); [R.level(x) for x in R.fundamental_weights()]
[2, 3, 2, 1]
>>> [CartanType("F4~").dual().a()[x] for x in (ellipsis_range(Integer(1),Ellipsis,Integer(4)))]
[2, 3, 2, 1]
lift()[source]#

The embedding of self into its weight ring.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: A2.lift
Generic morphism:
  From: The Weyl Character Ring of Type A2 with Integer Ring coefficients
  To:   The Weight ring attached to The Weyl Character Ring of Type A2 with Integer Ring coefficients
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> A2.lift
Generic morphism:
  From: The Weyl Character Ring of Type A2 with Integer Ring coefficients
  To:   The Weight ring attached to The Weyl Character Ring of Type A2 with Integer Ring coefficients
sage: x = -A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
sage: A2.lift(x)
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
>>> from sage.all import *
>>> x = -A2(Integer(2),Integer(1),Integer(1)) - A2(Integer(2),Integer(2),Integer(0)) + A2(Integer(3),Integer(1),Integer(0))
>>> A2.lift(x)
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)

As a shortcut, you may also do:

sage: x.lift()
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
>>> from sage.all import *
>>> x.lift()
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)

Or even:

sage: a2 = WeightRing(A2)
sage: a2(x)
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
>>> from sage.all import *
>>> a2 = WeightRing(A2)
>>> a2(x)
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
lift_on_basis(irr)[source]#

Expand the basis element indexed by the weight irr into the weight ring of self.

INPUT:

  • irr – a dominant weight

This is used to implement lift().

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: v = A2._space([2,1,0]); v
(2, 1, 0)
sage: A2.lift_on_basis(v)
2*a2(1,1,1) + a2(1,2,0) + a2(1,0,2) + a2(2,1,0) + a2(2,0,1) + a2(0,1,2) + a2(0,2,1)
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> v = A2._space([Integer(2),Integer(1),Integer(0)]); v
(2, 1, 0)
>>> A2.lift_on_basis(v)
2*a2(1,1,1) + a2(1,2,0) + a2(1,0,2) + a2(2,1,0) + a2(2,0,1) + a2(0,1,2) + a2(0,2,1)

This is consistent with the analogous calculation with symmetric Schur functions:

sage: s = SymmetricFunctions(QQ).s()
sage: s[2,1].expand(3)
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
>>> from sage.all import *
>>> s = SymmetricFunctions(QQ).s()
>>> s[Integer(2),Integer(1)].expand(Integer(3))
x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2
maximal_subgroup(ct)[source]#

Return a branching rule or a list of branching rules.

INPUT:

  • ct – the Cartan type of a maximal subgroup of self.

In rare cases where there is more than one maximal subgroup (up to outer automorphisms) with the given Cartan type, the function returns a list of branching rules.

EXAMPLES:

sage: WeylCharacterRing("E7").maximal_subgroup("A2")
miscellaneous branching rule E7 => A2
sage: WeylCharacterRing("E7").maximal_subgroup("A1")
[iii branching rule E7 => A1, iv branching rule E7 => A1]
>>> from sage.all import *
>>> WeylCharacterRing("E7").maximal_subgroup("A2")
miscellaneous branching rule E7 => A2
>>> WeylCharacterRing("E7").maximal_subgroup("A1")
[iii branching rule E7 => A1, iv branching rule E7 => A1]

For more information, see the related method maximal_subgroups().

maximal_subgroups()[source]#

This method is only available if the Cartan type of self is irreducible and of rank no greater than 8. This method produces a list of the maximal subgroups of self, up to (possibly outer) automorphisms. Each line in the output gives the Cartan type of a maximal subgroup followed by a command that creates the branching rule.

EXAMPLES:

sage: WeylCharacterRing("E6").maximal_subgroups()
D5:branching_rule("E6","D5","levi")
C4:branching_rule("E6","C4","symmetric")
F4:branching_rule("E6","F4","symmetric")
A2:branching_rule("E6","A2","miscellaneous")
G2:branching_rule("E6","G2","miscellaneous")
A2xG2:branching_rule("E6","A2xG2","miscellaneous")
A1xA5:branching_rule("E6","A1xA5","extended")
A2xA2xA2:branching_rule("E6","A2xA2xA2","extended")
>>> from sage.all import *
>>> WeylCharacterRing("E6").maximal_subgroups()
D5:branching_rule("E6","D5","levi")
C4:branching_rule("E6","C4","symmetric")
F4:branching_rule("E6","F4","symmetric")
A2:branching_rule("E6","A2","miscellaneous")
G2:branching_rule("E6","G2","miscellaneous")
A2xG2:branching_rule("E6","A2xG2","miscellaneous")
A1xA5:branching_rule("E6","A1xA5","extended")
A2xA2xA2:branching_rule("E6","A2xA2xA2","extended")

Note that there are other embeddings of (for example \(A_2\) into \(E_6\) as nonmaximal subgroups. These embeddings may be constructed by composing branching rules through various subgroups.

Once you know which maximal subgroup you are interested in, to create the branching rule, you may either paste the command to the right of the colon from the above output onto the command line, or alternatively invoke the related method maximal_subgroup():

sage: branching_rule("E6","G2","miscellaneous")
miscellaneous branching rule E6 => G2
sage: WeylCharacterRing("E6").maximal_subgroup("G2")
miscellaneous branching rule E6 => G2
>>> from sage.all import *
>>> branching_rule("E6","G2","miscellaneous")
miscellaneous branching rule E6 => G2
>>> WeylCharacterRing("E6").maximal_subgroup("G2")
miscellaneous branching rule E6 => G2

It is believed that the list of maximal subgroups is complete, except that some subgroups may be not be invariant under outer automorphisms. It is reasonable to want a list of maximal subgroups that is complete up to conjugation, but to obtain such a list you may have to apply outer automorphisms. The group of outer automorphisms modulo inner automorphisms is isomorphic to the group of symmetries of the Dynkin diagram, and these are available as branching rules. The following example shows that while a branching rule from \(D_4\) to \(A_1\times C_2\) is supplied, another different one may be obtained by composing it with the triality automorphism of \(D_4\):

sage: [D4,A1xC2]=[WeylCharacterRing(x,style="coroots") for x in ["D4","A1xC2"]]
sage: fw = D4.fundamental_weights()
sage: b = D4.maximal_subgroup("A1xC2")
sage: [D4(fw).branch(A1xC2,rule=b) for fw in D4.fundamental_weights()]
[A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(2,0,1) + A1xC2(0,2,0),
A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(0,0,1)]
sage: b1 = branching_rule("D4","D4","triality")*b
sage: [D4(fw).branch(A1xC2,rule=b1) for fw in D4.fundamental_weights()]
[A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(2,0,1) + A1xC2(0,2,0),
A1xC2(2,0,0) + A1xC2(0,0,1),
A1xC2(1,1,0)]
>>> from sage.all import *
>>> [D4,A1xC2]=[WeylCharacterRing(x,style="coroots") for x in ["D4","A1xC2"]]
>>> fw = D4.fundamental_weights()
>>> b = D4.maximal_subgroup("A1xC2")
>>> [D4(fw).branch(A1xC2,rule=b) for fw in D4.fundamental_weights()]
[A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(2,0,1) + A1xC2(0,2,0),
A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(0,0,1)]
>>> b1 = branching_rule("D4","D4","triality")*b
>>> [D4(fw).branch(A1xC2,rule=b1) for fw in D4.fundamental_weights()]
[A1xC2(1,1,0),
A1xC2(2,0,0) + A1xC2(2,0,1) + A1xC2(0,2,0),
A1xC2(2,0,0) + A1xC2(0,0,1),
A1xC2(1,1,0)]
one_basis()[source]#

Return the index of 1 in self.

EXAMPLES:

sage: WeylCharacterRing("A3").one_basis()
(0, 0, 0, 0)
sage: WeylCharacterRing("A3").one()
A3(0,0,0,0)
>>> from sage.all import *
>>> WeylCharacterRing("A3").one_basis()
(0, 0, 0, 0)
>>> WeylCharacterRing("A3").one()
A3(0,0,0,0)
positive_roots()[source]#

Return the positive roots.

EXAMPLES:

sage: WeylCharacterRing("G2").positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]
>>> from sage.all import *
>>> WeylCharacterRing("G2").positive_roots()
[(0, 1, -1), (1, -2, 1), (1, -1, 0), (1, 0, -1), (1, 1, -2), (2, -1, -1)]
product_on_basis(a, b)[source]#

Compute the tensor product of two irreducible representations a and b.

EXAMPLES:

sage: D4 = WeylCharacterRing(['D',4])
sage: spin_plus = D4(1/2,1/2,1/2,1/2)
sage: spin_minus = D4(1/2,1/2,1/2,-1/2)
sage: spin_plus * spin_minus # indirect doctest
D4(1,0,0,0) + D4(1,1,1,0)
sage: spin_minus * spin_plus
D4(1,0,0,0) + D4(1,1,1,0)
>>> from sage.all import *
>>> D4 = WeylCharacterRing(['D',Integer(4)])
>>> spin_plus = D4(Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2))
>>> spin_minus = D4(Integer(1)/Integer(2),Integer(1)/Integer(2),Integer(1)/Integer(2),-Integer(1)/Integer(2))
>>> spin_plus * spin_minus # indirect doctest
D4(1,0,0,0) + D4(1,1,1,0)
>>> spin_minus * spin_plus
D4(1,0,0,0) + D4(1,1,1,0)

Uses the Brauer-Klimyk method.

rank()[source]#

Return the rank.

EXAMPLES:

sage: WeylCharacterRing("G2").rank()
2
>>> from sage.all import *
>>> WeylCharacterRing("G2").rank()
2
retract()[source]#

The partial inverse map from the weight ring into self.

EXAMPLES:

sage: A2 = WeylCharacterRing("A2")
sage: a2 = WeightRing(A2)
sage: A2.retract
Generic morphism:
  From: The Weight ring attached to The Weyl Character Ring of Type A2 with Integer Ring coefficients
  To:   The Weyl Character Ring of Type A2 with Integer Ring coefficients
>>> from sage.all import *
>>> A2 = WeylCharacterRing("A2")
>>> a2 = WeightRing(A2)
>>> A2.retract
Generic morphism:
  From: The Weight ring attached to The Weyl Character Ring of Type A2 with Integer Ring coefficients
  To:   The Weyl Character Ring of Type A2 with Integer Ring coefficients
sage: v = A2._space([3,1,0]); v
(3, 1, 0)
sage: chi = a2.sum_of_monomials(v.orbit()); chi
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
sage: A2.retract(chi)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
>>> from sage.all import *
>>> v = A2._space([Integer(3),Integer(1),Integer(0)]); v
(3, 1, 0)
>>> chi = a2.sum_of_monomials(v.orbit()); chi
a2(1,3,0) + a2(1,0,3) + a2(3,1,0) + a2(3,0,1) + a2(0,1,3) + a2(0,3,1)
>>> A2.retract(chi)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)

The input should be invariant:

sage: A2.retract(a2.monomial(v))
Traceback (most recent call last):
...
ValueError: multiplicity dictionary may not be Weyl group invariant
>>> from sage.all import *
>>> A2.retract(a2.monomial(v))
Traceback (most recent call last):
...
ValueError: multiplicity dictionary may not be Weyl group invariant

As a shortcut, you may use conversion:

sage: A2(chi)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
sage: A2(a2.monomial(v))
Traceback (most recent call last):
...
ValueError: multiplicity dictionary may not be Weyl group invariant
>>> from sage.all import *
>>> A2(chi)
-A2(2,1,1) - A2(2,2,0) + A2(3,1,0)
>>> A2(a2.monomial(v))
Traceback (most recent call last):
...
ValueError: multiplicity dictionary may not be Weyl group invariant
simple_coroots()[source]#

Return the simple coroots.

EXAMPLES:

sage: WeylCharacterRing("G2").simple_coroots()
Finite family {1: (0, 1, -1), 2: (1/3, -2/3, 1/3)}
>>> from sage.all import *
>>> WeylCharacterRing("G2").simple_coroots()
Finite family {1: (0, 1, -1), 2: (1/3, -2/3, 1/3)}
simple_roots()[source]#

Return the simple roots.

EXAMPLES:

sage: WeylCharacterRing("G2").simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}
>>> from sage.all import *
>>> WeylCharacterRing("G2").simple_roots()
Finite family {1: (0, 1, -1), 2: (1, -2, 1)}
some_elements()[source]#

Return some elements of self.

EXAMPLES:

sage: WeylCharacterRing("A3").some_elements()
[A3(1,0,0,0), A3(1,1,0,0), A3(1,1,1,0)]
>>> from sage.all import *
>>> WeylCharacterRing("A3").some_elements()
[A3(1,0,0,0), A3(1,1,0,0), A3(1,1,1,0)]
space()[source]#

Return the weight space associated to self.

EXAMPLES:

sage: WeylCharacterRing(['E',8]).space()
Ambient space of the Root system of type ['E', 8]
>>> from sage.all import *
>>> WeylCharacterRing(['E',Integer(8)]).space()
Ambient space of the Root system of type ['E', 8]
sage.combinat.root_system.weyl_characters.irreducible_character_freudenthal(hwv, debug=False)[source]#

Return the dictionary of multiplicities for the irreducible character with highest weight \(\lambda\).

The weight multiplicities are computed by the Freudenthal multiplicity formula. The algorithm is based on recursion relation that is stated, for example, in Humphrey’s book on Lie Algebras. The multiplicities are invariant under the Weyl group, so to compute them it would be sufficient to compute them for the weights in the positive Weyl chamber. However after some testing it was found to be faster to compute every weight using the recursion, since the use of the Weyl group is expensive in its current implementation.

INPUT:

  • hwv – a dominant weight in a weight lattice.

  • L – the ambient space

EXAMPLES:

sage: WeylCharacterRing("A2")(2,1,0).weight_multiplicities() # indirect doctest
{(1, 1, 1): 2, (1, 2, 0): 1, (1, 0, 2): 1, (2, 1, 0): 1,
 (2, 0, 1): 1, (0, 1, 2): 1, (0, 2, 1): 1}
>>> from sage.all import *
>>> WeylCharacterRing("A2")(Integer(2),Integer(1),Integer(0)).weight_multiplicities() # indirect doctest
{(1, 1, 1): 2, (1, 2, 0): 1, (1, 0, 2): 1, (2, 1, 0): 1,
 (2, 0, 1): 1, (0, 1, 2): 1, (0, 2, 1): 1}