Elementary Crystals¶
Let \(\lambda\) be a weight. The crystals \(T_{\lambda}\), \(R_{\lambda}\), \(B_i\), and \(C\) are important objects in the tensor category of crystals. For example, the crystal \(T_0\) is the neutral object in this category; i.e., \(T_0 \otimes B \cong B \otimes T_0 \cong B\) for any crystal \(B\). We list some other properties of these crystals:
The crystal \(T_{\lambda} \otimes B(\infty)\) is the crystal of the Verma module with highest weight \(\lambda\), where \(\lambda\) is a dominant integral weight.
Let \(u_{\infty}\) be the highest weight vector of \(B(\infty)\) and \(\lambda\) be a dominant integral weight. There is an embedding of crystals \(B(\lambda) \longrightarrow T_{\lambda} \otimes B(\infty)\) sending \(u_{\lambda} \mapsto t_{\lambda} \otimes u_{\infty}\) which is not strict, but the embedding \(B(\lambda) \longrightarrow C \otimes T_{\lambda} \otimes B(\infty)\) by \(u_{\lambda} \mapsto c \otimes t_{\lambda} \otimes u_{\infty}\) is a strict embedding.
For any dominant integral weight \(\lambda\), there is a surjective crystal morphism \(\Psi_{\lambda} \colon R_{\lambda} \otimes B(\infty) \longrightarrow B(\lambda)\). More precisely, if \(B = \{r_{\lambda} \otimes b \in R_{\lambda} \otimes B(\infty) : \Psi_{\lambda}(r_{\lambda} \otimes b) \neq 0 \}\), then \(B \cong B(\lambda)\) as crystals.
For all Cartan types and all weights \(\lambda\), we have \(R_{\lambda} \cong C \otimes T_{\lambda}\) as crystals.
For each \(i\), there is a strict crystal morphism \(\Psi_i \colon B(\infty) \longrightarrow B_i \otimes B(\infty)\) defined by \(u_{\infty} \mapsto b_i(0) \otimes u_{\infty}\), where \(u_\infty\) is the highest weight vector of \(B(\infty)\).
For more information on \(B(\infty)\), see
InfinityCrystalOfTableaux
.
Note
As with
TensorProductOfCrystals
,
we are using the opposite of Kashiwara’s convention.
AUTHORS:
Ben Salisbury: Initial version
REFERENCES:
- class sage.combinat.crystals.elementary_crystals.AbstractSingleCrystalElement[source]¶
Bases:
Element
Abstract base class for elements in crystals with a single element.
- e(i)[source]¶
Return \(e_i\) of
self
, which isNone
for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: ct = CartanType(['A',2]) sage: la = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct,la[1]) sage: t = T.highest_weight_vector() sage: t.e(1) sage: t.e(2)
>>> from sage.all import * >>> ct = CartanType(['A',Integer(2)]) >>> la = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct,la[Integer(1)]) >>> t = T.highest_weight_vector() >>> t.e(Integer(1)) >>> t.e(Integer(2))
- f(i)[source]¶
Return \(f_i\) of
self
, which isNone
for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: ct = CartanType(['A',2]) sage: la = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct,la[1]) sage: t = T.highest_weight_vector() sage: t.f(1) sage: t.f(2)
>>> from sage.all import * >>> ct = CartanType(['A',Integer(2)]) >>> la = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct,la[Integer(1)]) >>> t = T.highest_weight_vector() >>> t.f(Integer(1)) >>> t.f(Integer(2))
- class sage.combinat.crystals.elementary_crystals.ComponentCrystal(cartan_type, P)[source]¶
Bases:
UniqueRepresentation
,Parent
The component crystal.
Defined in [Ka1993], the component crystal \(C = \{c\}\) is the single element crystal whose crystal structure is defined by
\[\mathrm{wt}(c) = 0, \quad e_i c = f_i c = 0, \quad \varepsilon_i(c) = \varphi_i(c) = 0.\]Note \(C \cong B(0)\), where \(B(0)\) is the highest weight crystal of highest weight \(0\).
INPUT:
cartan_type
– a Cartan type
- class Element[source]¶
Bases:
AbstractSingleCrystalElement
Element of a component crystal.
- epsilon(i)[source]¶
Return \(\varepsilon_i\) of
self
, which is \(0\) for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: C = crystals.elementary.Component("C5") sage: c = C.highest_weight_vector() sage: [c.epsilon(i) for i in C.index_set()] [0, 0, 0, 0, 0]
>>> from sage.all import * >>> C = crystals.elementary.Component("C5") >>> c = C.highest_weight_vector() >>> [c.epsilon(i) for i in C.index_set()] [0, 0, 0, 0, 0]
- phi(i)[source]¶
Return \(\varphi_i\) of
self
, which is \(0\) for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: C = crystals.elementary.Component("C5") sage: c = C.highest_weight_vector() sage: [c.phi(i) for i in C.index_set()] [0, 0, 0, 0, 0]
>>> from sage.all import * >>> C = crystals.elementary.Component("C5") >>> c = C.highest_weight_vector() >>> [c.phi(i) for i in C.index_set()] [0, 0, 0, 0, 0]
- weight()[source]¶
Return the weight of
self
, which is always \(0\).EXAMPLES:
sage: C = crystals.elementary.Component("F4") sage: c = C.highest_weight_vector() sage: c.weight() (0, 0, 0, 0)
>>> from sage.all import * >>> C = crystals.elementary.Component("F4") >>> c = C.highest_weight_vector() >>> c.weight() (0, 0, 0, 0)
- cardinality()[source]¶
Return the cardinality of
self
, which is always \(1\).EXAMPLES:
sage: C = crystals.elementary.Component("E6") sage: c = C.highest_weight_vector() sage: C.cardinality() 1
>>> from sage.all import * >>> C = crystals.elementary.Component("E6") >>> c = C.highest_weight_vector() >>> C.cardinality() 1
- weight_lattice_realization()[source]¶
Return the weight lattice realization of
self
.EXAMPLES:
sage: C = crystals.elementary.Component("A2") sage: C.weight_lattice_realization() Ambient space of the Root system of type ['A', 2] sage: P = RootSystem(['A',2]).weight_lattice() sage: C = crystals.elementary.Component(P) sage: C.weight_lattice_realization() is P True
>>> from sage.all import * >>> C = crystals.elementary.Component("A2") >>> C.weight_lattice_realization() Ambient space of the Root system of type ['A', 2] >>> P = RootSystem(['A',Integer(2)]).weight_lattice() >>> C = crystals.elementary.Component(P) >>> C.weight_lattice_realization() is P True
- class sage.combinat.crystals.elementary_crystals.ElementaryCrystal(cartan_type, i)[source]¶
Bases:
UniqueRepresentation
,Parent
The elementary crystal \(B_i\).
For \(i\) an element of the index set of type \(X\), the crystal \(B_i\) of type \(X\) is the set
\[B_i = \{ b_i(m) : m \in \ZZ \},\]where the crystal structure is given by
\[\begin{split}\begin{aligned} \mathrm{wt}\bigl(b_i(m)\bigr) &= m\alpha_i \\ \varphi_j\bigl(b_i(m)\bigr) &= \begin{cases} m & \text{ if } j=i, \\ -\infty & \text{ if } j\neq i, \end{cases} \\ \varepsilon_j\bigl(b_i(m)\bigr) &= \begin{cases} -m & \text{ if } j=i, \\ -\infty & \text{ if } j\neq i, \end{cases} \\ e_j b_i(m) &= \begin{cases} b_i(m+1) & \text{ if } j=i, \\ 0 & \text{ if } j\neq i, \end{cases} \\ f_j b_i(m) &= \begin{cases} b_i(m-1) & \text{ if } j=i, \\ 0 & \text{ if } j\neq i. \end{cases} \end{aligned}\end{split}\]The Kashiwara embedding theorem asserts there is a unique strict crystal embedding of crystals
\[B(\infty) \hookrightarrow B_i \otimes B(\infty),\]satisfying certain properties (see [Ka1993]). The above embedding may be iterated to obtain a new embedding
\[B(\infty) \hookrightarrow B_{i_N} \otimes B_{i_{N-1}} \otimes \cdots \otimes B_{i_2} \otimes B_{i_1} \otimes B(\infty),\]which is a foundational object in the study of polyhedral realizations of crystals (see, for example, [NZ1997]).
- class Element(parent, m)[source]¶
Bases:
Element
Element of a \(B_i\) crystal.
- e(i)[source]¶
Return the action of \(e_i\) on
self
.INPUT:
i
– an element of the index set
EXAMPLES:
sage: B = crystals.elementary.Elementary(['E',7],1) sage: B(3).e(1) 4 sage: B(172).e_string([1]*171) 343 sage: B(0).e(2)
>>> from sage.all import * >>> B = crystals.elementary.Elementary(['E',Integer(7)],Integer(1)) >>> B(Integer(3)).e(Integer(1)) 4 >>> B(Integer(172)).e_string([Integer(1)]*Integer(171)) 343 >>> B(Integer(0)).e(Integer(2))
- epsilon(i)[source]¶
Return \(\varepsilon_i\) of
self
.INPUT:
i
– an element of the index set
EXAMPLES:
sage: B = crystals.elementary.Elementary(['F',4],3) sage: [[B(j).epsilon(i) for i in B.index_set()] for j in range(5)] [[-inf, -inf, 0, -inf], [-inf, -inf, -1, -inf], [-inf, -inf, -2, -inf], [-inf, -inf, -3, -inf], [-inf, -inf, -4, -inf]]
>>> from sage.all import * >>> B = crystals.elementary.Elementary(['F',Integer(4)],Integer(3)) >>> [[B(j).epsilon(i) for i in B.index_set()] for j in range(Integer(5))] [[-inf, -inf, 0, -inf], [-inf, -inf, -1, -inf], [-inf, -inf, -2, -inf], [-inf, -inf, -3, -inf], [-inf, -inf, -4, -inf]]
- f(i)[source]¶
Return the action of \(f_i\) on
self
.INPUT:
i
– an element of the index set
EXAMPLES:
sage: B = crystals.elementary.Elementary(['E',7],1) sage: B(3).f(1) 2 sage: B(172).f_string([1]*171) 1 sage: B(0).e(2)
>>> from sage.all import * >>> B = crystals.elementary.Elementary(['E',Integer(7)],Integer(1)) >>> B(Integer(3)).f(Integer(1)) 2 >>> B(Integer(172)).f_string([Integer(1)]*Integer(171)) 1 >>> B(Integer(0)).e(Integer(2))
- phi(i)[source]¶
Return \(\varphi_i\) of
self
.INPUT:
i
– an element of the index set
EXAMPLES:
sage: B = crystals.elementary.Elementary(['E',8,1],4) sage: [[B(m).phi(j) for j in B.index_set()] for m in range(44,49)] [[-inf, -inf, -inf, -inf, 44, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 45, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 46, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 47, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 48, -inf, -inf, -inf, -inf]]
>>> from sage.all import * >>> B = crystals.elementary.Elementary(['E',Integer(8),Integer(1)],Integer(4)) >>> [[B(m).phi(j) for j in B.index_set()] for m in range(Integer(44),Integer(49))] [[-inf, -inf, -inf, -inf, 44, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 45, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 46, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 47, -inf, -inf, -inf, -inf], [-inf, -inf, -inf, -inf, 48, -inf, -inf, -inf, -inf]]
- weight_lattice_realization()[source]¶
Return a realization of the lattice containing the weights of
self
.EXAMPLES:
sage: B = crystals.elementary.Elementary(['A',4, 1], 2) sage: B.weight_lattice_realization() Root lattice of the Root system of type ['A', 4, 1]
>>> from sage.all import * >>> B = crystals.elementary.Elementary(['A',Integer(4), Integer(1)], Integer(2)) >>> B.weight_lattice_realization() Root lattice of the Root system of type ['A', 4, 1]
- class sage.combinat.crystals.elementary_crystals.RCrystal(cartan_type, weight, dual)[source]¶
Bases:
UniqueRepresentation
,Parent
The crystal \(R_{\lambda}\).
For a fixed weight \(\lambda\), the crystal \(R_{\lambda} = \{ r_{\lambda} \}\) is a single element crystal with the crystal structure defined by
\[\mathrm{wt}(r_{\lambda}) = \lambda, \quad e_i r_{\lambda} = f_i r_{\lambda} = 0, \quad \varepsilon_i(r_{\lambda}) = -\langle h_i, \lambda\rangle, \quad \varphi_i(r_{\lambda}) = 0,\]where \(\{h_i\}\) are the simple coroots.
Tensoring \(R_{\lambda}\) with a crystal \(B\) results in shifting the weights of the vertices in \(B\) by \(\lambda\) and may also cut a subset out of the original graph of \(B\). That is, \(\mathrm{wt}(r_{\lambda} \otimes b) = \mathrm{wt}(b) + \lambda\), where \(b \in B\), provided \(r_{\lambda} \otimes b \neq 0\). For example, the crystal graph of \(B(\lambda)\) is the same as the crystal graph of \(R_{\lambda} \otimes B(\infty)\) generated from the component \(r_{\lambda} \otimes u_{\infty}\).
There is also a dual version of this crystal given by \(R^{\vee}_{\lambda} = \{ r^{\vee}_{\lambda} \}\) with the crystal structure defined by
\[\mathrm{wt}(r^{\vee}_{\lambda}) = \lambda, \quad e_i r^{\vee}_{\lambda} = f_i r^{\vee}_{\lambda} = 0, \quad \varepsilon_i(r^{\vee}_{\lambda}) = 0, \quad \varphi_i(r^{\vee}_{\lambda}) = \langle h_i, \lambda\rangle.\]INPUT:
cartan_type
– a Cartan typeweight
– an element of the weight lattice of typecartan_type
dual
– boolean (default:False
)
EXAMPLES:
We check by tensoring \(R_{\lambda}\) with \(B(\infty)\) results in a component of \(B(\lambda)\):
sage: B = crystals.infinity.Tableaux("A2") sage: R = crystals.elementary.R("A2", B.Lambda()[1]+B.Lambda()[2]) sage: T = crystals.TensorProduct(R, B) sage: mg = T(R.highest_weight_vector(), B.highest_weight_vector()) sage: S = T.subcrystal(generators=[mg]) sage: sorted([x.weight() for x in S], key=str) [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)] sage: C = crystals.Tableaux("A2", shape=[2,1]) sage: sorted([x.weight() for x in C], key=str) [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)] sage: GT = T.digraph(subset=S) sage: GC = C.digraph() sage: GT.is_isomorphic(GC, edge_labels=True) True
>>> from sage.all import * >>> B = crystals.infinity.Tableaux("A2") >>> R = crystals.elementary.R("A2", B.Lambda()[Integer(1)]+B.Lambda()[Integer(2)]) >>> T = crystals.TensorProduct(R, B) >>> mg = T(R.highest_weight_vector(), B.highest_weight_vector()) >>> S = T.subcrystal(generators=[mg]) >>> sorted([x.weight() for x in S], key=str) [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)] >>> C = crystals.Tableaux("A2", shape=[Integer(2),Integer(1)]) >>> sorted([x.weight() for x in C], key=str) [(0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 1, 1), (1, 1, 1), (1, 2, 0), (2, 0, 1), (2, 1, 0)] >>> GT = T.digraph(subset=S) >>> GC = C.digraph() >>> GT.is_isomorphic(GC, edge_labels=True) True
- class Element[source]¶
Bases:
AbstractSingleCrystalElement
Element of a \(R_{\lambda}\) crystal.
- epsilon(i)[source]¶
Return \(\varepsilon_i\) of
self
.We have \(\varepsilon_i(r_{\lambda}) = -\langle h_i, \lambda \rangle\) for all \(i\), where \(h_i\) is a simple coroot.
INPUT:
i
– an element of the index set
EXAMPLES:
sage: la = RootSystem(['A',2]).weight_lattice().fundamental_weights() sage: R = crystals.elementary.R("A2", la[1]) sage: r = R.highest_weight_vector() sage: [r.epsilon(i) for i in R.index_set()] [-1, 0] sage: R = crystals.elementary.R("A2", la[1], dual=True) sage: r = R.highest_weight_vector() sage: [r.epsilon(i) for i in R.index_set()] [0, 0]
>>> from sage.all import * >>> la = RootSystem(['A',Integer(2)]).weight_lattice().fundamental_weights() >>> R = crystals.elementary.R("A2", la[Integer(1)]) >>> r = R.highest_weight_vector() >>> [r.epsilon(i) for i in R.index_set()] [-1, 0] >>> R = crystals.elementary.R("A2", la[Integer(1)], dual=True) >>> r = R.highest_weight_vector() >>> [r.epsilon(i) for i in R.index_set()] [0, 0]
- phi(i)[source]¶
Return \(\varphi_i\) of
self
, which is \(0\) for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: la = RootSystem("C5").weight_lattice().fundamental_weights() sage: R = crystals.elementary.R("C5", la[4]+la[5]) sage: r = R.highest_weight_vector() sage: [r.phi(i) for i in R.index_set()] [0, 0, 0, 0, 0] sage: R = crystals.elementary.R("C5", la[4]+la[5], dual=True) sage: r = R.highest_weight_vector() sage: [r.phi(i) for i in R.index_set()] [0, 0, 0, 1, 1]
>>> from sage.all import * >>> la = RootSystem("C5").weight_lattice().fundamental_weights() >>> R = crystals.elementary.R("C5", la[Integer(4)]+la[Integer(5)]) >>> r = R.highest_weight_vector() >>> [r.phi(i) for i in R.index_set()] [0, 0, 0, 0, 0] >>> R = crystals.elementary.R("C5", la[Integer(4)]+la[Integer(5)], dual=True) >>> r = R.highest_weight_vector() >>> [r.phi(i) for i in R.index_set()] [0, 0, 0, 1, 1]
- weight()[source]¶
Return the weight of
self
, which is always \(\lambda\).EXAMPLES:
sage: ct = CartanType(['C',5]) sage: la = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2]) sage: t = T.highest_weight_vector() sage: t.weight() -Lambda[1] - Lambda[2] + Lambda[4] + Lambda[5]
>>> from sage.all import * >>> ct = CartanType(['C',Integer(5)]) >>> la = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct,la[Integer(4)]+la[Integer(5)]-la[Integer(1)]-la[Integer(2)]) >>> t = T.highest_weight_vector() >>> t.weight() -Lambda[1] - Lambda[2] + Lambda[4] + Lambda[5]
- cardinality()[source]¶
Return the cardinality of
self
, which is always \(1\).EXAMPLES:
sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights() sage: R = crystals.elementary.R(['C',12],La[9]) sage: R.cardinality() 1
>>> from sage.all import * >>> La = RootSystem(['C',Integer(12)]).weight_lattice().fundamental_weights() >>> R = crystals.elementary.R(['C',Integer(12)],La[Integer(9)]) >>> R.cardinality() 1
- weight_lattice_realization()[source]¶
Return a realization of the lattice containing the weights of
self
.EXAMPLES:
sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights() sage: R = crystals.elementary.R(['C',12], La[9]) sage: R.weight_lattice_realization() Weight lattice of the Root system of type ['C', 12] sage: ct = CartanMatrix([[2, -4], [-5, 2]]) sage: La = RootSystem(ct).weight_lattice().fundamental_weights() sage: R = crystals.elementary.R(ct, La[1]) sage: R.weight_lattice_realization() Weight lattice of the Root system of type [ 2 -4] [-5 2]
>>> from sage.all import * >>> La = RootSystem(['C',Integer(12)]).weight_lattice().fundamental_weights() >>> R = crystals.elementary.R(['C',Integer(12)], La[Integer(9)]) >>> R.weight_lattice_realization() Weight lattice of the Root system of type ['C', 12] >>> ct = CartanMatrix([[Integer(2), -Integer(4)], [-Integer(5), Integer(2)]]) >>> La = RootSystem(ct).weight_lattice().fundamental_weights() >>> R = crystals.elementary.R(ct, La[Integer(1)]) >>> R.weight_lattice_realization() Weight lattice of the Root system of type [ 2 -4] [-5 2]
- class sage.combinat.crystals.elementary_crystals.TCrystal(cartan_type, weight)[source]¶
Bases:
UniqueRepresentation
,Parent
The crystal \(T_{\lambda}\).
Let \(\lambda\) be a weight. As defined in [Ka1993] the crystal \(T_{\lambda} = \{ t_{\lambda} \}\) is a single element crystal with the crystal structure defined by
\[\mathrm{wt}(t_\lambda) = \lambda, \quad e_i t_{\lambda} = f_i t_{\lambda} = 0, \quad \varepsilon_i(t_{\lambda}) = \varphi_i(t_{\lambda}) = -\infty.\]The crystal \(T_{\lambda}\) shifts the weights of the vertices in a crystal \(B\) by \(\lambda\) when tensored with \(B\), but leaves the graph structure of \(B\) unchanged. That is to say, for all \(b \in B\), we have \(\mathrm{wt}(b \otimes t_{\lambda}) = \mathrm{wt}(b) + \lambda\).
INPUT:
cartan_type
– a Cartan typeweight
– an element of the weight lattice of typecartan_type
EXAMPLES:
sage: ct = CartanType(['A',2]) sage: C = crystals.Tableaux(ct, shape=[1]) sage: for x in C: x.weight() (1, 0, 0) (0, 1, 0) (0, 0, 1) sage: La = RootSystem(ct).ambient_space().fundamental_weights() sage: TLa = crystals.elementary.T(ct, 3*(La[1] + La[2])) sage: TP = crystals.TensorProduct(TLa, C) sage: for x in TP: x.weight() (7, 3, 0) (6, 4, 0) (6, 3, 1) sage: G = C.digraph() sage: H = TP.digraph() sage: G.is_isomorphic(H,edge_labels=True) True
>>> from sage.all import * >>> ct = CartanType(['A',Integer(2)]) >>> C = crystals.Tableaux(ct, shape=[Integer(1)]) >>> for x in C: x.weight() (1, 0, 0) (0, 1, 0) (0, 0, 1) >>> La = RootSystem(ct).ambient_space().fundamental_weights() >>> TLa = crystals.elementary.T(ct, Integer(3)*(La[Integer(1)] + La[Integer(2)])) >>> TP = crystals.TensorProduct(TLa, C) >>> for x in TP: x.weight() (7, 3, 0) (6, 4, 0) (6, 3, 1) >>> G = C.digraph() >>> H = TP.digraph() >>> G.is_isomorphic(H,edge_labels=True) True
- class Element[source]¶
Bases:
AbstractSingleCrystalElement
Element of a \(T_{\lambda}\) crystal.
- epsilon(i)[source]¶
Return \(\varepsilon_i\) of
self
, which is \(-\infty\) for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: ct = CartanType(['C',5]) sage: la = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2]) sage: t = T.highest_weight_vector() sage: [t.epsilon(i) for i in T.index_set()] [-inf, -inf, -inf, -inf, -inf]
>>> from sage.all import * >>> ct = CartanType(['C',Integer(5)]) >>> la = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct,la[Integer(4)]+la[Integer(5)]-la[Integer(1)]-la[Integer(2)]) >>> t = T.highest_weight_vector() >>> [t.epsilon(i) for i in T.index_set()] [-inf, -inf, -inf, -inf, -inf]
- phi(i)[source]¶
Return \(\varphi_i\) of
self
, which is \(-\infty\) for all \(i\).INPUT:
i
– an element of the index set
EXAMPLES:
sage: ct = CartanType(['C',5]) sage: la = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2]) sage: t = T.highest_weight_vector() sage: [t.phi(i) for i in T.index_set()] [-inf, -inf, -inf, -inf, -inf]
>>> from sage.all import * >>> ct = CartanType(['C',Integer(5)]) >>> la = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct,la[Integer(4)]+la[Integer(5)]-la[Integer(1)]-la[Integer(2)]) >>> t = T.highest_weight_vector() >>> [t.phi(i) for i in T.index_set()] [-inf, -inf, -inf, -inf, -inf]
- weight()[source]¶
Return the weight of
self
, which is always \(\lambda\).EXAMPLES:
sage: ct = CartanType(['C',5]) sage: la = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct,la[4]+la[5]-la[1]-la[2]) sage: t = T.highest_weight_vector() sage: t.weight() -Lambda[1] - Lambda[2] + Lambda[4] + Lambda[5]
>>> from sage.all import * >>> ct = CartanType(['C',Integer(5)]) >>> la = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct,la[Integer(4)]+la[Integer(5)]-la[Integer(1)]-la[Integer(2)]) >>> t = T.highest_weight_vector() >>> t.weight() -Lambda[1] - Lambda[2] + Lambda[4] + Lambda[5]
- cardinality()[source]¶
Return the cardinality of
self
, which is always \(1\).EXAMPLES:
sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(['C',12], La[9]) sage: T.cardinality() 1
>>> from sage.all import * >>> La = RootSystem(['C',Integer(12)]).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(['C',Integer(12)], La[Integer(9)]) >>> T.cardinality() 1
- weight_lattice_realization()[source]¶
Return a realization of the lattice containing the weights of
self
.EXAMPLES:
sage: La = RootSystem(['C',12]).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(['C',12], La[9]) sage: T.weight_lattice_realization() Weight lattice of the Root system of type ['C', 12] sage: ct = CartanMatrix([[2, -4], [-5, 2]]) sage: La = RootSystem(ct).weight_lattice().fundamental_weights() sage: T = crystals.elementary.T(ct, La[1]) sage: T.weight_lattice_realization() Weight lattice of the Root system of type [ 2 -4] [-5 2]
>>> from sage.all import * >>> La = RootSystem(['C',Integer(12)]).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(['C',Integer(12)], La[Integer(9)]) >>> T.weight_lattice_realization() Weight lattice of the Root system of type ['C', 12] >>> ct = CartanMatrix([[Integer(2), -Integer(4)], [-Integer(5), Integer(2)]]) >>> La = RootSystem(ct).weight_lattice().fundamental_weights() >>> T = crystals.elementary.T(ct, La[Integer(1)]) >>> T.weight_lattice_realization() Weight lattice of the Root system of type [ 2 -4] [-5 2]