Lyndon words#
- sage.combinat.words.lyndon_word.LyndonWord(data, check=True)[source]#
Construction of a Lyndon word.
INPUT:
data
– listcheck
– bool (default:True
) ifTrue
, check that the input data represents a Lyndon word.
OUTPUT:
A Lyndon word.
EXAMPLES:
sage: LyndonWord([1,2,2]) word: 122 sage: LyndonWord([1,2,3]) word: 123 sage: LyndonWord([2,1,2,3]) Traceback (most recent call last): ... ValueError: not a Lyndon word
>>> from sage.all import * >>> LyndonWord([Integer(1),Integer(2),Integer(2)]) word: 122 >>> LyndonWord([Integer(1),Integer(2),Integer(3)]) word: 123 >>> LyndonWord([Integer(2),Integer(1),Integer(2),Integer(3)]) Traceback (most recent call last): ... ValueError: not a Lyndon word
If
check
isFalse
, then no verification is done:sage: LyndonWord([2,1,2,3], check=False) word: 2123
>>> from sage.all import * >>> LyndonWord([Integer(2),Integer(1),Integer(2),Integer(3)], check=False) word: 2123
- sage.combinat.words.lyndon_word.LyndonWords(e=None, k=None)[source]#
Return the combinatorial class of Lyndon words.
A Lyndon word \(w\) is a word that is lexicographically less than all of its rotations. Equivalently, whenever \(w\) is split into two non-empty substrings, \(w\) is lexicographically less than the right substring.
See Wikipedia article Lyndon_word
INPUT:
no input at all
or
e
– integer, size of alphabetk
– integer, length of the words
or
e
– a composition
OUTPUT:
A combinatorial class of Lyndon words.
EXAMPLES:
sage: LyndonWords() Lyndon words
>>> from sage.all import * >>> LyndonWords() Lyndon words
If e is an integer, then e specifies the length of the alphabet; k must also be specified in this case:
sage: LW = LyndonWords(3, 4); LW Lyndon words from an alphabet of size 3 of length 4 sage: LW.first() word: 1112 sage: LW.last() word: 2333 sage: LW.random_element() # random # needs sage.libs.pari word: 1232 sage: LW.cardinality() # needs sage.libs.pari 18
>>> from sage.all import * >>> LW = LyndonWords(Integer(3), Integer(4)); LW Lyndon words from an alphabet of size 3 of length 4 >>> LW.first() word: 1112 >>> LW.last() word: 2333 >>> LW.random_element() # random # needs sage.libs.pari word: 1232 >>> LW.cardinality() # needs sage.libs.pari 18
If e is a (weak) composition, then it returns the class of Lyndon words that have evaluation e:
sage: LyndonWords([2, 0, 1]).list() [word: 113] sage: LyndonWords([2, 0, 1, 0, 1]).list() [word: 1135, word: 1153, word: 1315] sage: LyndonWords([2, 1, 1]).list() [word: 1123, word: 1132, word: 1213]
>>> from sage.all import * >>> LyndonWords([Integer(2), Integer(0), Integer(1)]).list() [word: 113] >>> LyndonWords([Integer(2), Integer(0), Integer(1), Integer(0), Integer(1)]).list() [word: 1135, word: 1153, word: 1315] >>> LyndonWords([Integer(2), Integer(1), Integer(1)]).list() [word: 1123, word: 1132, word: 1213]
- class sage.combinat.words.lyndon_word.LyndonWords_class(alphabet=None)[source]#
Bases:
UniqueRepresentation
,Parent
The set of all Lyndon words.
- class sage.combinat.words.lyndon_word.LyndonWords_evaluation(e)[source]#
Bases:
UniqueRepresentation
,Parent
The set of Lyndon words on a fixed multiset of letters.
EXAMPLES:
sage: L = LyndonWords([1,2,1]) sage: L Lyndon words with evaluation [1, 2, 1] sage: L.list() [word: 1223, word: 1232, word: 1322]
>>> from sage.all import * >>> L = LyndonWords([Integer(1),Integer(2),Integer(1)]) >>> L Lyndon words with evaluation [1, 2, 1] >>> L.list() [word: 1223, word: 1232, word: 1322]
- cardinality()[source]#
Return the number of Lyndon words with the evaluation e.
EXAMPLES:
sage: LyndonWords([]).cardinality() 0 sage: LyndonWords([2,2]).cardinality() # needs sage.libs.pari 1 sage: LyndonWords([2,3,2]).cardinality() # needs sage.libs.pari 30
>>> from sage.all import * >>> LyndonWords([]).cardinality() 0 >>> LyndonWords([Integer(2),Integer(2)]).cardinality() # needs sage.libs.pari 1 >>> LyndonWords([Integer(2),Integer(3),Integer(2)]).cardinality() # needs sage.libs.pari 30
Check to make sure that the count matches up with the number of Lyndon words generated:
sage: comps = [[],[2,2],[3,2,7],[4,2]] + Compositions(4).list() sage: lws = [LyndonWords(comp) for comp in comps] sage: all(lw.cardinality() == len(lw.list()) for lw in lws) # needs sage.libs.pari True
>>> from sage.all import * >>> comps = [[],[Integer(2),Integer(2)],[Integer(3),Integer(2),Integer(7)],[Integer(4),Integer(2)]] + Compositions(Integer(4)).list() >>> lws = [LyndonWords(comp) for comp in comps] >>> all(lw.cardinality() == len(lw.list()) for lw in lws) # needs sage.libs.pari True
- class sage.combinat.words.lyndon_word.LyndonWords_nk(n, k)[source]#
Bases:
UniqueRepresentation
,Parent
Lyndon words of fixed length \(k\) over the alphabet \(\{1, 2, \ldots, n\}\).
INPUT:
n
– the size of the alphabetk
– the length of the words
EXAMPLES:
sage: L = LyndonWords(3, 4) sage: L.list() [word: 1112, word: 1113, word: 1122, word: 1123, ... word: 1333, word: 2223, word: 2233, word: 2333]
>>> from sage.all import * >>> L = LyndonWords(Integer(3), Integer(4)) >>> L.list() [word: 1112, word: 1113, word: 1122, word: 1123, ... word: 1333, word: 2223, word: 2233, word: 2333]
- sage.combinat.words.lyndon_word.StandardBracketedLyndonWords(n, k)[source]#
Return the combinatorial class of standard bracketed Lyndon words from [1, …, n] of length k.
These are in one to one correspondence with the Lyndon words and form a basis for the subspace of degree k of the free Lie algebra of rank n.
EXAMPLES:
sage: SBLW33 = StandardBracketedLyndonWords(3,3); SBLW33 Standard bracketed Lyndon words from an alphabet of size 3 of length 3 sage: SBLW33.first() [1, [1, 2]] sage: SBLW33.last() [[2, 3], 3] sage: SBLW33.cardinality() 8 sage: SBLW33.random_element() in SBLW33 True
>>> from sage.all import * >>> SBLW33 = StandardBracketedLyndonWords(Integer(3),Integer(3)); SBLW33 Standard bracketed Lyndon words from an alphabet of size 3 of length 3 >>> SBLW33.first() [1, [1, 2]] >>> SBLW33.last() [[2, 3], 3] >>> SBLW33.cardinality() 8 >>> SBLW33.random_element() in SBLW33 True
- class sage.combinat.words.lyndon_word.StandardBracketedLyndonWords_nk(n, k)[source]#
Bases:
UniqueRepresentation
,Parent
- cardinality()[source]#
EXAMPLES:
sage: StandardBracketedLyndonWords(3, 3).cardinality() 8 sage: StandardBracketedLyndonWords(3, 4).cardinality() 18
>>> from sage.all import * >>> StandardBracketedLyndonWords(Integer(3), Integer(3)).cardinality() 8 >>> StandardBracketedLyndonWords(Integer(3), Integer(4)).cardinality() 18
- sage.combinat.words.lyndon_word.standard_bracketing(lw)[source]#
Return the standard bracketing of a Lyndon word
lw
.EXAMPLES:
sage: import sage.combinat.words.lyndon_word as lyndon_word sage: [lyndon_word.standard_bracketing(u) for u in LyndonWords(3,3)] [[1, [1, 2]], [1, [1, 3]], [[1, 2], 2], [1, [2, 3]], [[1, 3], 2], [[1, 3], 3], [2, [2, 3]], [[2, 3], 3]]
>>> from sage.all import * >>> import sage.combinat.words.lyndon_word as lyndon_word >>> [lyndon_word.standard_bracketing(u) for u in LyndonWords(Integer(3),Integer(3))] [[1, [1, 2]], [1, [1, 3]], [[1, 2], 2], [1, [2, 3]], [[1, 3], 2], [[1, 3], 3], [2, [2, 3]], [[2, 3], 3]]
- sage.combinat.words.lyndon_word.standard_unbracketing(sblw)[source]#
Return flattened
sblw
if it is a standard bracketing of a Lyndon word, otherwise raise an error.EXAMPLES:
sage: from sage.combinat.words.lyndon_word import standard_unbracketing sage: standard_unbracketing([1, [2, 3]]) word: 123 sage: standard_unbracketing([[1, 2], 3]) Traceback (most recent call last): ... ValueError: not a standard bracketing of a Lyndon word
>>> from sage.all import * >>> from sage.combinat.words.lyndon_word import standard_unbracketing >>> standard_unbracketing([Integer(1), [Integer(2), Integer(3)]]) word: 123 >>> standard_unbracketing([[Integer(1), Integer(2)], Integer(3)]) Traceback (most recent call last): ... ValueError: not a standard bracketing of a Lyndon word