\(q\)-Analogues#
- sage.combinat.q_analogues.gaussian_binomial(n, k, q=None, algorithm='auto')[source]#
This is an alias of
q_binomial()
.See
q_binomial()
for the full documentation.EXAMPLES:
sage: gaussian_binomial(4,2) q^4 + q^3 + 2*q^2 + q + 1
>>> from sage.all import * >>> gaussian_binomial(Integer(4),Integer(2)) q^4 + q^3 + 2*q^2 + q + 1
- sage.combinat.q_analogues.gaussian_multinomial(seq, q=None, binomial_algorithm='auto')[source]#
Return the \(q\)-multinomial coefficient.
This is also known as the Gaussian multinomial coefficient, and is defined by
\[\binom{n}{k_1, k_2, \ldots, k_m}_q = \frac{[n]_q!} {[k_1]_q! [k_2]_q! \cdots [k_m]_q!}\]where \(n = k_1 + k_2 + \cdots + k_m\).
If \(q\) is unspecified, then the variable is the generator \(q\) for a univariate polynomial ring over the integers.
INPUT:
seq
– an iterable of the values \(k_1\) to \(k_m\) defined aboveq
– (default:None
) the variable \(q\); ifNone
, then use a default variable in \(\ZZ[q]\)binomial_algorithm
– (default:'auto'
) the algorithm to use inq_binomial()
; see possible values there
ALGORITHM:
We use the equivalent formula
\[\binom{k_1 + \cdots + k_m}{k_1, \ldots, k_m}_q = \prod_{i=1}^m \binom{\sum_{j=1}^i k_j}{k_i}_q.\]EXAMPLES:
sage: from sage.combinat.q_analogues import q_multinomial sage: q_multinomial([1,2,1]) q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1 sage: q_multinomial([1,2,1], q=1) == multinomial([1,2,1]) True sage: q_multinomial((3,2)) == q_binomial(5,3) True sage: q_multinomial([]) 1
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_multinomial >>> q_multinomial([Integer(1),Integer(2),Integer(1)]) q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1 >>> q_multinomial([Integer(1),Integer(2),Integer(1)], q=Integer(1)) == multinomial([Integer(1),Integer(2),Integer(1)]) True >>> q_multinomial((Integer(3),Integer(2))) == q_binomial(Integer(5),Integer(3)) True >>> q_multinomial([]) 1
- sage.combinat.q_analogues.number_of_irreducible_polynomials(n, q=None, m=1)[source]#
Return the number of monic irreducible polynomials of degree
n
inm
variables over the finite field withq
elements.If
q
is not given, the result is returned as an integer-valued polynomial in \(\QQ[q]\).INPUT:
n
– positive integerq
–None
(default) or a prime powerm
– positive integer (default \(1\))
OUTPUT: integer or integer-valued polynomial over \(\QQ\)
EXAMPLES:
sage: number_of_irreducible_polynomials(8, q=2) 30 sage: number_of_irreducible_polynomials(9, q=9) 43046640 sage: number_of_irreducible_polynomials(5, q=11, m=3) 2079650567184059145647246367401741345157369643207055703168
>>> from sage.all import * >>> number_of_irreducible_polynomials(Integer(8), q=Integer(2)) 30 >>> number_of_irreducible_polynomials(Integer(9), q=Integer(9)) 43046640 >>> number_of_irreducible_polynomials(Integer(5), q=Integer(11), m=Integer(3)) 2079650567184059145647246367401741345157369643207055703168
sage: poly = number_of_irreducible_polynomials(12); poly 1/12*q^12 - 1/12*q^6 - 1/12*q^4 + 1/12*q^2 sage: poly(5) == number_of_irreducible_polynomials(12, q=5) True sage: poly = number_of_irreducible_polynomials(5, m=3); poly q^55 + q^54 + q^53 + q^52 + q^51 + q^50 + ... + 1/5*q^5 - 1/5*q^3 - 1/5*q^2 - 1/5*q sage: poly(11) == number_of_irreducible_polynomials(5, q=11, m=3) True
>>> from sage.all import * >>> poly = number_of_irreducible_polynomials(Integer(12)); poly 1/12*q^12 - 1/12*q^6 - 1/12*q^4 + 1/12*q^2 >>> poly(Integer(5)) == number_of_irreducible_polynomials(Integer(12), q=Integer(5)) True >>> poly = number_of_irreducible_polynomials(Integer(5), m=Integer(3)); poly q^55 + q^54 + q^53 + q^52 + q^51 + q^50 + ... + 1/5*q^5 - 1/5*q^3 - 1/5*q^2 - 1/5*q >>> poly(Integer(11)) == number_of_irreducible_polynomials(Integer(5), q=Integer(11), m=Integer(3)) True
This function is much faster than enumerating the polynomials:
sage: num = number_of_irreducible_polynomials(99, q=101) sage: num.bit_length() 653
>>> from sage.all import * >>> num = number_of_irreducible_polynomials(Integer(99), q=Integer(101)) >>> num.bit_length() 653
ALGORITHM:
In the univariate case, classical formula \(\frac1n \sum_{d\mid n} \mu(n/d) q^d\) using the Möbius function \(\mu\); see
moebius()
.In the multivariate case, formula from [Bodin2007], independently [Alekseyev2006].
- sage.combinat.q_analogues.q_binomial(n, k, q=None, algorithm='auto')[source]#
Return the \(q\)-binomial coefficient.
This is also known as the Gaussian binomial coefficient, and is defined by
\[\binom{n}{k}_q = \frac{(1-q^n)(1-q^{n-1}) \cdots (1-q^{n-k+1})} {(1-q)(1-q^2)\cdots (1-q^k)}.\]See Wikipedia article Gaussian_binomial_coefficient.
If \(q\) is unspecified, then the variable is the generator \(q\) for a univariate polynomial ring over the integers.
INPUT:
n
,k
– the values \(n\) and \(k\) defined aboveq
– (default:None
) the variable \(q\); ifNone
, then use a default variable in \(\ZZ[q]\)algorithm
– (default:'auto'
) the algorithm to use and can be one of the following:'auto'
– automatically choose the algorithm; see the algorithm section below'naive'
– use the naive algorithm'cyclotomic'
– use cyclotomic algorithm
ALGORITHM:
The naive algorithm uses the product formula. The cyclotomic algorithm uses a product of cyclotomic polynomials (cf. [CH2006]).
When the algorithm is set to
'auto'
, we choose according to the following rules:If
q
is a polynomial:When
n
is small ork
is small with respect ton
, one uses the naive algorithm. When bothn
andk
are big, one uses the cyclotomic algorithm.If
q
is in the symbolic ring (or a symbolic subring), one uses the cyclotomic algorithm.Otherwise one uses the naive algorithm, unless
q
is a root of unity, then one uses the cyclotomic algorithm.
EXAMPLES:
By default, the variable is the generator of \(\ZZ[q]\):
sage: from sage.combinat.q_analogues import q_binomial sage: g = q_binomial(5,1) ; g q^4 + q^3 + q^2 + q + 1 sage: g.parent() Univariate Polynomial Ring in q over Integer Ring
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_binomial >>> g = q_binomial(Integer(5),Integer(1)) ; g q^4 + q^3 + q^2 + q + 1 >>> g.parent() Univariate Polynomial Ring in q over Integer Ring
For \(n \geq 0\), the \(q\)-binomial coefficient vanishes unless \(0 \leq k \leq n\):
sage: q_binomial(4,5) 0 sage: q_binomial(5,-1) 0
>>> from sage.all import * >>> q_binomial(Integer(4),Integer(5)) 0 >>> q_binomial(Integer(5),-Integer(1)) 0
For \(k \geq 0\), the \(q\)-binomial coefficient is extended as a polynomial in \(n\):
sage: q_binomial(-4,1) -q^-4 - q^-3 - q^-2 - q^-1 sage: q_binomial(-2,3) -q^-9 - q^-8 - q^-7 - q^-6
>>> from sage.all import * >>> q_binomial(-Integer(4),Integer(1)) -q^-4 - q^-3 - q^-2 - q^-1 >>> q_binomial(-Integer(2),Integer(3)) -q^-9 - q^-8 - q^-7 - q^-6
Other variables can be used, given as third parameter:
sage: p = ZZ['p'].gen() sage: q_binomial(4,2,p) p^4 + p^3 + 2*p^2 + p + 1
>>> from sage.all import * >>> p = ZZ['p'].gen() >>> q_binomial(Integer(4),Integer(2),p) p^4 + p^3 + 2*p^2 + p + 1
The third parameter can also be arbitrary values:
sage: q_binomial(5,1,2) == g.subs(q=2) True sage: q_binomial(5,1,1) 5 sage: q_binomial(4,2,-1) 2 sage: q_binomial(4,2,3.14) 152.030056160000 sage: R = GF((5, 2), 't') sage: t = R.gen(0) sage: q_binomial(6, 3, t) 2*t + 3
>>> from sage.all import * >>> q_binomial(Integer(5),Integer(1),Integer(2)) == g.subs(q=Integer(2)) True >>> q_binomial(Integer(5),Integer(1),Integer(1)) 5 >>> q_binomial(Integer(4),Integer(2),-Integer(1)) 2 >>> q_binomial(Integer(4),Integer(2),RealNumber('3.14')) 152.030056160000 >>> R = GF((Integer(5), Integer(2)), 't') >>> t = R.gen(Integer(0)) >>> q_binomial(Integer(6), Integer(3), t) 2*t + 3
We can also do this for more complicated objects such as matrices or symmetric functions:
sage: q_binomial(4,2,matrix([[2,1],[-1,3]])) [ -6 84] [-84 78] sage: Sym = SymmetricFunctions(QQ) sage: s = Sym.schur() sage: q_binomial(4,1, s[2]+s[1]) s[] + s[1] + s[1, 1] + s[1, 1, 1] + 2*s[2] + 4*s[2, 1] + 3*s[2, 1, 1] + 4*s[2, 2] + 3*s[2, 2, 1] + s[2, 2, 2] + 3*s[3] + 7*s[3, 1] + 3*s[3, 1, 1] + 6*s[3, 2] + 2*s[3, 2, 1] + s[3, 3] + 4*s[4] + 6*s[4, 1] + s[4, 1, 1] + 3*s[4, 2] + 3*s[5] + 2*s[5, 1] + s[6]
>>> from sage.all import * >>> q_binomial(Integer(4),Integer(2),matrix([[Integer(2),Integer(1)],[-Integer(1),Integer(3)]])) [ -6 84] [-84 78] >>> Sym = SymmetricFunctions(QQ) >>> s = Sym.schur() >>> q_binomial(Integer(4),Integer(1), s[Integer(2)]+s[Integer(1)]) s[] + s[1] + s[1, 1] + s[1, 1, 1] + 2*s[2] + 4*s[2, 1] + 3*s[2, 1, 1] + 4*s[2, 2] + 3*s[2, 2, 1] + s[2, 2, 2] + 3*s[3] + 7*s[3, 1] + 3*s[3, 1, 1] + 6*s[3, 2] + 2*s[3, 2, 1] + s[3, 3] + 4*s[4] + 6*s[4, 1] + s[4, 1, 1] + 3*s[4, 2] + 3*s[5] + 2*s[5, 1] + s[6]
REFERENCES:
[CH2006]William Y.C. Chen and Qing-Hu Hou, Factors of the Gaussian coefficients, Discrete Mathematics 306 (2006), 1446-1449. doi:10.1016/j.disc.2006.03.031
AUTHORS:
Frédéric Chapoton, David Joyner and William Stein
- sage.combinat.q_analogues.q_catalan_number(n, q=None, m=1)[source]#
Return the \(q\)-Catalan number of index \(n\).
INPUT:
q
– optional variablem
– (optional integer) to get instead them
-Fuss-Catalan numbers
If \(q\) is unspecified, then it defaults to using the generator \(q\) for a univariate polynomial ring over the integers.
There are several \(q\)-Catalan numbers. This procedure returns the one which can be written using the \(q\)-binomial coefficients.
EXAMPLES:
sage: from sage.combinat.q_analogues import q_catalan_number sage: q_catalan_number(4) q^12 + q^10 + q^9 + 2*q^8 + q^7 + 2*q^6 + q^5 + 2*q^4 + q^3 + q^2 + 1 sage: p = ZZ['p'].0 sage: q_catalan_number(4, p) p^12 + p^10 + p^9 + 2*p^8 + p^7 + 2*p^6 + p^5 + 2*p^4 + p^3 + p^2 + 1 sage: q_catalan_number(3, m=2) q^12 + q^10 + q^9 + q^8 + q^7 + 2*q^6 + q^5 + q^4 + q^3 + q^2 + 1
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_catalan_number >>> q_catalan_number(Integer(4)) q^12 + q^10 + q^9 + 2*q^8 + q^7 + 2*q^6 + q^5 + 2*q^4 + q^3 + q^2 + 1 >>> p = ZZ['p'].gen(0) >>> q_catalan_number(Integer(4), p) p^12 + p^10 + p^9 + 2*p^8 + p^7 + 2*p^6 + p^5 + 2*p^4 + p^3 + p^2 + 1 >>> q_catalan_number(Integer(3), m=Integer(2)) q^12 + q^10 + q^9 + q^8 + q^7 + 2*q^6 + q^5 + q^4 + q^3 + q^2 + 1
- sage.combinat.q_analogues.q_factorial(n, q=None)[source]#
Return the \(q\)-analogue of the factorial \(n!\).
This is the product
\[[1]_q [2]_q \cdots [n]_q = 1 \cdot (1+q) \cdot (1+q+q^2) \cdots (1+q+q^2+\cdots+q^{n-1}) .\]If \(q\) is unspecified, then this function defaults to using the generator \(q\) for a univariate polynomial ring over the integers.
EXAMPLES:
sage: from sage.combinat.q_analogues import q_factorial sage: q_factorial(3) q^3 + 2*q^2 + 2*q + 1 sage: p = ZZ['p'].0 sage: q_factorial(3, p) p^3 + 2*p^2 + 2*p + 1
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_factorial >>> q_factorial(Integer(3)) q^3 + 2*q^2 + 2*q + 1 >>> p = ZZ['p'].gen(0) >>> q_factorial(Integer(3), p) p^3 + 2*p^2 + 2*p + 1
The \(q\)-analogue of \(n!\) is only defined for \(n\) a non-negative integer (Issue #11411):
sage: q_factorial(-2) Traceback (most recent call last): ... ValueError: argument (-2) must be a nonnegative integer
>>> from sage.all import * >>> q_factorial(-Integer(2)) Traceback (most recent call last): ... ValueError: argument (-2) must be a nonnegative integer
- sage.combinat.q_analogues.q_int(n, q=None)[source]#
Return the \(q\)-analogue of the integer \(n\).
The \(q\)-analogue of the integer \(n\) is given by
\[\begin{split}[n]_q = \begin{cases} 1 + q + \cdots + q^{n-1}, & \text{if } n \geq 0, \\ -q^{-n} [-n]_q, & \text{if } n \leq 0. \end{cases}\end{split}\]Consequently, if \(q = 1\) then \([n]_1 = n\) and if \(q \neq 1\) then \([n]_q = (q^n-1)/(q-1)\).
If the argument \(q\) is not specified then it defaults to the generator \(q\) of the univariate polynomial ring over the integers.
EXAMPLES:
sage: from sage.combinat.q_analogues import q_int sage: q_int(3) q^2 + q + 1 sage: q_int(-3) -q^-3 - q^-2 - q^-1 sage: p = ZZ['p'].0 sage: q_int(3,p) p^2 + p + 1 sage: q_int(3/2) Traceback (most recent call last): ... ValueError: 3/2 must be an integer
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_int >>> q_int(Integer(3)) q^2 + q + 1 >>> q_int(-Integer(3)) -q^-3 - q^-2 - q^-1 >>> p = ZZ['p'].gen(0) >>> q_int(Integer(3),p) p^2 + p + 1 >>> q_int(Integer(3)/Integer(2)) Traceback (most recent call last): ... ValueError: 3/2 must be an integer
- sage.combinat.q_analogues.q_jordan(q=None)[source]#
Return the \(q\)-Jordan number of \(t\).
If \(q\) is the power of a prime number, the output is the number of complete flags in \(\GF{q}^N\) (where \(N\) is the size of \(t\)) stable under a linear nilpotent endomorphism \(f_t\) whose Jordan type is given by \(t\), i.e. such that for all \(i\):
\[\dim (\ker f_t^i) = t[0] + \cdots + t[i-1]\]If \(q\) is unspecified, then it defaults to using the generator \(q\) for a univariate polynomial ring over the integers.
The result is cached.
INPUT:
t
– an integer partition, or an argument accepted byPartition
q
– (default:None
) the variable \(q\); ifNone
, then use a default variable in \(\ZZ[q]\)
EXAMPLES:
sage: from sage.combinat.q_analogues import q_jordan sage: [q_jordan(mu, 2) for mu in Partitions(5)] [9765, 1029, 213, 93, 29, 9, 1] sage: [q_jordan(mu, 2) for mu in Partitions(6)] [615195, 40635, 5643, 2331, 1491, 515, 147, 87, 47, 11, 1] sage: q_jordan([3,2,1]) 16*q^4 + 24*q^3 + 14*q^2 + 5*q + 1 sage: q_jordan([2,1], x) # needs sage.symbolic 2*x + 1
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_jordan >>> [q_jordan(mu, Integer(2)) for mu in Partitions(Integer(5))] [9765, 1029, 213, 93, 29, 9, 1] >>> [q_jordan(mu, Integer(2)) for mu in Partitions(Integer(6))] [615195, 40635, 5643, 2331, 1491, 515, 147, 87, 47, 11, 1] >>> q_jordan([Integer(3),Integer(2),Integer(1)]) 16*q^4 + 24*q^3 + 14*q^2 + 5*q + 1 >>> q_jordan([Integer(2),Integer(1)], x) # needs sage.symbolic 2*x + 1
If the partition is trivial (i.e. has only one part), we get the \(q\)-factorial (in this case, the nilpotent endomorphism is necessarily \(0\)):
sage: from sage.combinat.q_analogues import q_factorial sage: q_jordan([5]) == q_factorial(5) True sage: q_jordan([11], 5) == q_factorial(11, 5) True
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_factorial >>> q_jordan([Integer(5)]) == q_factorial(Integer(5)) True >>> q_jordan([Integer(11)], Integer(5)) == q_factorial(Integer(11), Integer(5)) True
AUTHOR:
Xavier Caruso (2012-06-29)
- sage.combinat.q_analogues.q_multinomial(seq, q=None, binomial_algorithm='auto')[source]#
Return the \(q\)-multinomial coefficient.
This is also known as the Gaussian multinomial coefficient, and is defined by
\[\binom{n}{k_1, k_2, \ldots, k_m}_q = \frac{[n]_q!} {[k_1]_q! [k_2]_q! \cdots [k_m]_q!}\]where \(n = k_1 + k_2 + \cdots + k_m\).
If \(q\) is unspecified, then the variable is the generator \(q\) for a univariate polynomial ring over the integers.
INPUT:
seq
– an iterable of the values \(k_1\) to \(k_m\) defined aboveq
– (default:None
) the variable \(q\); ifNone
, then use a default variable in \(\ZZ[q]\)binomial_algorithm
– (default:'auto'
) the algorithm to use inq_binomial()
; see possible values there
ALGORITHM:
We use the equivalent formula
\[\binom{k_1 + \cdots + k_m}{k_1, \ldots, k_m}_q = \prod_{i=1}^m \binom{\sum_{j=1}^i k_j}{k_i}_q.\]EXAMPLES:
sage: from sage.combinat.q_analogues import q_multinomial sage: q_multinomial([1,2,1]) q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1 sage: q_multinomial([1,2,1], q=1) == multinomial([1,2,1]) True sage: q_multinomial((3,2)) == q_binomial(5,3) True sage: q_multinomial([]) 1
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_multinomial >>> q_multinomial([Integer(1),Integer(2),Integer(1)]) q^5 + 2*q^4 + 3*q^3 + 3*q^2 + 2*q + 1 >>> q_multinomial([Integer(1),Integer(2),Integer(1)], q=Integer(1)) == multinomial([Integer(1),Integer(2),Integer(1)]) True >>> q_multinomial((Integer(3),Integer(2))) == q_binomial(Integer(5),Integer(3)) True >>> q_multinomial([]) 1
- sage.combinat.q_analogues.q_pochhammer(n, a, q=None)[source]#
Return the \(q\)-Pochhammer \((a; q)_n\).
The \(q\)-Pochhammer symbol is defined by
\[(a; q)_n = \prod_{k=0}^{n-1} (1 - aq^k)\]with \((a; q)_0 = 1\) for all \(a, q\) and \(n \in \NN\). By using the identity
\[(a; q)_n = \frac{(a; q)_{\infty}}{(aq^n; q)_{\infty}},\]we can extend the definition to \(n < 0\) by
\[(a; q)_n = \frac{1}{(aq^n; q)_{-n}} = \prod_{k=1}^{-n} \frac{1}{1 - a/q^k}.\]EXAMPLES:
sage: from sage.combinat.q_analogues import q_pochhammer sage: q_pochhammer(3, 1/7) 6/343*q^3 - 6/49*q^2 - 6/49*q + 6/7 sage: q_pochhammer(3, 3) -18*q^3 + 6*q^2 + 6*q - 2 sage: q_pochhammer(3, 1) 0 sage: R.<q> = ZZ[] sage: q_pochhammer(4, q) q^10 - q^9 - q^8 + 2*q^5 - q^2 - q + 1 sage: q_pochhammer(4, q^2) q^14 - q^12 - q^11 - q^10 + q^8 + 2*q^7 + q^6 - q^4 - q^3 - q^2 + 1 sage: q_pochhammer(-3, q) 1/(-q^9 + q^7 + q^6 + q^5 - q^4 - q^3 - q^2 + 1)
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_pochhammer >>> q_pochhammer(Integer(3), Integer(1)/Integer(7)) 6/343*q^3 - 6/49*q^2 - 6/49*q + 6/7 >>> q_pochhammer(Integer(3), Integer(3)) -18*q^3 + 6*q^2 + 6*q - 2 >>> q_pochhammer(Integer(3), Integer(1)) 0 >>> R = ZZ['q']; (q,) = R._first_ngens(1) >>> q_pochhammer(Integer(4), q) q^10 - q^9 - q^8 + 2*q^5 - q^2 - q + 1 >>> q_pochhammer(Integer(4), q**Integer(2)) q^14 - q^12 - q^11 - q^10 + q^8 + 2*q^7 + q^6 - q^4 - q^3 - q^2 + 1 >>> q_pochhammer(-Integer(3), q) 1/(-q^9 + q^7 + q^6 + q^5 - q^4 - q^3 - q^2 + 1)
REFERENCES:
- sage.combinat.q_analogues.q_stirling_number1(k, q=None)[source]#
Return the (unsigned) \(q\)-Stirling number of the first kind.
This is a \(q\)-analogue of
sage.combinat.combinat.stirling_number1()
.INPUT:
n
,k
– integers with1 <= k <= n
q
– optional variable (default \(q\))
OUTPUT: a polynomial in the variable \(q\)
These polynomials satisfy the recurrence
\[s_{n,k} = s_{n-1,k-1} + [n-1]_q s_{n-1, k}.\]EXAMPLES:
sage: from sage.combinat.q_analogues import q_stirling_number1 sage: q_stirling_number1(4,2) q^3 + 3*q^2 + 4*q + 3 sage: all(stirling_number1(6,k) == q_stirling_number1(6,k)(1) # needs sage.libs.gap ....: for k in range(1,6)) True sage: x = polygen(QQ['q'],'x') sage: S = sum(q_stirling_number1(5,k)*x**k for k in range(1, 6)) sage: factor(S) # needs sage.libs.singular x * (x + 1) * (x + q + 1) * (x + q^2 + q + 1) * (x + q^3 + q^2 + q + 1)
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_stirling_number1 >>> q_stirling_number1(Integer(4),Integer(2)) q^3 + 3*q^2 + 4*q + 3 >>> all(stirling_number1(Integer(6),k) == q_stirling_number1(Integer(6),k)(Integer(1)) # needs sage.libs.gap ... for k in range(Integer(1),Integer(6))) True >>> x = polygen(QQ['q'],'x') >>> S = sum(q_stirling_number1(Integer(5),k)*x**k for k in range(Integer(1), Integer(6))) >>> factor(S) # needs sage.libs.singular x * (x + 1) * (x + q + 1) * (x + q^2 + q + 1) * (x + q^3 + q^2 + q + 1)
REFERENCES:
- sage.combinat.q_analogues.q_stirling_number2(k, q=None)[source]#
Return the (unsigned) \(q\)-Stirling number of the second kind.
This is a \(q\)-analogue of
sage.combinat.combinat.stirling_number2()
.INPUT:
n
,k
– integers with1 <= k <= n
q
– optional variable (default \(q\))
OUTPUT: a polynomial in the variable \(q\)
These polynomials satisfy the recurrence
\[S_{n,k} = q^{k-1} S_{n-1,k-1} + [k]_q s_{n-1, k}.\]EXAMPLES:
sage: from sage.combinat.q_analogues import q_stirling_number2 sage: q_stirling_number2(4,2) q^3 + 3*q^2 + 3*q sage: all(stirling_number2(6,k) == q_stirling_number2(6,k)(1) ....: for k in range(7)) True
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_stirling_number2 >>> q_stirling_number2(Integer(4),Integer(2)) q^3 + 3*q^2 + 3*q >>> all(stirling_number2(Integer(6),k) == q_stirling_number2(Integer(6),k)(Integer(1)) ... for k in range(Integer(7))) True
REFERENCES:
- sage.combinat.q_analogues.q_subgroups_of_abelian_group(la, mu, q=None, algorithm='birkhoff')[source]#
Return the \(q\)-number of subgroups of type
mu
in a finite abelian group of typela
.INPUT:
la
– type of the ambient group as aPartition
mu
– type of the subgroup as aPartition
q
– (default:None
) an indeterminate or a prime number; ifNone
, this defaults to \(q \in \ZZ[q]\)algorithm
– (default:'birkhoff'
) the algorithm to use can be one of the following:'birkhoff
– use the Birkhoff formula from [Bu87]'delsarte'
– use the formula from [Delsarte48]
OUTPUT:
The number of subgroups of type
mu
in a group of typela
as a polynomial inq
.ALGORITHM:
Let \(q\) be a prime number and \(\lambda = (\lambda_1, \ldots, \lambda_l)\) be a partition. A finite abelian \(q\)-group is of type \(\lambda\) if it is isomorphic to
\[\ZZ / q^{\lambda_1} \ZZ \times \cdots \times \ZZ / q^{\lambda_l} \ZZ.\]The formula from [Bu87] works as follows: Let \(\lambda\) and \(\mu\) be partitions. Let \(\lambda^{\prime}\) and \(\mu^{\prime}\) denote the conjugate partitions to \(\lambda\) and \(\mu\), respectively. The number of subgroups of type \(\mu\) in a group of type \(\lambda\) is given by
\[\prod_{i=1}^{\mu_1} q^{\mu^{\prime}_{i+1} (\lambda^{\prime}_i - \mu^{\prime}_i)} \binom{\lambda^{\prime}_i - \mu^{\prime}_{i+1}} {\mu^{\prime}_i - \mu^{\prime}_{i+1}}_q\]The formula from [Delsarte48] works as follows: Let \(\lambda\) and \(\mu\) be partitions. Let \((s_1, s_2, \ldots, s_l)\) and \((r_1, r_2, \ldots, r_k)\) denote the parts of the partitions conjugate to \(\lambda\) and \(\mu\) respectively. Let
\[\mathfrak{F}(\xi_1, \ldots, \xi_k) = \xi_1^{r_2} \xi_2^{r_3} \cdots \xi_{k-1}^{r_k} \prod_{i_1=r_2}^{r_1-1} (\xi_1-q^{i_1}) \prod_{i_2=r_3}^{r_2-1} (\xi_2-q^{i_2}) \cdots \prod_{i_k=0}^{r_k-1} (\xi_k-q^{-i_k}).\]Then the number of subgroups of type \(\mu\) in a group of type \(\lambda\) is given by
\[\frac{\mathfrak{F}(q^{s_1}, q^{s_2}, \ldots, q^{s_k})}{\mathfrak{F} (q^{r_1}, q^{r_2}, \ldots, q^{r_k})}.\]EXAMPLES:
sage: from sage.combinat.q_analogues import q_subgroups_of_abelian_group sage: q_subgroups_of_abelian_group([1,1], [1]) q + 1 sage: q_subgroups_of_abelian_group([3,3,2,1], [2,1]) q^6 + 2*q^5 + 3*q^4 + 2*q^3 + q^2 sage: R.<t> = QQ[] sage: q_subgroups_of_abelian_group([5,3,1], [3,1], t) t^4 + 2*t^3 + t^2 sage: q_subgroups_of_abelian_group([5,3,1], [3,1], 3) 144 sage: q_subgroups_of_abelian_group([1,1,1], [1]) == q_subgroups_of_abelian_group([1,1,1], [1,1]) True sage: q_subgroups_of_abelian_group([5], [3]) 1 sage: q_subgroups_of_abelian_group([1], [2]) 0 sage: q_subgroups_of_abelian_group([2], [1,1]) 0
>>> from sage.all import * >>> from sage.combinat.q_analogues import q_subgroups_of_abelian_group >>> q_subgroups_of_abelian_group([Integer(1),Integer(1)], [Integer(1)]) q + 1 >>> q_subgroups_of_abelian_group([Integer(3),Integer(3),Integer(2),Integer(1)], [Integer(2),Integer(1)]) q^6 + 2*q^5 + 3*q^4 + 2*q^3 + q^2 >>> R = QQ['t']; (t,) = R._first_ngens(1) >>> q_subgroups_of_abelian_group([Integer(5),Integer(3),Integer(1)], [Integer(3),Integer(1)], t) t^4 + 2*t^3 + t^2 >>> q_subgroups_of_abelian_group([Integer(5),Integer(3),Integer(1)], [Integer(3),Integer(1)], Integer(3)) 144 >>> q_subgroups_of_abelian_group([Integer(1),Integer(1),Integer(1)], [Integer(1)]) == q_subgroups_of_abelian_group([Integer(1),Integer(1),Integer(1)], [Integer(1),Integer(1)]) True >>> q_subgroups_of_abelian_group([Integer(5)], [Integer(3)]) 1 >>> q_subgroups_of_abelian_group([Integer(1)], [Integer(2)]) 0 >>> q_subgroups_of_abelian_group([Integer(2)], [Integer(1),Integer(1)]) 0
REFERENCES:
[Bu87] (1,2)Butler, Lynne M. A unimodality result in the enumeration of subgroups of a finite abelian group. Proceedings of the American Mathematical Society 101, no. 4 (1987): 771-775. doi:10.1090/S0002-9939-1987-0911049-8
[Delsarte48] (1,2)S. Delsarte, Fonctions de Möbius Sur Les Groupes Abéliens Finis, Annals of Mathematics, second series, Vol. 45, No. 3, (Jul 1948), pp. 600-609. http://www.jstor.org/stable/1969047
AUTHORS:
Amritanshu Prasad (2013-06-07): Implemented the Delsarte algorithm
Tomer Bauer (2013, 2018): Implemented the Birkhoff algorithm and refactoring
- sage.combinat.q_analogues.qt_catalan_number(n)[source]#
Return the \(q,t\)-Catalan number of index \(n\).
EXAMPLES:
sage: from sage.combinat.q_analogues import qt_catalan_number sage: qt_catalan_number(1) 1 sage: qt_catalan_number(2) q + t sage: qt_catalan_number(3) q^3 + q^2*t + q*t^2 + t^3 + q*t sage: qt_catalan_number(4) q^6 + q^5*t + q^4*t^2 + q^3*t^3 + q^2*t^4 + q*t^5 + t^6 + q^4*t + q^3*t^2 + q^2*t^3 + q*t^4 + q^3*t + q^2*t^2 + q*t^3
>>> from sage.all import * >>> from sage.combinat.q_analogues import qt_catalan_number >>> qt_catalan_number(Integer(1)) 1 >>> qt_catalan_number(Integer(2)) q + t >>> qt_catalan_number(Integer(3)) q^3 + q^2*t + q*t^2 + t^3 + q*t >>> qt_catalan_number(Integer(4)) q^6 + q^5*t + q^4*t^2 + q^3*t^3 + q^2*t^4 + q*t^5 + t^6 + q^4*t + q^3*t^2 + q^2*t^3 + q*t^4 + q^3*t + q^2*t^2 + q*t^3
The \(q,t\)-Catalan number of index \(n\) is only defined for \(n\) a nonnegative integer (Issue #11411):
sage: qt_catalan_number(-2) Traceback (most recent call last): ... ValueError: argument (-2) must be a nonnegative integer
>>> from sage.all import * >>> qt_catalan_number(-Integer(2)) Traceback (most recent call last): ... ValueError: argument (-2) must be a nonnegative integer