Difference families#
This module gathers everything related to difference families. One can build a
difference family (or check that it can be built) with difference_family()
:
sage: G,F = designs.difference_family(13,4,1) # needs sage.libs.pari sage.modules
>>> from sage.all import *
>>> G,F = designs.difference_family(Integer(13),Integer(4),Integer(1)) # needs sage.libs.pari sage.modules
It defines the following functions:
Check if |
|
Check whether |
|
Test whether |
|
Compute the left stabilizer of the block |
|
Compute complementary difference sets over a group of order \(n = 2m + 1\). |
|
Construct complementary difference sets in a group of order \(n \cong 3 \mod 4\), \(n\) a prime power. |
|
Construct complementary difference sets in a group of order \(n = p^t\), where \(p \cong 5 \mod 8\) and \(t \cong 1, 2, 3 \mod 4\). |
|
Construct complementary difference sets in a group of order \(n = 2m + 1\), where \(4m + 3\) is a prime power. |
|
Return a \((q,6,1)\)-difference family over the finite field \(K\). |
|
Return a ( |
|
Construct an equivalent relative difference set fixed by the size of the set. |
|
Return a triple |
|
Make a product of two Hadamard difference sets. |
|
Check whether |
|
Check if the relative difference set |
|
Check if |
|
Check that the sets in |
|
Return a difference set. |
|
Given a subset |
|
Search for a radical difference family on |
|
Return a |
|
Return a difference set made of a cyclotomic coset in the finite field |
|
Construct \(R((q^N-1)/(q-1), n, q^{N-1}, q^{N-2}d)\) where \(nd = q-1\). |
|
Construct \(R((q^N-1)/(q-1), q-1, q^{N-1}, q^{N-2})\) where |
|
Return a difference set associated to the set of hyperplanes in a projective space of dimension \(d\) over \(GF(q)\). |
|
Construct skew spin type Goethals-Seidel difference family with parameters \((n; k_1, k_2, k_3, k_4; \lambda)\). |
|
Construct \(4-\{n; n_1, n_2, n_3, n_4; \lambda\}\) supplementary difference sets, where \(S_1\) is skew and \(n_1 + n_2 + n_3 + n_4 = n+\lambda\). |
|
Construct skew supplementary difference sets over a polynomial ring of order |
|
Construct \(4-\{n; n_1, n_2, n_3, n_4; \lambda\}\) skew supplementary difference sets where \(S_1\) is the Paley-Todd difference set. |
|
Construct a spin type Goethals-Seidel difference family with parameters \((n; k_1, k_2, k_3, k_4; \lambda)\). |
|
Construct \(4-\{2v; v, v+1, v, v; 2v\}\) supplementary difference sets where \(q=2v+1\). |
|
Construct \(4-\{2v; v, v+1, v, v; 2v\}\) supplementary difference sets where \(q=2v+1\). |
|
Construct \(4-\{n; n_1, n_2, n_3, n_4; \lambda\}\) supplementary difference sets, where \(n_1 + n_2 + n_3 + n_4 = n+\lambda\). |
|
Return a difference set in either \(C_3 \times C_3 \times C_4\) or \(C_3 \times C_3 \times C_2 \times C_2\) with parameters \(v=36\), \(k=15\), \(\lambda=6\). |
|
Return a difference set on \(GF(p) \times GF(p+2)\). |
REFERENCES:
T. Beth, D. Jungnickel, H. Lenz “Design theory Vol. I.” Second edition. Encyclopedia of Mathematics and its Applications, 69. Cambridge University Press, (1999).
T. Beth, D. Jungnickel, H. Lenz “Design theory Vol. II.” Second edition. Encyclopedia of Mathematics and its Applications, 78. Cambridge University Press, (1999).
R. C. Bose, “On the construction of balanced incomplete block designs”, Ann. Eugenics, 9 (1939), 353–399.
M. Buratti “On simple radical difference families”, J. Combinatorial Designs, 3 (1995) 161–168.
R. J. Turyn “Character sum and difference sets” Pacific J. Math. 15 (1965) 319–346.
R. J. Turyn “A special class of Williamson matrices and difference sets” J. Combinatorial Theory (A) 36 (1984) 111–115.
Functions#
- sage.combinat.designs.difference_family.are_complementary_difference_sets(G, A, B, verbose=False)[source]#
Check if
A
andB
are complementary difference sets over the groupG
.According to [Sze1971], two sets \(A\), \(B\) of size \(m\) are complementary difference sets over a group \(G\) of size \(2m+1\) if:
they are \(2-\{2m+1; m, m; m-1\}\) supplementary difference sets
\(A\) is skew, i.e. \(a \in A\) implies \(-a \not \in A\)
INPUT:
G
– a group of odd orderA
– a set of elements ofG
B
– a set of elements ofG
verbose
– boolean (default:False
); ifTrue
the function will be verbose when the sets do not satisfy the contraints
EXAMPLES:
sage: from sage.combinat.designs.difference_family import are_complementary_difference_sets sage: are_complementary_difference_sets(Zmod(7), [1, 2, 4], [1, 2, 4]) True
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import are_complementary_difference_sets >>> are_complementary_difference_sets(Zmod(Integer(7)), [Integer(1), Integer(2), Integer(4)], [Integer(1), Integer(2), Integer(4)]) True
If
verbose=True
, the function will be verbose:sage: are_complementary_difference_sets(Zmod(7), [1, 2, 5], [1, 2, 4], verbose=True) The sets are not supplementary difference sets with lambda = 2 False
>>> from sage.all import * >>> are_complementary_difference_sets(Zmod(Integer(7)), [Integer(1), Integer(2), Integer(5)], [Integer(1), Integer(2), Integer(4)], verbose=True) The sets are not supplementary difference sets with lambda = 2 False
See also
- sage.combinat.designs.difference_family.are_hadamard_difference_set_parameters(v, k, lmbda)[source]#
Check whether
(v,k,lmbda)
is of the form(4N^2, 2N^2 - N, N^2 - N)
.INPUT:
(v, k, lmbda)
– parameters of a difference set
EXAMPLES:
sage: from sage.combinat.designs.difference_family import are_hadamard_difference_set_parameters sage: are_hadamard_difference_set_parameters(36, 15, 6) True sage: are_hadamard_difference_set_parameters(60, 13, 5) False
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import are_hadamard_difference_set_parameters >>> are_hadamard_difference_set_parameters(Integer(36), Integer(15), Integer(6)) True >>> are_hadamard_difference_set_parameters(Integer(60), Integer(13), Integer(5)) False
- sage.combinat.designs.difference_family.are_mcfarland_1973_parameters(v, k, lmbda, return_parameters=False)[source]#
Test whether
(v,k,lmbda)
is a triple that can be obtained from the construction from [McF1973].See
mcfarland_1973_construction()
.INPUT:
v
,k
,lmbda
– integers; parameters of the difference familyreturn_parameters
– boolean (defaultFalse
); ifTrue
, return a pair(True, (q, s))
so that(q,s)
can be used in the functionmcfarland_1973_construction()
to actually build a(v,k,lmbda)
-difference family. Or(False, None)
if the construction is not possible
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: from sage.combinat.designs.difference_family import are_mcfarland_1973_parameters sage: are_mcfarland_1973_parameters(64, 28, 12) True sage: are_mcfarland_1973_parameters(64, 28, 12, return_parameters=True) (True, (2, 2)) sage: are_mcfarland_1973_parameters(60, 13, 5) False sage: are_mcfarland_1973_parameters(98125, 19500, 3875) True sage: are_mcfarland_1973_parameters(98125, 19500, 3875, True) (True, (5, 3)) sage: from sage.combinat.designs.difference_family import are_mcfarland_1973_parameters sage: for v in range(1, 100): # needs sage.rings.finite_rings ....: for k in range(1,30): ....: for l in range(1,15): ....: if are_mcfarland_1973_parameters(v,k,l): ....: answer, (q,s) = are_mcfarland_1973_parameters(v,k,l,return_parameters=True) ....: print("{} {} {} {} {}".format(v,k,l,q,s)) ....: assert answer is True ....: assert designs.difference_family(v,k,l,existence=True) is True ....: G,D = designs.difference_family(v,k,l) 16 6 2 2 1 45 12 3 3 1 64 28 12 2 2 96 20 4 4 1
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> from sage.combinat.designs.difference_family import are_mcfarland_1973_parameters >>> are_mcfarland_1973_parameters(Integer(64), Integer(28), Integer(12)) True >>> are_mcfarland_1973_parameters(Integer(64), Integer(28), Integer(12), return_parameters=True) (True, (2, 2)) >>> are_mcfarland_1973_parameters(Integer(60), Integer(13), Integer(5)) False >>> are_mcfarland_1973_parameters(Integer(98125), Integer(19500), Integer(3875)) True >>> are_mcfarland_1973_parameters(Integer(98125), Integer(19500), Integer(3875), True) (True, (5, 3)) >>> from sage.combinat.designs.difference_family import are_mcfarland_1973_parameters >>> for v in range(Integer(1), Integer(100)): # needs sage.rings.finite_rings ... for k in range(Integer(1),Integer(30)): ... for l in range(Integer(1),Integer(15)): ... if are_mcfarland_1973_parameters(v,k,l): ... answer, (q,s) = are_mcfarland_1973_parameters(v,k,l,return_parameters=True) ... print("{} {} {} {} {}".format(v,k,l,q,s)) ... assert answer is True ... assert designs.difference_family(v,k,l,existence=True) is True ... G,D = designs.difference_family(v,k,l) 16 6 2 2 1 45 12 3 3 1 64 28 12 2 2 96 20 4 4 1
- sage.combinat.designs.difference_family.block_stabilizer(G, B)[source]#
Compute the left stabilizer of the block
B
under the action ofG
.This function return the list of all \(x\in G\) such that \(x\cdot B=B\) (as a set).
INPUT:
G
– a group (additive or multiplicative)B
– a subset ofG
EXAMPLES:
sage: from sage.combinat.designs.difference_family import block_stabilizer sage: Z8 = Zmod(8) sage: block_stabilizer(Z8, [Z8(0),Z8(2),Z8(4),Z8(6)]) [0, 2, 4, 6] sage: block_stabilizer(Z8, [Z8(0),Z8(2)]) [0] sage: C = cartesian_product([Zmod(4),Zmod(3)]) sage: block_stabilizer(C, [C((0,0)),C((2,0)),C((0,1)),C((2,1))]) [(0, 0), (2, 0)] sage: b = list(map(Zmod(45),[1, 3, 7, 10, 22, 25, 30, 35, 37, 38, 44])) sage: block_stabilizer(Zmod(45),b) [0]
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import block_stabilizer >>> Z8 = Zmod(Integer(8)) >>> block_stabilizer(Z8, [Z8(Integer(0)),Z8(Integer(2)),Z8(Integer(4)),Z8(Integer(6))]) [0, 2, 4, 6] >>> block_stabilizer(Z8, [Z8(Integer(0)),Z8(Integer(2))]) [0] >>> C = cartesian_product([Zmod(Integer(4)),Zmod(Integer(3))]) >>> block_stabilizer(C, [C((Integer(0),Integer(0))),C((Integer(2),Integer(0))),C((Integer(0),Integer(1))),C((Integer(2),Integer(1)))]) [(0, 0), (2, 0)] >>> b = list(map(Zmod(Integer(45)),[Integer(1), Integer(3), Integer(7), Integer(10), Integer(22), Integer(25), Integer(30), Integer(35), Integer(37), Integer(38), Integer(44)])) >>> block_stabilizer(Zmod(Integer(45)),b) [0]
- sage.combinat.designs.difference_family.complementary_difference_sets(n, existence=False, check=True)[source]#
Compute complementary difference sets over a group of order \(n = 2m + 1\).
According to [Sze1971], two sets \(A\), \(B\) of size \(m\) are complementary difference sets over a group \(G\) of size \(n = 2m + 1\) if:
they are \(2-\{2m+1; m, m; m-1\}\) supplementary difference sets
\(A\) is skew, i.e. \(a \in A\) implies \(-a \not \in A\)
This method tries to call
complementary_difference_setsI()
,complementary_difference_setsII()
orcomplementary_difference_setsIII()
if the parameter \(n\) satisfies the requirements of one of these functions.INPUT:
n
– integer; the order of the group over which the sets are constructedexistence
– boolean (default:False
); ifTrue
, only check whether the supplementary difference sets can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are complementary difference sets before returning them; setting this toFalse
might speed up the computation for large values ofn
OUTPUT:
If
existence=False
, the function returns groupG
and two complementary difference sets, or raises an error if data for the givenn
is not available. Ifexistence=True
, the function returns a boolean representing whether complementary difference sets can be constructed for the givenn
.EXAMPLES:
sage: from sage.combinat.designs.difference_family import complementary_difference_sets sage: complementary_difference_sets(15) # needs sage.libs.pari (Ring of integers modulo 15, [1, 2, 4, 6, 7, 10, 12], [0, 1, 2, 6, 9, 13, 14])
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import complementary_difference_sets >>> complementary_difference_sets(Integer(15)) # needs sage.libs.pari (Ring of integers modulo 15, [1, 2, 4, 6, 7, 10, 12], [0, 1, 2, 6, 9, 13, 14])
If
existence=True
, the function returns a boolean:sage: complementary_difference_sets(15, existence=True) # needs sage.libs.pari True sage: complementary_difference_sets(16, existence=True) False
>>> from sage.all import * >>> complementary_difference_sets(Integer(15), existence=True) # needs sage.libs.pari True >>> complementary_difference_sets(Integer(16), existence=True) False
See also
- sage.combinat.designs.difference_family.complementary_difference_setsI(n, check=True)[source]#
Construct complementary difference sets in a group of order \(n \cong 3 \mod 4\), \(n\) a prime power.
Let \(G\) be a Galois Field of order \(n\), where \(n\) satisfies the requirements above. Let \(A\) be the set of non-zero quadratic elements in \(G\), and \(B = A\). Then \(A\) and \(B\) are complementary difference sets over a group of order \(n\). This construction is described in [Sze1971].
INPUT:
n
– integer; the order of the group \(G\)check
– boolean (default:True
); ifTrue
, check that the sets are complementary difference sets before returning them
OUTPUT:
The function returns the Galois field of order
n
and the two sets, or raises an error ifn
does not satisfy the requirements of this construction.EXAMPLES:
sage: from sage.combinat.designs.difference_family import complementary_difference_setsI sage: complementary_difference_setsI(19) (Finite Field of size 19, [1, 4, 5, 6, 7, 9, 11, 16, 17], [1, 4, 5, 6, 7, 9, 11, 16, 17])
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import complementary_difference_setsI >>> complementary_difference_setsI(Integer(19)) (Finite Field of size 19, [1, 4, 5, 6, 7, 9, 11, 16, 17], [1, 4, 5, 6, 7, 9, 11, 16, 17])
- sage.combinat.designs.difference_family.complementary_difference_setsII(n, check=True)[source]#
Construct complementary difference sets in a group of order \(n = p^t\), where \(p \cong 5 \mod 8\) and \(t \cong 1, 2, 3 \mod 4\).
Consider a finite field \(G\) of order \(n\) and let \(\rho\) be the generator of the corresponding multiplicative group. Then, there are two different constructions, depending on whether \(t\) is even or odd.
If \(t \cong 2 \mod 4\), let \(C_0\) be the set of non-zero octic residues in \(G\), and let \(C_i = \rho^i C_0\) for \(1 \le i \le 7\). Then, \(A = C_0 \cup C_1 \cup C_2 \cup C_3\) and \(B = C_0 \cup C_1 \cup C_6 \cup C_7\).
If \(t\) is odd, let \(C_0\) be the set of non-zero fourth powers in \(G\), and let \(C_i = \rho^i C_0\) for \(1 \le i \le 3\). Then, \(A = C_0 \cup C_1\) and \(B = C_0 \cup C_3\).
For more details on this construction, see [Sze1971].
INPUT:
n
– integer; the order of the group \(G\)check
– boolean (default:True
); ifTrue
, check that the sets are complementary difference sets before returning them; setting this toFalse
might speed up the computation for large values ofn
OUTPUT:
The function returns the Galois field of order
n
and the two sets, or raises an error ifn
does not satisfy the requirements of this construction.EXAMPLES:
sage: from sage.combinat.designs.difference_family import complementary_difference_setsII sage: complementary_difference_setsII(5) # needs sage.libs.pari (Finite Field of size 5, [1, 2], [1, 3])
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import complementary_difference_setsII >>> complementary_difference_setsII(Integer(5)) # needs sage.libs.pari (Finite Field of size 5, [1, 2], [1, 3])
- sage.combinat.designs.difference_family.complementary_difference_setsIII(n, check=True)[source]#
Construct complementary difference sets in a group of order \(n = 2m + 1\), where \(4m + 3\) is a prime power.
Consider a finite field \(G\) of order \(n\) and let \(\rho\) be a primite element of this group. Now let \(Q\) be the set of non zero quadratic residues in \(G\), and let \(A = \{ a | \rho^{2a} - 1 \in Q\}\), \(B' = \{ b | -(\rho^{2b} + 1) \in Q\}\). Then \(A\) and \(B = Q \setminus B'\) are complementary difference sets over the ring of integers modulo \(n\). For more details, see [Sz1969].
INPUT:
n
– integer; the order of the group over which the sets are constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are complementary difference sets before returning them; setting this toFalse
might speed up the computation for large values ofn
OUTPUT:
The function returns the Galois field of order
n
and the two sets, or raises an error ifn
does not satisfy the requirements of this construction.EXAMPLES:
sage: from sage.combinat.designs.difference_family import complementary_difference_setsIII sage: complementary_difference_setsIII(11) # needs sage.libs.pari (Ring of integers modulo 11, [1, 2, 5, 7, 8], [0, 1, 3, 8, 10])
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import complementary_difference_setsIII >>> complementary_difference_setsIII(Integer(11)) # needs sage.libs.pari (Ring of integers modulo 11, [1, 2, 5, 7, 8], [0, 1, 3, 8, 10])
- sage.combinat.designs.difference_family.df_q_6_1(K, existence=False, check=True)[source]#
Return a \((q,6,1)\)-difference family over the finite field \(K\).
The construction uses Theorem 11 of [Wi72].
EXAMPLES:
sage: # needs sage.rings.finite_rings sage: from sage.combinat.designs.difference_family import is_difference_family, df_q_6_1 sage: prime_powers = [v for v in range(31,500,30) if is_prime_power(v)] sage: parameters = [v for v in prime_powers ....: if df_q_6_1(GF(v,'a'), existence=True) is True] sage: parameters [31, 151, 181, 211, 241, 271, 331, 361, 421] sage: for v in parameters: ....: K = GF(v, 'a') ....: df = df_q_6_1(K, check=True) ....: assert is_difference_family(K, df, v, 6, 1)
>>> from sage.all import * >>> # needs sage.rings.finite_rings >>> from sage.combinat.designs.difference_family import is_difference_family, df_q_6_1 >>> prime_powers = [v for v in range(Integer(31),Integer(500),Integer(30)) if is_prime_power(v)] >>> parameters = [v for v in prime_powers ... if df_q_6_1(GF(v,'a'), existence=True) is True] >>> parameters [31, 151, 181, 211, 241, 271, 331, 361, 421] >>> for v in parameters: ... K = GF(v, 'a') ... df = df_q_6_1(K, check=True) ... assert is_difference_family(K, df, v, Integer(6), Integer(1))
Todo
Do improvements due to Zhen and Wu 1999.
- sage.combinat.designs.difference_family.difference_family(v, k, l=1, existence=False, explain_construction=False, check=True)[source]#
Return a (
k
,l
)-difference family on an Abelian group of cardinalityv
.Let \(G\) be a finite Abelian group. For a given subset \(D\) of \(G\), we define \(\Delta D\) to be the multi-set of differences \(\Delta D = \{x - y; x \in D, y \in D, x \not= y\}\). A \((G,k,\lambda)\)-difference family is a collection of \(k\)-subsets of \(G\), \(D = \{D_1, D_2, \ldots, D_b\}\) such that the union of the difference sets \(\Delta D_i\) for \(i=1,...b\), seen as a multi-set, contains each element of \(G \backslash \{0\}\) exactly \(\lambda\)-times.
When there is only one block, i.e. \(\lambda(v - 1) = k(k-1)\), then a \((G,k,\lambda)\)-difference family is also called a difference set.
See also Wikipedia article Difference_set.
If there is no such difference family, an
EmptySetError
is raised and if there is no construction at the momentNotImplementedError
is raised.INPUT:
v
,k
,l
– parameters of the difference family. Ifl
is not provided it is assumed to be1
existence
– ifTrue
, then return eitherTrue
if Sage knows how to build such design,Unknown
if it does not andFalse
if it knows that the design does not existexplain_construction
– instead of returning a difference family, returns a string that explains the construction usedcheck
– boolean (default:True
); ifTrue
, then the result of the computation is checked before being returned. This should not be needed but ensures that the output is correct
OUTPUT:
A pair
(G,D)
made of a group \(G\) and a difference family \(D\) on that group. Or, ifexistence=True`
a troolean or ifexplain_construction=True
a string.EXAMPLES:
sage: G,D = designs.difference_family(73,4) # needs sage.libs.pari sage: G # needs sage.libs.pari Finite Field of size 73 sage: D # needs sage.libs.pari [[0, 1, 5, 18], [0, 3, 15, 54], [0, 9, 45, 16], [0, 27, 62, 48], [0, 8, 40, 71], [0, 24, 47, 67]] sage: print(designs.difference_family(73, 4, explain_construction=True)) The database contains a (73,4)-evenly distributed set sage: # needs sage.libs.pari sage: G,D = designs.difference_family(15,7,3) sage: G Ring of integers modulo 15 sage: D [[0, 1, 2, 4, 5, 8, 10]] sage: print(designs.difference_family(15,7,3,explain_construction=True)) Singer difference set sage: # needs sage.libs.pari sage: print(designs.difference_family(91,10,1,explain_construction=True)) Singer difference set sage: print(designs.difference_family(64,28,12, explain_construction=True)) McFarland 1973 construction sage: print(designs.difference_family(576, 276, 132, explain_construction=True)) Hadamard difference set product from N1=2 and N2=3
>>> from sage.all import * >>> G,D = designs.difference_family(Integer(73),Integer(4)) # needs sage.libs.pari >>> G # needs sage.libs.pari Finite Field of size 73 >>> D # needs sage.libs.pari [[0, 1, 5, 18], [0, 3, 15, 54], [0, 9, 45, 16], [0, 27, 62, 48], [0, 8, 40, 71], [0, 24, 47, 67]] >>> print(designs.difference_family(Integer(73), Integer(4), explain_construction=True)) The database contains a (73,4)-evenly distributed set >>> # needs sage.libs.pari >>> G,D = designs.difference_family(Integer(15),Integer(7),Integer(3)) >>> G Ring of integers modulo 15 >>> D [[0, 1, 2, 4, 5, 8, 10]] >>> print(designs.difference_family(Integer(15),Integer(7),Integer(3),explain_construction=True)) Singer difference set >>> # needs sage.libs.pari >>> print(designs.difference_family(Integer(91),Integer(10),Integer(1),explain_construction=True)) Singer difference set >>> print(designs.difference_family(Integer(64),Integer(28),Integer(12), explain_construction=True)) McFarland 1973 construction >>> print(designs.difference_family(Integer(576), Integer(276), Integer(132), explain_construction=True)) Hadamard difference set product from N1=2 and N2=3
For \(k=6,7\) we look at the set of small prime powers for which a construction is available:
sage: def prime_power_mod(r,m): ....: k = m+r ....: while True: ....: if is_prime_power(k): ....: yield k ....: k += m sage: # needs sage.libs.pari sage: from itertools import islice sage: l6 = {True: [], False: [], Unknown: []} sage: for q in islice(prime_power_mod(1,30), int(60)): ....: l6[designs.difference_family(q,6,existence=True)].append(q) sage: l6[True] [31, 121, 151, 181, 211, ..., 3061, 3121, 3181] sage: l6[Unknown] [61] sage: l6[False] [] sage: # needs sage.libs.pari sage: l7 = {True: [], False: [], Unknown: []} sage: for q in islice(prime_power_mod(1,42), int(60)): ....: l7[designs.difference_family(q,7,existence=True)].append(q) sage: l7[True] [169, 337, 379, 421, 463, 547, 631, 673, 757, 841, 883, 967, ..., 4621, 4957, 5167] sage: l7[Unknown] [43, 127, 211, 2017, 2143, 2269, 2311, 2437, 2521, 2647, ..., 4999, 5041, 5209] sage: l7[False] []
>>> from sage.all import * >>> def prime_power_mod(r,m): ... k = m+r ... while True: ... if is_prime_power(k): ... yield k ... k += m >>> # needs sage.libs.pari >>> from itertools import islice >>> l6 = {True: [], False: [], Unknown: []} >>> for q in islice(prime_power_mod(Integer(1),Integer(30)), int(Integer(60))): ... l6[designs.difference_family(q,Integer(6),existence=True)].append(q) >>> l6[True] [31, 121, 151, 181, 211, ..., 3061, 3121, 3181] >>> l6[Unknown] [61] >>> l6[False] [] >>> # needs sage.libs.pari >>> l7 = {True: [], False: [], Unknown: []} >>> for q in islice(prime_power_mod(Integer(1),Integer(42)), int(Integer(60))): ... l7[designs.difference_family(q,Integer(7),existence=True)].append(q) >>> l7[True] [169, 337, 379, 421, 463, 547, 631, 673, 757, 841, 883, 967, ..., 4621, 4957, 5167] >>> l7[Unknown] [43, 127, 211, 2017, 2143, 2269, 2311, 2437, 2521, 2647, ..., 4999, 5041, 5209] >>> l7[False] []
List available constructions:
sage: for v in range(2,100): # needs sage.libs.pari ....: constructions = [] ....: for k in range(2,10): ....: for l in range(1,10): ....: ret = designs.difference_family(v,k,l,existence=True) ....: if ret is True: ....: constructions.append((k,l)) ....: _ = designs.difference_family(v,k,l) ....: if constructions: ....: print("%2d: %s"%(v, ', '.join('(%d,%d)'%(k,l) for k,l in constructions))) 3: (2,1) 4: (3,2) 5: (2,1), (4,3) 6: (5,4) 7: (2,1), (3,1), (3,2), (4,2), (6,5) 8: (7,6) 9: (2,1), (4,3), (8,7) 10: (9,8) 11: (2,1), (4,6), (5,2), (5,4), (6,3) 13: (2,1), (3,1), (3,2), (4,1), (4,3), (5,5), (6,5) 15: (3,1), (4,6), (5,6), (7,3), (7,6) 16: (3,2), (5,4), (6,2) 17: (2,1), (4,3), (5,5), (8,7) 19: (2,1), (3,1), (3,2), (4,2), (6,5), (9,4), (9,8) 21: (3,1), (4,3), (5,1), (6,3), (6,5) 22: (4,2), (6,5), (7,4), (8,8) 23: (2,1) 25: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (7,7), (8,7) 27: (2,1), (3,1) 28: (3,2), (6,5) 29: (2,1), (4,3), (7,3), (7,6), (8,4), (8,6) 31: (2,1), (3,1), (3,2), (4,2), (5,2), (5,4), (6,1), (6,5) 33: (3,1), (5,5), (6,5) 34: (4,2) 35: (5,2) 37: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (9,2), (9,8) 39: (3,1), (6,5) 40: (3,2), (4,1) 41: (2,1), (4,3), (5,1), (5,4), (6,3), (8,7) 43: (2,1), (3,1), (3,2), (4,2), (6,5), (7,2), (7,3), (7,6), (8,4) 45: (3,1), (5,1) 46: (4,2), (6,2) 47: (2,1) 49: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,3) 51: (3,1), (5,2), (6,3) 52: (4,1) 53: (2,1), (4,3) 55: (3,1), (9,4) 57: (3,1), (7,3), (8,1) 59: (2,1) 61: (2,1), (3,1), (3,2), (4,1), (4,3), (5,1), (5,4), (6,2), (6,3), (6,5) 63: (3,1) 64: (3,2), (4,1), (7,2), (7,6), (9,8) 65: (5,1) 67: (2,1), (3,1), (3,2), (6,5) 69: (3,1) 71: (2,1), (5,2), (5,4), (7,3), (7,6), (8,4) 73: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,1), (9,8) 75: (3,1), (5,2) 76: (4,1) 79: (2,1), (3,1), (3,2), (6,5) 81: (2,1), (3,1), (4,3), (5,1), (5,4), (8,7) 83: (2,1) 85: (4,1), (7,2), (7,3), (8,2) 89: (2,1), (4,3), (8,7) 91: (6,1), (7,1) 97: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,3)
>>> from sage.all import * >>> for v in range(Integer(2),Integer(100)): # needs sage.libs.pari ... constructions = [] ... for k in range(Integer(2),Integer(10)): ... for l in range(Integer(1),Integer(10)): ... ret = designs.difference_family(v,k,l,existence=True) ... if ret is True: ... constructions.append((k,l)) ... _ = designs.difference_family(v,k,l) ... if constructions: ... print("%2d: %s"%(v, ', '.join('(%d,%d)'%(k,l) for k,l in constructions))) 3: (2,1) 4: (3,2) 5: (2,1), (4,3) 6: (5,4) 7: (2,1), (3,1), (3,2), (4,2), (6,5) 8: (7,6) 9: (2,1), (4,3), (8,7) 10: (9,8) 11: (2,1), (4,6), (5,2), (5,4), (6,3) 13: (2,1), (3,1), (3,2), (4,1), (4,3), (5,5), (6,5) 15: (3,1), (4,6), (5,6), (7,3), (7,6) 16: (3,2), (5,4), (6,2) 17: (2,1), (4,3), (5,5), (8,7) 19: (2,1), (3,1), (3,2), (4,2), (6,5), (9,4), (9,8) 21: (3,1), (4,3), (5,1), (6,3), (6,5) 22: (4,2), (6,5), (7,4), (8,8) 23: (2,1) 25: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (7,7), (8,7) 27: (2,1), (3,1) 28: (3,2), (6,5) 29: (2,1), (4,3), (7,3), (7,6), (8,4), (8,6) 31: (2,1), (3,1), (3,2), (4,2), (5,2), (5,4), (6,1), (6,5) 33: (3,1), (5,5), (6,5) 34: (4,2) 35: (5,2) 37: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (9,2), (9,8) 39: (3,1), (6,5) 40: (3,2), (4,1) 41: (2,1), (4,3), (5,1), (5,4), (6,3), (8,7) 43: (2,1), (3,1), (3,2), (4,2), (6,5), (7,2), (7,3), (7,6), (8,4) 45: (3,1), (5,1) 46: (4,2), (6,2) 47: (2,1) 49: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,3) 51: (3,1), (5,2), (6,3) 52: (4,1) 53: (2,1), (4,3) 55: (3,1), (9,4) 57: (3,1), (7,3), (8,1) 59: (2,1) 61: (2,1), (3,1), (3,2), (4,1), (4,3), (5,1), (5,4), (6,2), (6,3), (6,5) 63: (3,1) 64: (3,2), (4,1), (7,2), (7,6), (9,8) 65: (5,1) 67: (2,1), (3,1), (3,2), (6,5) 69: (3,1) 71: (2,1), (5,2), (5,4), (7,3), (7,6), (8,4) 73: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,1), (9,8) 75: (3,1), (5,2) 76: (4,1) 79: (2,1), (3,1), (3,2), (6,5) 81: (2,1), (3,1), (4,3), (5,1), (5,4), (8,7) 83: (2,1) 85: (4,1), (7,2), (7,3), (8,2) 89: (2,1), (4,3), (8,7) 91: (6,1), (7,1) 97: (2,1), (3,1), (3,2), (4,1), (4,3), (6,5), (8,7), (9,3)
Todo
Implement recursive constructions from Buratti “Recursive for difference matrices and relative difference families” (1998) and Jungnickel “Composition theorems for difference families and regular planes” (1978)
- sage.combinat.designs.difference_family.get_fixed_relative_difference_set(G, rel_diff_set, as_elements=False)[source]#
Construct an equivalent relative difference set fixed by the size of the set.
Given a relative difference set \(R(q+1, q-1, q, 1)\), it is possible to find a translation of this set fixed by \(q\) (see Section 3 of [Spe1975]). We say that a set is fixed by \(t\) if \(\{td | d\in R\}= R\).
In addition, the set returned by this function will contain the element \(0\). This is needed in the construction of supplementary difference sets (see
supplementary_difference_set_from_rel_diff_set()
).INPUT:
G
– a group, of whichrel_diff_set
is a subsetrel_diff_set
– the relative difference setas_elements
– boolean (default:False
); ifTrue
, the list returned will contain elements of the abelian group (this may slow down the computation considerably)
OUTPUT:
By default, this function returns the set as a list of integers. However, if
as_elements=True
it will return the set as a list containing elements of the abelian group. If no such set can be found, the function will raise an error.EXAMPLES:
sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, get_fixed_relative_difference_set sage: G, s1 = relative_difference_set_from_m_sequence(5, 2, return_group=True) # needs sage.libs.pari sage.modules sage: get_fixed_relative_difference_set(G, s1) # random # needs sage.libs.pari sage.modules [2, 10, 19, 23, 0]
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, get_fixed_relative_difference_set >>> G, s1 = relative_difference_set_from_m_sequence(Integer(5), Integer(2), return_group=True) # needs sage.libs.pari sage.modules >>> get_fixed_relative_difference_set(G, s1) # random # needs sage.libs.pari sage.modules [2, 10, 19, 23, 0]
If
as_elements=True
, the result will contain elements of the group:sage: get_fixed_relative_difference_set(G, s1, as_elements=True) # random # needs sage.libs.pari sage.modules [(2), (10), (19), (23), (0)]
>>> from sage.all import * >>> get_fixed_relative_difference_set(G, s1, as_elements=True) # random # needs sage.libs.pari sage.modules [(2), (10), (19), (23), (0)]
- sage.combinat.designs.difference_family.group_law(G)[source]#
Return a triple
(identity, operation, inverse)
that define the operations on the groupG
.EXAMPLES:
sage: from sage.combinat.designs.difference_family import group_law sage: group_law(Zmod(3)) (0, <built-in function add>, <built-in function neg>) sage: group_law(SymmetricGroup(5)) # needs sage.groups ((), <built-in function mul>, <built-in function inv>) sage: group_law(VectorSpace(QQ, 3)) # needs sage.modules ((0, 0, 0), <built-in function add>, <built-in function neg>)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import group_law >>> group_law(Zmod(Integer(3))) (0, <built-in function add>, <built-in function neg>) >>> group_law(SymmetricGroup(Integer(5))) # needs sage.groups ((), <built-in function mul>, <built-in function inv>) >>> group_law(VectorSpace(QQ, Integer(3))) # needs sage.modules ((0, 0, 0), <built-in function add>, <built-in function neg>)
- sage.combinat.designs.difference_family.hadamard_difference_set_product(G1, D1, G2, D2)[source]#
Make a product of two Hadamard difference sets.
This product construction appears in [Tu1984].
INPUT:
G1, D1
,G2, D2
– two Hadamard difference sets
EXAMPLES:
sage: from sage.combinat.designs.difference_family import hadamard_difference_set_product sage: from sage.combinat.designs.difference_family import is_difference_family sage: G1,D1 = designs.difference_family(16,6,2) # needs sage.rings.finite_rings sage: G2,D2 = designs.difference_family(36,15,6) # needs sage.rings.finite_rings sage: G11,D11 = hadamard_difference_set_product(G1,D1,G1,D1) # needs sage.rings.finite_rings sage: assert is_difference_family(G11, D11, 256, 120, 56) # needs sage.rings.finite_rings sage: assert designs.difference_family(256, 120, 56, existence=True) is True # needs sage.rings.finite_rings sage: G12,D12 = hadamard_difference_set_product(G1,D1,G2,D2) # needs sage.rings.finite_rings sage: assert is_difference_family(G12, D12, 576, 276, 132) # needs sage.rings.finite_rings sage: assert designs.difference_family(576, 276, 132, existence=True) is True # needs sage.rings.finite_rings
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import hadamard_difference_set_product >>> from sage.combinat.designs.difference_family import is_difference_family >>> G1,D1 = designs.difference_family(Integer(16),Integer(6),Integer(2)) # needs sage.rings.finite_rings >>> G2,D2 = designs.difference_family(Integer(36),Integer(15),Integer(6)) # needs sage.rings.finite_rings >>> G11,D11 = hadamard_difference_set_product(G1,D1,G1,D1) # needs sage.rings.finite_rings >>> assert is_difference_family(G11, D11, Integer(256), Integer(120), Integer(56)) # needs sage.rings.finite_rings >>> assert designs.difference_family(Integer(256), Integer(120), Integer(56), existence=True) is True # needs sage.rings.finite_rings >>> G12,D12 = hadamard_difference_set_product(G1,D1,G2,D2) # needs sage.rings.finite_rings >>> assert is_difference_family(G12, D12, Integer(576), Integer(276), Integer(132)) # needs sage.rings.finite_rings >>> assert designs.difference_family(Integer(576), Integer(276), Integer(132), existence=True) is True # needs sage.rings.finite_rings
- sage.combinat.designs.difference_family.hadamard_difference_set_product_parameters()[source]#
Check whether a product construction is available for Hadamard difference set with parameter
N
.This function looks for two integers \(N_1\) and \(N_2`\) greater than \(1\) and so that \(N = 2 N_1 N_2\) and there exists Hadamard difference set with parameters \((4 N_i^2, 2N_i^2 - N_i, N_i^2 - N_i)\). If such pair exists, the output is the pair
(N_1, N_2)
otherwise it isNone
.INPUT:
N
– positive integer
EXAMPLES:
sage: from sage.combinat.designs.difference_family import hadamard_difference_set_product_parameters sage: hadamard_difference_set_product_parameters(8) # needs sage.rings.finite_rings (2, 2)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import hadamard_difference_set_product_parameters >>> hadamard_difference_set_product_parameters(Integer(8)) # needs sage.rings.finite_rings (2, 2)
- sage.combinat.designs.difference_family.is_difference_family(G, D, v=None, k=None, l=None, verbose=False)[source]#
Check whether
D
forms a difference family in the groupG
.INPUT:
G
– group of cardinalityv
D
– a set ofk
-subsets ofG
v
,k
andl
– optional parameters of the difference familyverbose
– boolean (default:False
); whether to print additional information
See also
EXAMPLES:
sage: from sage.combinat.designs.difference_family import is_difference_family sage: G = Zmod(21) sage: D = [[0,1,4,14,16]] sage: is_difference_family(G, D, 21, 5) True sage: G = Zmod(41) sage: D = [[0,1,4,11,29],[0,2,8,17,21]] sage: is_difference_family(G, D, verbose=True) Too few: 5 is obtained 0 times in blocks [] 14 is obtained 0 times in blocks [] 27 is obtained 0 times in blocks [] 36 is obtained 0 times in blocks [] Too much: 4 is obtained 2 times in blocks [0, 1] 13 is obtained 2 times in blocks [0, 1] 28 is obtained 2 times in blocks [0, 1] 37 is obtained 2 times in blocks [0, 1] False sage: D = [[0,1,4,11,29],[0,2,8,17,22]] sage: is_difference_family(G, D) True sage: G = Zmod(61) sage: D = [[0,1,3,13,34],[0,4,9,23,45],[0,6,17,24,32]] sage: is_difference_family(G, D) True sage: # needs sage.modules sage: G = AdditiveAbelianGroup([3]*4) sage: a,b,c,d = G.gens() sage: D = [[d, -a+d, -c+d, a-b-d, b+c+d], ....: [c, a+b-d, -b+c, a-b+d, a+b+c], ....: [-a-b+c+d, a-b-c-d, -a+c-d, b-c+d, a+b], ....: [-b-d, a+b+d, a-b+c-d, a-b+c, -b+c+d]] sage: is_difference_family(G, D) True
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import is_difference_family >>> G = Zmod(Integer(21)) >>> D = [[Integer(0),Integer(1),Integer(4),Integer(14),Integer(16)]] >>> is_difference_family(G, D, Integer(21), Integer(5)) True >>> G = Zmod(Integer(41)) >>> D = [[Integer(0),Integer(1),Integer(4),Integer(11),Integer(29)],[Integer(0),Integer(2),Integer(8),Integer(17),Integer(21)]] >>> is_difference_family(G, D, verbose=True) Too few: 5 is obtained 0 times in blocks [] 14 is obtained 0 times in blocks [] 27 is obtained 0 times in blocks [] 36 is obtained 0 times in blocks [] Too much: 4 is obtained 2 times in blocks [0, 1] 13 is obtained 2 times in blocks [0, 1] 28 is obtained 2 times in blocks [0, 1] 37 is obtained 2 times in blocks [0, 1] False >>> D = [[Integer(0),Integer(1),Integer(4),Integer(11),Integer(29)],[Integer(0),Integer(2),Integer(8),Integer(17),Integer(22)]] >>> is_difference_family(G, D) True >>> G = Zmod(Integer(61)) >>> D = [[Integer(0),Integer(1),Integer(3),Integer(13),Integer(34)],[Integer(0),Integer(4),Integer(9),Integer(23),Integer(45)],[Integer(0),Integer(6),Integer(17),Integer(24),Integer(32)]] >>> is_difference_family(G, D) True >>> # needs sage.modules >>> G = AdditiveAbelianGroup([Integer(3)]*Integer(4)) >>> a,b,c,d = G.gens() >>> D = [[d, -a+d, -c+d, a-b-d, b+c+d], ... [c, a+b-d, -b+c, a-b+d, a+b+c], ... [-a-b+c+d, a-b-c-d, -a+c-d, b-c+d, a+b], ... [-b-d, a+b+d, a-b+c-d, a-b+c, -b+c+d]] >>> is_difference_family(G, D) True
The following example has a third block with a non-trivial stabilizer:
sage: G = Zmod(15) sage: D = [[0,1,4],[0,2,9],[0,5,10]] sage: is_difference_family(G,D,verbose=True) It is a (15,3,1)-difference family True
>>> from sage.all import * >>> G = Zmod(Integer(15)) >>> D = [[Integer(0),Integer(1),Integer(4)],[Integer(0),Integer(2),Integer(9)],[Integer(0),Integer(5),Integer(10)]] >>> is_difference_family(G,D,verbose=True) It is a (15,3,1)-difference family True
The function also supports multiplicative groups (non necessarily Abelian):
sage: # needs sage.groups sage: G = DihedralGroup(8) sage: x,y = G.gens() sage: i = G.one() sage: D1 = [[i,x,x^4], [i,x^2, y*x], [i,x^5,y], [i,x^6,y*x^2], [i,x^7,y*x^5]] sage: is_difference_family(G, D1, 16, 3, 2) True sage: from sage.combinat.designs.bibd import BIBD_from_difference_family sage: bibd = BIBD_from_difference_family(G, D1, lambd=2)
>>> from sage.all import * >>> # needs sage.groups >>> G = DihedralGroup(Integer(8)) >>> x,y = G.gens() >>> i = G.one() >>> D1 = [[i,x,x**Integer(4)], [i,x**Integer(2), y*x], [i,x**Integer(5),y], [i,x**Integer(6),y*x**Integer(2)], [i,x**Integer(7),y*x**Integer(5)]] >>> is_difference_family(G, D1, Integer(16), Integer(3), Integer(2)) True >>> from sage.combinat.designs.bibd import BIBD_from_difference_family >>> bibd = BIBD_from_difference_family(G, D1, lambd=Integer(2))
- sage.combinat.designs.difference_family.is_fixed_relative_difference_set(R, q)[source]#
Check if the relative difference set
R
is fixed byq
.A relative difference set \(R\) is fixed by \(q\) if \(\{qd | d \in R\}= R\) (see Section 3 of [Spe1975]).
INPUT:
R
– a list containing elements of an abelian group; the relative difference setq
– an integer
EXAMPLES:
sage: # needs sage.modules sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, get_fixed_relative_difference_set, is_fixed_relative_difference_set sage: G, s1 = relative_difference_set_from_m_sequence(7, 2, return_group=True) # needs sage.libs.pari sage: s2 = get_fixed_relative_difference_set(G, s1, as_elements=True) # needs sage.libs.pari sage: is_fixed_relative_difference_set(s2, len(s2)) # needs sage.libs.pari True sage: G = AdditiveAbelianGroup([15]) sage: s3 = [G[1], G[2], G[3], G[4]] sage: is_fixed_relative_difference_set(s3, len(s3)) False
>>> from sage.all import * >>> # needs sage.modules >>> from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence, get_fixed_relative_difference_set, is_fixed_relative_difference_set >>> G, s1 = relative_difference_set_from_m_sequence(Integer(7), Integer(2), return_group=True) # needs sage.libs.pari >>> s2 = get_fixed_relative_difference_set(G, s1, as_elements=True) # needs sage.libs.pari >>> is_fixed_relative_difference_set(s2, len(s2)) # needs sage.libs.pari True >>> G = AdditiveAbelianGroup([Integer(15)]) >>> s3 = [G[Integer(1)], G[Integer(2)], G[Integer(3)], G[Integer(4)]] >>> is_fixed_relative_difference_set(s3, len(s3)) False
If the relative difference set does not contain elements of the group, the method returns false:
sage: G, s1 = relative_difference_set_from_m_sequence(7, 2, return_group=True) # needs sage.libs.pari sage.modules sage: s2 = get_fixed_relative_difference_set(G, s1, as_elements=False) # needs sage.libs.pari sage.modules sage: is_fixed_relative_difference_set(s2, len(s2)) # needs sage.libs.pari sage.modules False
>>> from sage.all import * >>> G, s1 = relative_difference_set_from_m_sequence(Integer(7), Integer(2), return_group=True) # needs sage.libs.pari sage.modules >>> s2 = get_fixed_relative_difference_set(G, s1, as_elements=False) # needs sage.libs.pari sage.modules >>> is_fixed_relative_difference_set(s2, len(s2)) # needs sage.libs.pari sage.modules False
- sage.combinat.designs.difference_family.is_relative_difference_set(R, G, H, params, verbose=False)[source]#
Check if
R
is a difference set ofG
relative toH
, with the given parameters.This function checks that \(G\), \(H\) and \(R\) have the orders specified in the parameters, and that \(R\) satisfies the definition of relative difference set (from [EB1966]): the collection of differences \(r-s\), \(r,s \in R\), \(r \neq s\) contains only elements of \(G\) which are not in \(H\), and contains every such element exactly \(d\) times.
INPUT:
R
– list; the relative diffeence set of length \(k\)G
– an additive abelian group of order \(mn\)H
– list; a submodule ofG
of order \(n\)params
– a tuple in the form \((m, n, k, d)\)verbose
– boolean (default:False
); ifTrue
, the function will be verbose when the sequences do not satisfy the contraints
EXAMPLES:
sage: from sage.combinat.designs.difference_family import _get_submodule_of_order, relative_difference_set_from_m_sequence, is_relative_difference_set sage: q, N = 5, 2 sage: params = ((q^N-1) // (q-1), q - 1, q^(N-1), q^(N-2)) sage: G, R = relative_difference_set_from_m_sequence(q, N, return_group=True) # needs sage.libs.pari sage.modules sage: H = _get_submodule_of_order(G, q - 1) # needs sage.libs.pari sage.modules sage: is_relative_difference_set(R, G, H, params) # needs sage.libs.pari sage.modules True
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import _get_submodule_of_order, relative_difference_set_from_m_sequence, is_relative_difference_set >>> q, N = Integer(5), Integer(2) >>> params = ((q**N-Integer(1)) // (q-Integer(1)), q - Integer(1), q**(N-Integer(1)), q**(N-Integer(2))) >>> G, R = relative_difference_set_from_m_sequence(q, N, return_group=True) # needs sage.libs.pari sage.modules >>> H = _get_submodule_of_order(G, q - Integer(1)) # needs sage.libs.pari sage.modules >>> is_relative_difference_set(R, G, H, params) # needs sage.libs.pari sage.modules True
If we pass the
verbose
argument, the function will explain why it failed:sage: R2 = [G[1], G[2], G[3], G[5], G[6]] # needs sage.libs.pari sage.modules sage: is_relative_difference_set(R2, G, H, params, verbose=True) # needs sage.libs.pari sage.modules There is a value in the difference set which is not repeated d times False
>>> from sage.all import * >>> R2 = [G[Integer(1)], G[Integer(2)], G[Integer(3)], G[Integer(5)], G[Integer(6)]] # needs sage.libs.pari sage.modules >>> is_relative_difference_set(R2, G, H, params, verbose=True) # needs sage.libs.pari sage.modules There is a value in the difference set which is not repeated d times False
- sage.combinat.designs.difference_family.is_supplementary_difference_set(Ks, v=None, lmbda=None, G=None, verbose=False)[source]#
Check that the sets in
Ks
are \(n-\{v; k_1, ..., k_n; \lambda \}\) supplementary difference sets over groupG
of orderv
.From the definition in [Spe1975]: let \(S_1, S_2, ..., S_n\) be \(n\) subsets of a group \(G\) of order \(v\) such that \(|S_i| = k_i\). If, for each \(g \in G\), \(g \neq 0\), the total number of solutions of \(a_i - a'_i = g\), with \(a_i, a'_i \in S_i\) is \(\lambda\), then \(S_1, S_2, ..., S_n\) are \(n-\{v; k_1, ..., k_n; \lambda\}\) supplementary difference sets.
One of the parameters
v
orG
must always be specified. IfG
is not given, the function will use anAdditiveAbelianGroup
of orderv
.INPUT:
Ks
– a list of sets to be checkedv
– integer; the parameter \(v\) of the supplementary difference setslmbda
– integer; the parameter \(\lambda\) of the supplementary difference setsG
– a group of order \(v\)verbose
– boolean (default:False
); ifTrue
, the function will be verbose when the sets do not satisfy the contraints
EXAMPLES:
sage: from sage.combinat.designs.difference_family import supplementary_difference_set_from_rel_diff_set, is_supplementary_difference_set sage: G, [S1, S2, S3, S4] = supplementary_difference_set_from_rel_diff_set(17) # needs sage.modules sage.rings.finite_rings sage: is_supplementary_difference_set([S1, S2, S3, S4], lmbda=16, G=G) # needs sage.modules sage.rings.finite_rings True
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import supplementary_difference_set_from_rel_diff_set, is_supplementary_difference_set >>> G, [S1, S2, S3, S4] = supplementary_difference_set_from_rel_diff_set(Integer(17)) # needs sage.modules sage.rings.finite_rings >>> is_supplementary_difference_set([S1, S2, S3, S4], lmbda=Integer(16), G=G) # needs sage.modules sage.rings.finite_rings True
The parameter
v
can be given instead ofG
:sage: is_supplementary_difference_set([S1, S2, S3, S4], v=16, lmbda=16) # needs sage.modules sage.rings.finite_rings True sage: is_supplementary_difference_set([S1, S2, S3, S4], v=20, lmbda=16) # needs sage.modules sage.rings.finite_rings False
>>> from sage.all import * >>> is_supplementary_difference_set([S1, S2, S3, S4], v=Integer(16), lmbda=Integer(16)) # needs sage.modules sage.rings.finite_rings True >>> is_supplementary_difference_set([S1, S2, S3, S4], v=Integer(20), lmbda=Integer(16)) # needs sage.modules sage.rings.finite_rings False
If
verbose=True
, the function will be verbose:sage: is_supplementary_difference_set([S1, S2, S3, S4], lmbda=14, G=G, # needs sage.modules sage.rings.finite_rings ....: verbose=True) Number of pairs with difference (1) is 16, but lambda is 14 False
>>> from sage.all import * >>> is_supplementary_difference_set([S1, S2, S3, S4], lmbda=Integer(14), G=G, # needs sage.modules sage.rings.finite_rings ... verbose=True) Number of pairs with difference (1) is 16, but lambda is 14 False
- sage.combinat.designs.difference_family.mcfarland_1973_construction(q, s)[source]#
Return a difference set.
The difference set returned has the following parameters
\[v = \frac{q^{s+1}(q^{s+1}+q-2)}{q-1}, k = \frac{q^s (q^{s+1}-1)}{q-1}, \lambda = \frac{q^s(q^s-1)}{q-1}\]This construction is due to [McF1973].
INPUT:
q
,s
– integers; parameters for the difference set (see the above formulas for the expression ofv
,k
,l
in terms ofq
ands
)
See also
The function
are_mcfarland_1973_parameters()
makes the translation between the parameters \((q,s)\) corresponding to a given triple \((v,k,\lambda)\).REFERENCES:
[McF1973] (1,2,3)Robert L. McFarland “A family of difference sets in non-cyclic groups” J. Combinatorial Theory (A) 15 (1973) 1–10. doi:10.1016/0097-3165(73)90031-9
EXAMPLES:
sage: from sage.combinat.designs.difference_family import ( ....: mcfarland_1973_construction, is_difference_family) sage: G,D = mcfarland_1973_construction(3, 1) # needs sage.modules sage: assert is_difference_family(G, D, 45, 12, 3) # needs sage.modules sage: G,D = mcfarland_1973_construction(2, 2) # needs sage.modules sage: assert is_difference_family(G, D, 64, 28, 12) # needs sage.modules
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import ( ... mcfarland_1973_construction, is_difference_family) >>> G,D = mcfarland_1973_construction(Integer(3), Integer(1)) # needs sage.modules >>> assert is_difference_family(G, D, Integer(45), Integer(12), Integer(3)) # needs sage.modules >>> G,D = mcfarland_1973_construction(Integer(2), Integer(2)) # needs sage.modules >>> assert is_difference_family(G, D, Integer(64), Integer(28), Integer(12)) # needs sage.modules
- sage.combinat.designs.difference_family.one_cyclic_tiling(A, n)[source]#
Given a subset
A
of the cyclic additive group \(G = Z / nZ\) return another subset \(B\) so that \(A + B = G\) and \(|A| |B| = n\) (i.e. any element of \(G\) is uniquely expressed as a sum \(a+b\) with \(a\) in \(A\) and \(b\) in \(B\)).EXAMPLES:
sage: from sage.combinat.designs.difference_family import one_cyclic_tiling sage: tile = [0,2,4] sage: m = one_cyclic_tiling(tile,6); m [0, 3] sage: sorted((i+j)%6 for i in tile for j in m) [0, 1, 2, 3, 4, 5] sage: def print_tiling(tile, translat, n): ....: for x in translat: ....: print(''.join('X' if (i-x)%n in tile else '.' for i in range(n))) sage: tile = [0, 1, 2, 7] sage: m = one_cyclic_tiling(tile, 12) sage: print_tiling(tile, m, 12) XXX....X.... ....XXX....X ...X....XXX. sage: tile = [0, 1, 5] sage: m = one_cyclic_tiling(tile, 12) sage: print_tiling(tile, m, 12) XX...X...... ...XX...X... ......XX...X ..X......XX. sage: tile = [0, 2] sage: m = one_cyclic_tiling(tile, 8) sage: print_tiling(tile, m, 8) X.X..... ....X.X. .X.X.... .....X.X
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import one_cyclic_tiling >>> tile = [Integer(0),Integer(2),Integer(4)] >>> m = one_cyclic_tiling(tile,Integer(6)); m [0, 3] >>> sorted((i+j)%Integer(6) for i in tile for j in m) [0, 1, 2, 3, 4, 5] >>> def print_tiling(tile, translat, n): ... for x in translat: ... print(''.join('X' if (i-x)%n in tile else '.' for i in range(n))) >>> tile = [Integer(0), Integer(1), Integer(2), Integer(7)] >>> m = one_cyclic_tiling(tile, Integer(12)) >>> print_tiling(tile, m, Integer(12)) XXX....X.... ....XXX....X ...X....XXX. >>> tile = [Integer(0), Integer(1), Integer(5)] >>> m = one_cyclic_tiling(tile, Integer(12)) >>> print_tiling(tile, m, Integer(12)) XX...X...... ...XX...X... ......XX...X ..X......XX. >>> tile = [Integer(0), Integer(2)] >>> m = one_cyclic_tiling(tile, Integer(8)) >>> print_tiling(tile, m, Integer(8)) X.X..... ....X.X. .X.X.... .....X.X
ALGORITHM:
Uses dancing links
sage.combinat.dlx
- sage.combinat.designs.difference_family.one_radical_difference_family(K, k)[source]#
Search for a radical difference family on
K
using dancing links algorithm.For the definition of radical difference family, see
radical_difference_family()
. Here, we consider only radical difference family with \(\lambda = 1\).INPUT:
K
– a finite field of cardinality \(q\)k
– a positive integer so that \(k(k-1)\) divides \(q-1\)
OUTPUT:
Either a difference family or
None
if it does not exist.ALGORITHM:
The existence of a radical difference family is equivalent to a one dimensional tiling (or packing) problem in a cyclic group. This subsequent problem is solved by a call to the function
one_cyclic_tiling()
.Let \(K^*\) be the multiplicative group of the finite field \(K\). A radical family has the form \(\mathcal B = \{x_1 B, \ldots, x_k B\}\), where \(B=\{x:x^{k}=1\}\) (for \(k\) odd) or \(B=\{x:x^{k-1}=1\}\cup \{0\}\) (for \(k\) even). Equivalently, \(K^*\) decomposes as:
\[K^* = \Delta (x_1 B) \cup \cdots \cup \Delta (x_k B) = x_1 \Delta B \cup \cdots \cup x_k \Delta B.\]We observe that \(C=B\backslash 0\) is a subgroup of the (cyclic) group \(K^*\), that can thus be generated by some element \(r\). Furthermore, we observe that \(\Delta B\) is always a union of cosets of \(\pm C\) (which is twice larger than \(C\)).
\[\begin{split}\begin{array}{llll} (k\text{ odd} ) & \Delta B &= \{r^i-r^j:r^i\neq r^j\} &= \pm C\cdot \{r^i-1: 0 < i \leq m\}\\ (k\text{ even}) & \Delta B &= \{r^i-r^j:r^i\neq r^j\}\cup C &= \pm C\cdot \{r^i-1: 0 < i < m\}\cup \pm C \end{array}\end{split}\]where
\[(k\text{ odd})\ m = (k-1)/2 \quad \text{and} \quad (k\text{ even})\ m = k/2.\]Consequently, \(\mathcal B = \{x_1 B, \ldots, x_k B\}\) is a radical difference family if and only if \(\{x_1 (\Delta B/(\pm C)), \ldots, x_k (\Delta B/(\pm C))\}\) is a partition of the cyclic group \(K^*/(\pm C)\).
EXAMPLES:
sage: from sage.combinat.designs.difference_family import ( ....: one_radical_difference_family, ....: is_difference_family) sage: one_radical_difference_family(GF(13),4) # needs sage.rings.finite_rings [[0, 1, 3, 9]]
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import ( ... one_radical_difference_family, ... is_difference_family) >>> one_radical_difference_family(GF(Integer(13)),Integer(4)) # needs sage.rings.finite_rings [[0, 1, 3, 9]]
The parameters that appear in [Bu95]:
sage: df = one_radical_difference_family(GF(449), 8); df # needs sage.rings.finite_rings [[0, 1, 18, 25, 176, 324, 359, 444], [0, 9, 88, 162, 222, 225, 237, 404], [0, 11, 140, 198, 275, 357, 394, 421], [0, 40, 102, 249, 271, 305, 388, 441], [0, 49, 80, 93, 161, 204, 327, 433], [0, 70, 99, 197, 230, 362, 403, 435], [0, 121, 141, 193, 293, 331, 335, 382], [0, 191, 285, 295, 321, 371, 390, 392]] sage: is_difference_family(GF(449), df, 449, 8, 1) # needs sage.rings.finite_rings True
>>> from sage.all import * >>> df = one_radical_difference_family(GF(Integer(449)), Integer(8)); df # needs sage.rings.finite_rings [[0, 1, 18, 25, 176, 324, 359, 444], [0, 9, 88, 162, 222, 225, 237, 404], [0, 11, 140, 198, 275, 357, 394, 421], [0, 40, 102, 249, 271, 305, 388, 441], [0, 49, 80, 93, 161, 204, 327, 433], [0, 70, 99, 197, 230, 362, 403, 435], [0, 121, 141, 193, 293, 331, 335, 382], [0, 191, 285, 295, 321, 371, 390, 392]] >>> is_difference_family(GF(Integer(449)), df, Integer(449), Integer(8), Integer(1)) # needs sage.rings.finite_rings True
- sage.combinat.designs.difference_family.radical_difference_family(K, k, l=1, existence=False, check=True)[source]#
Return a
(v,k,l)
-radical difference family.Let fix an integer \(k\) and a prime power \(q = t k(k-1) + 1\). Let \(K\) be a field of cardinality \(q\). A \((q,k,1)\)-difference family is radical if its base blocks are either: a coset of the \(k\)-th root of unity for \(k\) odd or a coset of \(k-1\)-th root of unity and \(0\) if \(k\) is even (the number \(t\) is the number of blocks of that difference family).
The terminology comes from M. Buratti article [Bu95] but the first constructions go back to R. Wilson [Wi72].
INPUT:
K
– a finite fieldk
– positive integer; the size of the blocksl
– integer (default:1
); the \(\lambda\) parameterexistence
– ifTrue
, then return eitherTrue
if Sage knows how to build such design,Unknown
if it does not andFalse
if it knows that the design does not existcheck
– boolean (default:True
); ifTrue
then the result of the computation is checked before being returned. This should not be needed but ensures that the output is correct
EXAMPLES:
sage: from sage.combinat.designs.difference_family import radical_difference_family sage: radical_difference_family(GF(73), 9) # needs sage.rings.finite_rings [[1, 2, 4, 8, 16, 32, 37, 55, 64]] sage: radical_difference_family(GF(281), 5) # needs sage.rings.finite_rings [[1, 86, 90, 153, 232], [4, 50, 63, 79, 85], [5, 36, 149, 169, 203], [7, 40, 68, 219, 228], [9, 121, 212, 248, 253], [29, 81, 222, 246, 265], [31, 137, 167, 247, 261], [32, 70, 118, 119, 223], [39, 56, 66, 138, 263], [43, 45, 116, 141, 217], [98, 101, 109, 256, 279], [106, 124, 145, 201, 267], [111, 123, 155, 181, 273], [156, 209, 224, 264, 271]] sage: for k in range(5,10): # needs sage.rings.finite_rings ....: print("k = {}".format(k)) ....: list_q = [] ....: for q in range(k*(k-1)+1, 2000, k*(k-1)): ....: if is_prime_power(q): ....: K = GF(q,'a') ....: if radical_difference_family(K, k, existence=True) is True: ....: list_q.append(q) ....: _ = radical_difference_family(K,k) ....: print(" ".join(str(p) for p in list_q)) k = 5 41 61 81 241 281 401 421 601 641 661 701 761 821 881 1181 1201 1301 1321 1361 1381 1481 1601 1681 1801 1901 k = 6 181 211 241 631 691 1531 1831 1861 k = 7 337 421 463 883 1723 k = 8 449 1009 k = 9 73 1153 1873
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import radical_difference_family >>> radical_difference_family(GF(Integer(73)), Integer(9)) # needs sage.rings.finite_rings [[1, 2, 4, 8, 16, 32, 37, 55, 64]] >>> radical_difference_family(GF(Integer(281)), Integer(5)) # needs sage.rings.finite_rings [[1, 86, 90, 153, 232], [4, 50, 63, 79, 85], [5, 36, 149, 169, 203], [7, 40, 68, 219, 228], [9, 121, 212, 248, 253], [29, 81, 222, 246, 265], [31, 137, 167, 247, 261], [32, 70, 118, 119, 223], [39, 56, 66, 138, 263], [43, 45, 116, 141, 217], [98, 101, 109, 256, 279], [106, 124, 145, 201, 267], [111, 123, 155, 181, 273], [156, 209, 224, 264, 271]] >>> for k in range(Integer(5),Integer(10)): # needs sage.rings.finite_rings ... print("k = {}".format(k)) ... list_q = [] ... for q in range(k*(k-Integer(1))+Integer(1), Integer(2000), k*(k-Integer(1))): ... if is_prime_power(q): ... K = GF(q,'a') ... if radical_difference_family(K, k, existence=True) is True: ... list_q.append(q) ... _ = radical_difference_family(K,k) ... print(" ".join(str(p) for p in list_q)) k = 5 41 61 81 241 281 401 421 601 641 661 701 761 821 881 1181 1201 1301 1321 1361 1381 1481 1601 1681 1801 1901 k = 6 181 211 241 631 691 1531 1831 1861 k = 7 337 421 463 883 1723 k = 8 449 1009 k = 9 73 1153 1873
- sage.combinat.designs.difference_family.radical_difference_set(K, k, l=1, existence=False, check=True)[source]#
Return a difference set made of a cyclotomic coset in the finite field
K
and with parametersk
andl
.Most of these difference sets appear in chapter VI.18.48 of the Handbook of combinatorial designs.
EXAMPLES:
sage: from sage.combinat.designs.difference_family import radical_difference_set sage: D = radical_difference_set(GF(7), 3, 1); D # needs sage.rings.finite_rings [[1, 2, 4]] sage: sorted(x-y for x in D[0] for y in D[0] if x != y) # needs sage.rings.finite_rings [1, 2, 3, 4, 5, 6] sage: D = radical_difference_set(GF(16,'a'), 6, 2) # needs sage.rings.finite_rings sage: sorted(x-y for x in D[0] for y in D[0] if x != y) # needs sage.rings.finite_rings [1, 1, a, a, a + 1, a + 1, a^2, a^2, ... a^3 + a^2 + a + 1, a^3 + a^2 + a + 1] sage: for k in range(2,50): # needs sage.rings.finite_rings ....: for l in reversed(divisors(k*(k-1))): ....: v = k*(k-1)//l + 1 ....: if is_prime_power(v) and radical_difference_set(GF(v,'a'),k,l,existence=True) is True: ....: _ = radical_difference_set(GF(v,'a'),k,l) ....: print("{:3} {:3} {:3}".format(v,k,l)) 3 2 1 4 3 2 7 3 1 5 4 3 7 4 2 13 4 1 11 5 2 7 6 5 11 6 3 16 6 2 8 7 6 9 8 7 19 9 4 37 9 2 73 9 1 11 10 9 19 10 5 23 11 5 13 12 11 23 12 6 27 13 6 27 14 7 16 15 14 31 15 7 ... 41 40 39 79 40 20 83 41 20 43 42 41 83 42 21 47 46 45 49 48 47 197 49 12
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import radical_difference_set >>> D = radical_difference_set(GF(Integer(7)), Integer(3), Integer(1)); D # needs sage.rings.finite_rings [[1, 2, 4]] >>> sorted(x-y for x in D[Integer(0)] for y in D[Integer(0)] if x != y) # needs sage.rings.finite_rings [1, 2, 3, 4, 5, 6] >>> D = radical_difference_set(GF(Integer(16),'a'), Integer(6), Integer(2)) # needs sage.rings.finite_rings >>> sorted(x-y for x in D[Integer(0)] for y in D[Integer(0)] if x != y) # needs sage.rings.finite_rings [1, 1, a, a, a + 1, a + 1, a^2, a^2, ... a^3 + a^2 + a + 1, a^3 + a^2 + a + 1] >>> for k in range(Integer(2),Integer(50)): # needs sage.rings.finite_rings ... for l in reversed(divisors(k*(k-Integer(1)))): ... v = k*(k-Integer(1))//l + Integer(1) ... if is_prime_power(v) and radical_difference_set(GF(v,'a'),k,l,existence=True) is True: ... _ = radical_difference_set(GF(v,'a'),k,l) ... print("{:3} {:3} {:3}".format(v,k,l)) 3 2 1 4 3 2 7 3 1 5 4 3 7 4 2 13 4 1 11 5 2 7 6 5 11 6 3 16 6 2 8 7 6 9 8 7 19 9 4 37 9 2 73 9 1 11 10 9 19 10 5 23 11 5 13 12 11 23 12 6 27 13 6 27 14 7 16 15 14 31 15 7 ... 41 40 39 79 40 20 83 41 20 43 42 41 83 42 21 47 46 45 49 48 47 197 49 12
- sage.combinat.designs.difference_family.relative_difference_set_from_homomorphism(q, N, d, check=True, return_group=False)[source]#
Construct \(R((q^N-1)/(q-1), n, q^{N-1}, q^{N-2}d)\) where \(nd = q-1\).
Given a prime power \(q\), a number \(N \ge 2\) and integers \(d\) such that \(d | q-1\) we create the relative difference set using the construction from Corollary 5.1.1 of [EB1966].
INPUT:
q
– a prime powerN
– an integer greater than 1d
– an integer which divides \(q-1\)check
– boolean (default:True
); ifTrue
, check that the result is a relative difference set before returning itreturn_group
– boolean (default:False
); ifTrue
, the function will also return the group from which the set is created
OUTPUT:
If
return_group=False
, the function return only the relative difference set. Otherwise, it returns a tuple containing the group and the set.EXAMPLES:
sage: from sage.combinat.designs.difference_family import relative_difference_set_from_homomorphism sage: relative_difference_set_from_homomorphism(7, 2, 3) # random # needs sage.modules sage.rings.finite_rings [(0), (3), (4), (2), (13), (7), (14)] sage: relative_difference_set_from_homomorphism(9, 2, 4, # random # needs sage.modules sage.rings.finite_rings ....: check=False, return_group=True) (Additive abelian group isomorphic to Z/80, [(0), (4), (6), (13), (7), (12), (15), (8), (9)]) sage: relative_difference_set_from_homomorphism(9, 2, 5) # needs sage.modules sage.rings.finite_rings Traceback (most recent call last): ... ValueError: q-1 must be a multiple of d
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import relative_difference_set_from_homomorphism >>> relative_difference_set_from_homomorphism(Integer(7), Integer(2), Integer(3)) # random # needs sage.modules sage.rings.finite_rings [(0), (3), (4), (2), (13), (7), (14)] >>> relative_difference_set_from_homomorphism(Integer(9), Integer(2), Integer(4), # random # needs sage.modules sage.rings.finite_rings ... check=False, return_group=True) (Additive abelian group isomorphic to Z/80, [(0), (4), (6), (13), (7), (12), (15), (8), (9)]) >>> relative_difference_set_from_homomorphism(Integer(9), Integer(2), Integer(5)) # needs sage.modules sage.rings.finite_rings Traceback (most recent call last): ... ValueError: q-1 must be a multiple of d
- sage.combinat.designs.difference_family.relative_difference_set_from_m_sequence(q, N, check=True, return_group=False)[source]#
Construct \(R((q^N-1)/(q-1), q-1, q^{N-1}, q^{N-2})\) where
q
is a prime power and \(N\ge 2\).The relative difference set is constructed over the set of additive integers modulo \(q^N-1\), as described in Theorem 5.1 of [EB1966]. Given an m-sequence \((a_i)\) of period \(q^N-1\), the set is: \(R=\{i | 0 \le i \le q^{N-1}, a_i=1\}\).
INPUT:
q
– a prime powerN
– a nonnegative numbercheck
– boolean (default:True
); ifTrue
, check that the result is a relative difference set before returning itreturn_group
– boolean (default:False
); ifTrue
, the function will also return the group from which the set is created
OUTPUT:
If
return_group=False
, the function return only the relative difference set. Otherwise, it returns a tuple containing the group and the set.EXAMPLES:
sage: from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence sage: relative_difference_set_from_m_sequence(2, 4, # random # needs sage.modules sage.rings.finite_rings ....: return_group=True) (Additive abelian group isomorphic to Z/15, [(0), (4), (5), (6), (7), (9), (11), (12)]) sage: relative_difference_set_from_m_sequence(8, 2, check=False) # random # needs sage.modules sage.rings.finite_rings [(0), (6), (30), (40), (41), (44), (56), (61)] sage: relative_difference_set_from_m_sequence(6, 2) # needs sage.modules Traceback (most recent call last): ... ValueError: q must be a prime power
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import relative_difference_set_from_m_sequence >>> relative_difference_set_from_m_sequence(Integer(2), Integer(4), # random # needs sage.modules sage.rings.finite_rings ... return_group=True) (Additive abelian group isomorphic to Z/15, [(0), (4), (5), (6), (7), (9), (11), (12)]) >>> relative_difference_set_from_m_sequence(Integer(8), Integer(2), check=False) # random # needs sage.modules sage.rings.finite_rings [(0), (6), (30), (40), (41), (44), (56), (61)] >>> relative_difference_set_from_m_sequence(Integer(6), Integer(2)) # needs sage.modules Traceback (most recent call last): ... ValueError: q must be a prime power
- sage.combinat.designs.difference_family.singer_difference_set(q, d)[source]#
Return a difference set associated to the set of hyperplanes in a projective space of dimension \(d\) over \(GF(q)\).
A Singer difference set has parameters:
\[v = \frac{q^{d+1}-1}{q-1}, \quad k = \frac{q^d-1}{q-1}, \quad \lambda = \frac{q^{d-1}-1}{q-1}.\]The idea of the construction is as follows. One consider the finite field \(GF(q^{d+1})\) as a vector space of dimension \(d+1\) over \(GF(q)\). The set of \(GF(q)\)-lines in \(GF(q^{d+1})\) is a projective plane and its set of hyperplanes form a balanced incomplete block design.
Now, considering a multiplicative generator \(z\) of \(GF(q^{d+1})\), we get a transitive action of a cyclic group on our projective plane from which it is possible to build a difference set.
The construction is given in details in [Stinson2004], section 3.3.
EXAMPLES:
sage: from sage.combinat.designs.difference_family import singer_difference_set, is_difference_family sage: G,D = singer_difference_set(3,2) # needs sage.rings.finite_rings sage: is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (13,4,1)-difference family True sage: G,D = singer_difference_set(4,2) # needs sage.rings.finite_rings sage: is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (21,5,1)-difference family True sage: G,D = singer_difference_set(3,3) # needs sage.rings.finite_rings sage: is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (40,13,4)-difference family True sage: G,D = singer_difference_set(9,3) # needs sage.rings.finite_rings sage: is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (820,91,10)-difference family True
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import singer_difference_set, is_difference_family >>> G,D = singer_difference_set(Integer(3),Integer(2)) # needs sage.rings.finite_rings >>> is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (13,4,1)-difference family True >>> G,D = singer_difference_set(Integer(4),Integer(2)) # needs sage.rings.finite_rings >>> is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (21,5,1)-difference family True >>> G,D = singer_difference_set(Integer(3),Integer(3)) # needs sage.rings.finite_rings >>> is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (40,13,4)-difference family True >>> G,D = singer_difference_set(Integer(9),Integer(3)) # needs sage.rings.finite_rings >>> is_difference_family(G, D, verbose=True) # needs sage.rings.finite_rings It is a (820,91,10)-difference family True
- sage.combinat.designs.difference_family.skew_spin_goethals_seidel_difference_family(n, existence=False, check=True)[source]#
Construct skew spin type Goethals-Seidel difference family with parameters \((n; k_1, k_2, k_3, k_4; \lambda)\).
The construction is described in [Djo2024]. This function contains, for each value of \(n\), either a full representation of \(S_1, S_2\) together with the multiplier \(\mu\), or a subgroup \(H\), two sets of representatives, and the multiplier.
This data is used to construct the difference family using the functions
_construct_gs_difference_family_from_full()
and_construct_gs_difference_family_from_compact()
.INPUT:
n
– integer; the parameter of the GS difference familyexistence
– boolean (default:False
); ifTrue
, only check whether the skew difference family can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are a skew difference family before returning them; setting this parameter toFalse
may speed up the computation considerably
OUTPUT:
If
existence=False
, the function returns the group G of integers modulon
and a list containing 4 sets, or raises an error if data for the givenn
is not available. Ifexistence=True
, the function returns a boolean representing whether the skew difference family can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import skew_spin_goethals_seidel_difference_family sage: G, [S1, S2, S3, S4] = skew_spin_goethals_seidel_difference_family(61)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import skew_spin_goethals_seidel_difference_family >>> G, [S1, S2, S3, S4] = skew_spin_goethals_seidel_difference_family(Integer(61))
If existence is
True
, the function returns a boolean:sage: skew_spin_goethals_seidel_difference_family(61, existence=True) True sage: skew_spin_goethals_seidel_difference_family(5, existence=True) False
>>> from sage.all import * >>> skew_spin_goethals_seidel_difference_family(Integer(61), existence=True) True >>> skew_spin_goethals_seidel_difference_family(Integer(5), existence=True) False
- sage.combinat.designs.difference_family.skew_supplementary_difference_set(n, existence=False, check=True, return_group=False)[source]#
Construct \(4-\{n; n_1, n_2, n_3, n_4; \lambda\}\) supplementary difference sets, where \(S_1\) is skew and \(n_1 + n_2 + n_3 + n_4 = n+\lambda\).
These sets are constructed from available data, as described in [Djo1994a]. The set \(S_1 \subset G\) is always skew, i.e. \(S_1 \cap (-S_1) = \emptyset\) and \(S_1 \cup (-S_1) = G \setminus \{0\}\).
The data is taken from:
\(n = 103, 151\): [Djo1994a]
\(n = 67, 113, 127, 157, 163, 181, 241\): [Djo1992a]
\(n = 37, 43\): [Djo1992b]
\(n = 39, 49, 65, 93, 121, 129, 133, 217, 219, 267\): [Djo1992c]
\(n = 97\): [Djo2008a]
\(n = 109, 145, 247\): [Djo2008b]
\(n = 73\): [Djo2023b]
\(n = 213, 631\): [DGK2014]
\(n = 331\): [DK2016]
Additional skew Supplementary difference sets are built using the function
skew_supplementary_difference_set_over_polynomial_ring()
, andskew_supplementary_difference_set_with_paley_todd()
.INPUT:
n
– integer; the parameter of the supplementary difference setexistence
– boolean (default:False
); ifTrue
, only check whether the supplementary difference sets can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are supplementary difference sets with \(S_1\) skew before returning them; setting this parameter toFalse
may speed up the computation considerablyreturn_group
– boolean (default:False
); ifTrue
, the function will also return the group from which the sets are created
OUTPUT:
If
existence=False
, the function returns a list containing 4 sets, or raises an error if data for the givenn
is not available. Ifreturn_group=True
the function will additionally return the group from which the sets are created. Ifexistence=True
, the function returns a boolean representing whether skew supplementary difference sets can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import skew_supplementary_difference_set sage: [S1, S2, S3, S4] = skew_supplementary_difference_set(39)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import skew_supplementary_difference_set >>> [S1, S2, S3, S4] = skew_supplementary_difference_set(Integer(39))
If
return_group=True
, the function will also return the group:sage: G, [S1, S2, S3, S4] = skew_supplementary_difference_set(103, return_group=True)
>>> from sage.all import * >>> G, [S1, S2, S3, S4] = skew_supplementary_difference_set(Integer(103), return_group=True)
If
existence=True
, the function returns a boolean:sage: skew_supplementary_difference_set(103, existence=True) True sage: skew_supplementary_difference_set(17, existence=True) False
>>> from sage.all import * >>> skew_supplementary_difference_set(Integer(103), existence=True) True >>> skew_supplementary_difference_set(Integer(17), existence=True) False
Note
The data for \(n=247\) in [Djo2008b] contains a typo: the set \(\alpha_2\) should contain \(223\) instead of \(233\). This can be verified by checking the resulting sets, which are given explicitly in the paper.
- sage.combinat.designs.difference_family.skew_supplementary_difference_set_over_polynomial_ring(n, existence=False, check=True)[source]#
Construct skew supplementary difference sets over a polynomial ring of order
n
.The skew supplementary difference sets for \(n=81, 169\) are taken from [Djo1994a].
INPUT:
n
– integer; the parameter of the supplementary difference setsexistence
– boolean (default:False
); ifTrue
, only check whether the supplementary difference sets can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are supplementary difference sets with \(S_1\) skew before returning them; setting this parameter toFalse
may speed up the computation considerably
OUTPUT:
If
existence=False
, the function returns a Polynomial Ring of ordern
and a list containing 4 sets, or raises an error if data for the givenn
is not available. Ifexistence=True
, the function returns a boolean representing whether skew supplementary difference sets can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import skew_supplementary_difference_set_over_polynomial_ring sage: G, [S1, S2, S3, S4] = skew_supplementary_difference_set_over_polynomial_ring(81) # needs sage.libs.pari
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import skew_supplementary_difference_set_over_polynomial_ring >>> G, [S1, S2, S3, S4] = skew_supplementary_difference_set_over_polynomial_ring(Integer(81)) # needs sage.libs.pari
If
existence=True
, the function returns a boolean:sage: skew_supplementary_difference_set_over_polynomial_ring(81, existence=True) True sage: skew_supplementary_difference_set_over_polynomial_ring(17, existence=True) False
>>> from sage.all import * >>> skew_supplementary_difference_set_over_polynomial_ring(Integer(81), existence=True) True >>> skew_supplementary_difference_set_over_polynomial_ring(Integer(17), existence=True) False
- sage.combinat.designs.difference_family.skew_supplementary_difference_set_with_paley_todd(n, existence=False, check=True)[source]#
Construct \(4-\{n; n_1, n_2, n_3, n_4; \lambda\}\) skew supplementary difference sets where \(S_1\) is the Paley-Todd difference set.
The skew SDS returned have the property that \(n_1 + n_2 + n_3 + n_4 = n + \lambda\).
This construction is described in [DK2016]. The function contains, for each value of \(n\), a set \(H\) containing integers modulo \(n\), and four sets \(J, K, L\). Then, these are used to construct \((n; k_2, k_3, k_4; \lambda_2)\) difference family, with \(\lambda_2 = k_2 + k_3 + k_4 + (3n - 1) / 4\). Finally, these sets together with the Paley-Todd difference set form a skew supplementary difference set.
INPUT:
n
– integer; the parameter of the supplementary difference setexistence
– boolean (default:False
); ifTrue
, only check whether the supplementary difference sets can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are supplementary difference sets with \(S_1\) skew before returning them; setting this parameter toFalse
may speed up the computation considerably
OUTPUT:
If
existence=False
, the function returns the group G of integers modulon
and a list containing 4 sets, or raises an error if data for the givenn
is not available. Ifexistence=True
, the function returns a boolean representing whether skew supplementary difference sets can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import skew_supplementary_difference_set_with_paley_todd sage: G, [S1, S2, S3, S4] = skew_supplementary_difference_set_with_paley_todd(239)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import skew_supplementary_difference_set_with_paley_todd >>> G, [S1, S2, S3, S4] = skew_supplementary_difference_set_with_paley_todd(Integer(239))
If existence is
True
, the function returns a boolean:sage: skew_supplementary_difference_set_with_paley_todd(239, existence=True) True sage: skew_supplementary_difference_set_with_paley_todd(17, existence=True) False
>>> from sage.all import * >>> skew_supplementary_difference_set_with_paley_todd(Integer(239), existence=True) True >>> skew_supplementary_difference_set_with_paley_todd(Integer(17), existence=True) False
- sage.combinat.designs.difference_family.spin_goethals_seidel_difference_family(n, existence=False, check=True)[source]#
Construct a spin type Goethals-Seidel difference family with parameters \((n; k_1, k_2, k_3, k_4; \lambda)\).
The construction is described in [Djo2024]. This function contains, for each value of \(n\), either a full representation of \(S_1, S_2\) together with the multiplier \(\mu\), or a subgroup \(H\), two sets of representatives, and the multiplier. This data is used to construct the difference family using the functions
_construct_gs_difference_family_from_full()
and_construct_gs_difference_family_from_compact()
.Additionally, this function also checks if a (skew) difference family can be constructed using
skew_spin_goethals_seidel_difference_family()
.INPUT:
n
– integer; the parameter of the GS difference familyexistence
– boolean (default:False
); ifTrue
, only check whether the difference family can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are a difference family before returning them; setting this parameter toFalse
may speed up the computation considerably
OUTPUT:
If
existence=False
, the function returns the group G of integers modulon
and a list containing 4 sets, or raises an error if data for the givenn
is not available. Ifexistence=True
, the function returns a boolean representing whether the difference family can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import spin_goethals_seidel_difference_family sage: G, [S1, S2, S3, S4] = spin_goethals_seidel_difference_family(73)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import spin_goethals_seidel_difference_family >>> G, [S1, S2, S3, S4] = spin_goethals_seidel_difference_family(Integer(73))
If existence is
True
, the function returns a boolean:sage: spin_goethals_seidel_difference_family(73, existence=True) True sage: spin_goethals_seidel_difference_family(5, existence=True) False
>>> from sage.all import * >>> spin_goethals_seidel_difference_family(Integer(73), existence=True) True >>> spin_goethals_seidel_difference_family(Integer(5), existence=True) False
- sage.combinat.designs.difference_family.supplementary_difference_set(q, existence=False, check=True)[source]#
Construct \(4-\{2v; v, v+1, v, v; 2v\}\) supplementary difference sets where \(q=2v+1\).
This is a deprecated version of
supplementary_difference_set_from_rel_diff_set()
, please use that instead.
- sage.combinat.designs.difference_family.supplementary_difference_set_from_rel_diff_set(q, existence=False, check=True)[source]#
Construct \(4-\{2v; v, v+1, v, v; 2v\}\) supplementary difference sets where \(q=2v+1\).
The sets are created from relative difference sets as detailed in Theorem 3.3 of [Spe1975]. this construction requires that \(q\) is an odd prime power and that there exists \(s \ge 0\) such that \((q-(2^{s+1}+1))/2^{s+1}\) is an odd prime power.
Note that the construction from [Spe1975] states that the resulting sets are \(4-\{2v; v+1, v, v, v; 2v\}\) supplementary difference sets. However, the implementation of that construction returns \(4-\{2v; v, v+1, v, v; 2v\}\) supplementary difference sets. This is not important, since the supplementary difference sets are not ordered.
INPUT:
q
– an odd prime powerexistence
– boolean (default:False
); IfTrue
, only check whether the supplementary difference sets can be constructedcheck
– boolean (default:True
); IfTrue
, check that the sets are supplementary difference sets before returning them
OUTPUT:
If
existence=False
, the function returns the 4 sets (containing integers), or raises an error ifq
does not satify the constraints. Ifexistence=True
, the function returns a boolean representing whether supplementary difference sets can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import supplementary_difference_set_from_rel_diff_set sage: supplementary_difference_set_from_rel_diff_set(17) #random # needs sage.libs.pari (Additive abelian group isomorphic to Z/16, [[(1), (5), (6), (7), (9), (13), (14), (15)], [(0), (2), (3), (5), (6), (10), (11), (13), (14)], [(0), (1), (2), (3), (5), (6), (7), (12)], [(0), (2), (3), (5), (6), (7), (9), (12)]])
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import supplementary_difference_set_from_rel_diff_set >>> supplementary_difference_set_from_rel_diff_set(Integer(17)) #random # needs sage.libs.pari (Additive abelian group isomorphic to Z/16, [[(1), (5), (6), (7), (9), (13), (14), (15)], [(0), (2), (3), (5), (6), (10), (11), (13), (14)], [(0), (1), (2), (3), (5), (6), (7), (12)], [(0), (2), (3), (5), (6), (7), (9), (12)]])
If
existence=True
, the function returns a boolean:sage: supplementary_difference_set_from_rel_diff_set(7, existence=True) False sage: supplementary_difference_set_from_rel_diff_set(17, existence=True) True
>>> from sage.all import * >>> supplementary_difference_set_from_rel_diff_set(Integer(7), existence=True) False >>> supplementary_difference_set_from_rel_diff_set(Integer(17), existence=True) True
See also
- sage.combinat.designs.difference_family.supplementary_difference_set_hadamard(n, existence=False, check=True)[source]#
Construct \(4-\{n; n_1, n_2, n_3, n_4; \lambda\}\) supplementary difference sets, where \(n_1 + n_2 + n_3 + n_4 = n+\lambda\).
These sets are constructed from available data, as described in [Djo1994a]. The data is taken from:
\(n = 191\): [Djo2008c]
\(n = 239\): [Djo1994b]
\(n = 251\): [DGK2014]
Additional SDS are constructed using
skew_supplementary_difference_set()
.INPUT:
n
– integer; the parameter of the supplementary difference setexistence
– boolean (default:False
); ifTrue
, only check whether the supplementary difference sets can be constructedcheck
– boolean (default:True
); ifTrue
, check that the sets are supplementary difference sets before returning them; Setting this parameter toFalse
may speed up the computation considerably
OUTPUT:
If
existence=False
, the function returns the ring of integers modulon
and a list containing the 4 sets, or raises an error if data for the givenn
is not available. Ifexistence=True
, the function returns a boolean representing whether skew supplementary difference sets can be constructed.EXAMPLES:
sage: from sage.combinat.designs.difference_family import supplementary_difference_set_hadamard sage: G, [S1, S2, S3, S4] = supplementary_difference_set_hadamard(191)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import supplementary_difference_set_hadamard >>> G, [S1, S2, S3, S4] = supplementary_difference_set_hadamard(Integer(191))
If
existence=True
, the function returns a boolean:sage: supplementary_difference_set_hadamard(191, existence=True) True sage: supplementary_difference_set_hadamard(17, existence=True) False
>>> from sage.all import * >>> supplementary_difference_set_hadamard(Integer(191), existence=True) True >>> supplementary_difference_set_hadamard(Integer(17), existence=True) False
- sage.combinat.designs.difference_family.turyn_1965_3x3xK(k=4)[source]#
Return a difference set in either \(C_3 \times C_3 \times C_4\) or \(C_3 \times C_3 \times C_2 \times C_2\) with parameters \(v=36\), \(k=15\), \(\lambda=6\).
This example appears in [Tu1965].
INPUT:
k
– either2
(to get a difference set in \(C_3 \times C_3 \times C_2 \times C_2\)) or4
(to get a difference set in \(C_3 \times C_3 \times C_3 \times C_4\))
EXAMPLES:
sage: from sage.combinat.designs.difference_family import turyn_1965_3x3xK sage: from sage.combinat.designs.difference_family import is_difference_family sage: G,D = turyn_1965_3x3xK(4) sage: assert is_difference_family(G, D, 36, 15, 6) sage: G,D = turyn_1965_3x3xK(2) sage: assert is_difference_family(G, D, 36, 15, 6)
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import turyn_1965_3x3xK >>> from sage.combinat.designs.difference_family import is_difference_family >>> G,D = turyn_1965_3x3xK(Integer(4)) >>> assert is_difference_family(G, D, Integer(36), Integer(15), Integer(6)) >>> G,D = turyn_1965_3x3xK(Integer(2)) >>> assert is_difference_family(G, D, Integer(36), Integer(15), Integer(6))
- sage.combinat.designs.difference_family.twin_prime_powers_difference_set(p, check=True)[source]#
Return a difference set on \(GF(p) \times GF(p+2)\).
The difference set is built from the following element of the Cartesian product of finite fields \(GF(p) \times GF(p+2)\):
\((x,0)\) with any \(x\)
\((x,y)\) with \(x\) and \(y\) squares
\((x,y)\) with \(x\) and \(y\) non-squares
For more information see Wikipedia article Difference_set.
INPUT:
check
– boolean (default:True
); ifTrue
, then the result of the computation is checked before being returned. This should not be needed but ensures that the output is correct
EXAMPLES:
sage: from sage.combinat.designs.difference_family import twin_prime_powers_difference_set sage: G, D = twin_prime_powers_difference_set(3) sage: G The Cartesian product of (Finite Field of size 3, Finite Field of size 5) sage: D [[(1, 1), (1, 4), (2, 2), (2, 3), (0, 0), (1, 0), (2, 0)]]
>>> from sage.all import * >>> from sage.combinat.designs.difference_family import twin_prime_powers_difference_set >>> G, D = twin_prime_powers_difference_set(Integer(3)) >>> G The Cartesian product of (Finite Field of size 3, Finite Field of size 5) >>> D [[(1, 1), (1, 4), (2, 2), (2, 3), (0, 0), (1, 0), (2, 0)]]