Partition Species#
- class sage.combinat.species.partition_species.PartitionSpecies(min=None, max=None, weight=None)[source]#
Bases:
GenericCombinatorialSpecies
Returns the species of partitions.
EXAMPLES:
sage: P = species.PartitionSpecies() sage: P.generating_series()[0:5] [1, 1, 1, 5/6, 5/8] sage: P.isotype_generating_series()[0:5] [1, 1, 2, 3, 5] sage: P = species.PartitionSpecies() sage: P._check() True sage: P == loads(dumps(P)) True
>>> from sage.all import * >>> P = species.PartitionSpecies() >>> P.generating_series()[Integer(0):Integer(5)] [1, 1, 1, 5/6, 5/8] >>> P.isotype_generating_series()[Integer(0):Integer(5)] [1, 1, 2, 3, 5] >>> P = species.PartitionSpecies() >>> P._check() True >>> P == loads(dumps(P)) True
- class sage.combinat.species.partition_species.PartitionSpeciesStructure(parent, labels, list)[source]#
Bases:
GenericSpeciesStructure
EXAMPLES:
sage: from sage.combinat.species.partition_species import PartitionSpeciesStructure sage: P = species.PartitionSpecies() sage: s = PartitionSpeciesStructure(P, ['a','b','c'], [[1,2],[3]]); s {{'a', 'b'}, {'c'}} sage: s == loads(dumps(s)) True
>>> from sage.all import * >>> from sage.combinat.species.partition_species import PartitionSpeciesStructure >>> P = species.PartitionSpecies() >>> s = PartitionSpeciesStructure(P, ['a','b','c'], [[Integer(1),Integer(2)],[Integer(3)]]); s {{'a', 'b'}, {'c'}} >>> s == loads(dumps(s)) True
- automorphism_group()[source]#
Returns the group of permutations whose action on this set partition leave it fixed.
EXAMPLES:
sage: p = PermutationGroupElement((2,3)) sage: from sage.combinat.species.partition_species import PartitionSpeciesStructure sage: a = PartitionSpeciesStructure(None, [2,3,4], [[1,2],[3]]); a {{2, 3}, {4}} sage: a.automorphism_group() Permutation Group with generators [(1,2)]
>>> from sage.all import * >>> p = PermutationGroupElement((Integer(2),Integer(3))) >>> from sage.combinat.species.partition_species import PartitionSpeciesStructure >>> a = PartitionSpeciesStructure(None, [Integer(2),Integer(3),Integer(4)], [[Integer(1),Integer(2)],[Integer(3)]]); a {{2, 3}, {4}} >>> a.automorphism_group() Permutation Group with generators [(1,2)]
- canonical_label()[source]#
EXAMPLES:
sage: P = species.PartitionSpecies() sage: S = P.structures(["a", "b", "c"]) sage: [s.canonical_label() for s in S] [{{'a', 'b', 'c'}}, {{'a', 'b'}, {'c'}}, {{'a', 'b'}, {'c'}}, {{'a', 'b'}, {'c'}}, {{'a'}, {'b'}, {'c'}}]
>>> from sage.all import * >>> P = species.PartitionSpecies() >>> S = P.structures(["a", "b", "c"]) >>> [s.canonical_label() for s in S] [{{'a', 'b', 'c'}}, {{'a', 'b'}, {'c'}}, {{'a', 'b'}, {'c'}}, {{'a', 'b'}, {'c'}}, {{'a'}, {'b'}, {'c'}}]
- change_labels(labels)[source]#
Return a relabelled structure.
INPUT:
labels
, a list of labels.
OUTPUT:
A structure with the i-th label of self replaced with the i-th label of the list.
EXAMPLES:
sage: p = PermutationGroupElement((2,3)) sage: from sage.combinat.species.partition_species import PartitionSpeciesStructure sage: a = PartitionSpeciesStructure(None, [2,3,4], [[1,2],[3]]); a {{2, 3}, {4}} sage: a.change_labels([1,2,3]) {{1, 2}, {3}}
>>> from sage.all import * >>> p = PermutationGroupElement((Integer(2),Integer(3))) >>> from sage.combinat.species.partition_species import PartitionSpeciesStructure >>> a = PartitionSpeciesStructure(None, [Integer(2),Integer(3),Integer(4)], [[Integer(1),Integer(2)],[Integer(3)]]); a {{2, 3}, {4}} >>> a.change_labels([Integer(1),Integer(2),Integer(3)]) {{1, 2}, {3}}
- transport(perm)[source]#
Returns the transport of this set partition along the permutation perm. For set partitions, this is the direct product of the automorphism groups for each of the blocks.
EXAMPLES:
sage: p = PermutationGroupElement((2,3)) sage: from sage.combinat.species.partition_species import PartitionSpeciesStructure sage: a = PartitionSpeciesStructure(None, [2,3,4], [[1,2],[3]]); a {{2, 3}, {4}} sage: a.transport(p) {{2, 4}, {3}}
>>> from sage.all import * >>> p = PermutationGroupElement((Integer(2),Integer(3))) >>> from sage.combinat.species.partition_species import PartitionSpeciesStructure >>> a = PartitionSpeciesStructure(None, [Integer(2),Integer(3),Integer(4)], [[Integer(1),Integer(2)],[Integer(3)]]); a {{2, 3}, {4}} >>> a.transport(p) {{2, 4}, {3}}
- sage.combinat.species.partition_species.PartitionSpecies_class[source]#
alias of
PartitionSpecies