Cartan types#

Todo

Why does sphinx complain if I use sections here?

Introduction

Loosely speaking, Dynkin diagrams (or equivalently Cartan matrices) are graphs which are used to classify root systems, Coxeter and Weyl groups, Lie algebras, Lie groups, crystals, etc. up to an isomorphism. Cartan types are a standard set of names for those Dynkin diagrams (see Wikipedia article Dynkin_diagram).

Let us consider, for example, the Cartan type \(A_4\):

sage: T = CartanType(['A', 4]); T
['A', 4]
>>> from sage.all import *
>>> T = CartanType(['A', Integer(4)]); T
['A', 4]

It is the name of the following Dynkin diagram:

sage: DynkinDiagram(T)                                                              # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> from sage.all import *
>>> DynkinDiagram(T)                                                              # needs sage.graphs
O---O---O---O
1   2   3   4
A4

Note

For convenience, the following shortcuts are available:

sage: DynkinDiagram(['A',4])                                                    # needs sage.graphs
O---O---O---O
1   2   3   4
A4
sage: DynkinDiagram('A4')                                                       # needs sage.graphs
O---O---O---O
1   2   3   4
A4
sage: T.dynkin_diagram()                                                        # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> from sage.all import *
>>> DynkinDiagram(['A',Integer(4)])                                                    # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> DynkinDiagram('A4')                                                       # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> T.dynkin_diagram()                                                        # needs sage.graphs
O---O---O---O
1   2   3   4
A4

See DynkinDiagram for how to further manipulate Dynkin diagrams.

From this data (the Cartan datum), one can construct the associated root system:

sage: RootSystem(T)
Root system of type ['A', 4]
>>> from sage.all import *
>>> RootSystem(T)
Root system of type ['A', 4]

The associated Weyl group of \(A_n\) is the symmetric group \(S_{n+1}\):

sage: W = WeylGroup(T); W                                                           # needs sage.libs.gap
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
sage: W.cardinality()                                                               # needs sage.libs.gap
120
>>> from sage.all import *
>>> W = WeylGroup(T); W                                                           # needs sage.libs.gap
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
>>> W.cardinality()                                                               # needs sage.libs.gap
120

while the Lie algebra is \(sl_{n+1}\), and the Lie group \(SL_{n+1}\) (TODO: illustrate this once this is implemented).

One may also construct crystals associated to various Dynkin diagrams. For example:

sage: C = crystals.Letters(T); C                                                    # needs sage.combinat
The crystal of letters for type ['A', 4]
sage: C.list()                                                                      # needs sage.combinat
[1, 2, 3, 4, 5]

sage: C = crystals.Tableaux(T, shape=[2]); C                                        # needs sage.combinat
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
sage: C.cardinality()                                                               # needs sage.combinat
15
>>> from sage.all import *
>>> C = crystals.Letters(T); C                                                    # needs sage.combinat
The crystal of letters for type ['A', 4]
>>> C.list()                                                                      # needs sage.combinat
[1, 2, 3, 4, 5]

>>> C = crystals.Tableaux(T, shape=[Integer(2)]); C                                        # needs sage.combinat
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
>>> C.cardinality()                                                               # needs sage.combinat
15

Here is a sample of all the finite irreducible crystallographic Cartan types:

sage: CartanType.samples(finite=True, crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]
>>> from sage.all import *
>>> CartanType.samples(finite=True, crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]

One can also get latex representations of the crystallographic Cartan types and their corresponding Dynkin diagrams:

sage: [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
 E_6, E_7, E_8, F_4, G_2,
 A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)},
 C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^{(1)}, D_{5}^{(1)},
 E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
 BC_{1}^{(2)}, BC_{5}^{(2)},
 B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee},
 G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}^{(2)\vee}]
sage: view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) # not tested
>>> from sage.all import *
>>> [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
 E_6, E_7, E_8, F_4, G_2,
 A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)},
 C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^{(1)}, D_{5}^{(1)},
 E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
 BC_{1}^{(2)}, BC_{5}^{(2)},
 B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee},
 G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}^{(2)\vee}]
>>> view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) # not tested

Non-crystallographic Cartan types are also partially supported:

sage: CartanType.samples(finite=True, crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]
>>> from sage.all import *
>>> CartanType.samples(finite=True, crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]

In Sage, a Cartan type is used as a database of type-specific information and algorithms (see e.g. sage.combinat.root_system.type_A). This database includes how to construct the Dynkin diagram, the ambient space for the root system (see Wikipedia article Root_system), and further mathematical properties:

sage: T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)
>>> from sage.all import *
>>> T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)

In particular, a Sage Cartan type is endowed with a fixed choice of labels for the nodes of the Dynkin diagram. This choice follows the conventions of Nicolas Bourbaki, Lie Groups and Lie Algebras: Chapter 4-6, Elements of Mathematics, Springer (2002). ISBN 978-3540426509. For example:

sage: T = CartanType(['D', 4])
sage: DynkinDiagram(T)                                                              # needs sage.graphs
    O 4
    |
    |
O---O---O
1   2   3
D4

sage: E6 = CartanType(['E',6])
sage: DynkinDiagram(E6)                                                             # needs sage.graphs
        O 2
        |
        |
O---O---O---O---O
1   3   4   5   6
E6
>>> from sage.all import *
>>> T = CartanType(['D', Integer(4)])
>>> DynkinDiagram(T)                                                              # needs sage.graphs
    O 4
    |
    |
O---O---O
1   2   3
D4

>>> E6 = CartanType(['E',Integer(6)])
>>> DynkinDiagram(E6)                                                             # needs sage.graphs
        O 2
        |
        |
O---O---O---O---O
1   3   4   5   6
E6

Note

The direction of the arrows is the opposite (i.e. the transpose) of Bourbaki’s convention, but agrees with Kac’s.

For example, in type \(C_2\), we have:

sage: C2 = DynkinDiagram(['C',2]); C2                                           # needs sage.graphs
O=<=O
1   2
C2
sage: C2.cartan_matrix()                                                        # needs sage.graphs
[ 2 -2]
[-1  2]
>>> from sage.all import *
>>> C2 = DynkinDiagram(['C',Integer(2)]); C2                                           # needs sage.graphs
O=<=O
1   2
C2
>>> C2.cartan_matrix()                                                        # needs sage.graphs
[ 2 -2]
[-1  2]

However Bourbaki would have the Cartan matrix as:

\[\begin{split}\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}.\end{split}\]

If desired, other node labelling conventions can be achieved. For example the Kac labelling for type \(E_6\) can be obtained via:

sage: E6.relabel({1:1,2:6,3:2,4:3,5:4,6:5}).dynkin_diagram()                        # needs sage.graphs
        O 6
        |
        |
O---O---O---O---O
1   2   3   4   5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}
>>> from sage.all import *
>>> E6.relabel({Integer(1):Integer(1),Integer(2):Integer(6),Integer(3):Integer(2),Integer(4):Integer(3),Integer(5):Integer(4),Integer(6):Integer(5)}).dynkin_diagram()                        # needs sage.graphs
        O 6
        |
        |
O---O---O---O---O
1   2   3   4   5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}

Contributions implementing other conventions are very welcome.

Another option is to build from scratch a new Dynkin diagram. The architecture has been designed to make it fairly easy to add other labelling conventions. In particular, we strived at choosing type free algorithms whenever possible, so in principle most features should remain available even with custom Cartan types. This has not been used much yet, so some rough corners certainly remain.

Here, we construct the hyperbolic example of Exercise 4.9 p. 57 of Kac, Infinite Dimensional Lie Algebras. We start with an empty Dynkin diagram, and add a couple nodes:

sage: g = DynkinDiagram()                                                           # needs sage.graphs
sage: g.add_vertices([1,2,3])                                                       # needs sage.graphs
>>> from sage.all import *
>>> g = DynkinDiagram()                                                           # needs sage.graphs
>>> g.add_vertices([Integer(1),Integer(2),Integer(3)])                                                       # needs sage.graphs

Note that the diagonal of the Cartan matrix is already initialized:

sage: g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]
>>> from sage.all import *
>>> g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]

Then we add a couple edges:

sage: g.add_edge(1,2,2)                                                             # needs sage.graphs
sage: g.add_edge(1,3)                                                               # needs sage.graphs
sage: g.add_edge(2,3)                                                               # needs sage.graphs
>>> from sage.all import *
>>> g.add_edge(Integer(1),Integer(2),Integer(2))                                                             # needs sage.graphs
>>> g.add_edge(Integer(1),Integer(3))                                                               # needs sage.graphs
>>> g.add_edge(Integer(2),Integer(3))                                                               # needs sage.graphs

and we get the desired Cartan matrix:

sage: g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]
>>> from sage.all import *
>>> g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]

Oops, the Cartan matrix did not change! This is because it is cached for efficiency (see cached_method). In general, a Dynkin diagram should not be modified after having been used.

Warning

this is not checked currently

Todo

add a method set_mutable() as, say, for matrices

Here, we can work around this by clearing the cache:

sage: delattr(g, 'cartan_matrix')                                                   # needs sage.graphs
>>> from sage.all import *
>>> delattr(g, 'cartan_matrix')                                                   # needs sage.graphs

Now we get the desired Cartan matrix:

sage: g.cartan_matrix()                                                             # needs sage.graphs
[ 2 -1 -1]
[-2  2 -1]
[-1 -1  2]
>>> from sage.all import *
>>> g.cartan_matrix()                                                             # needs sage.graphs
[ 2 -1 -1]
[-2  2 -1]
[-1 -1  2]

Note that backward edges have been automatically added:

sage: g.edges(sort=True)                                                            # needs sage.graphs
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]
>>> from sage.all import *
>>> g.edges(sort=True)                                                            # needs sage.graphs
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]

Reducible Cartan types

Reducible Cartan types can be specified by passing a sequence or list of irreducible Cartan types:

sage: CartanType(['A',2],['B',2])
A2xB2
sage: CartanType([['A',2],['B',2]])
A2xB2
sage: CartanType(['A',2],['B',2]).is_reducible()
True
>>> from sage.all import *
>>> CartanType(['A',Integer(2)],['B',Integer(2)])
A2xB2
>>> CartanType([['A',Integer(2)],['B',Integer(2)]])
A2xB2
>>> CartanType(['A',Integer(2)],['B',Integer(2)]).is_reducible()
True

or using the following short hand notation:

sage: CartanType("A2xB2")
A2xB2
sage: CartanType("A2","B2") == CartanType("A2xB2")
True
>>> from sage.all import *
>>> CartanType("A2xB2")
A2xB2
>>> CartanType("A2","B2") == CartanType("A2xB2")
True

Degenerate cases

When possible, type \(I_n\) is automatically converted to the isomorphic crystallographic Cartan types (any reason not to do so?):

sage: CartanType(["I",1])
A1xA1
sage: CartanType(["I",3])
['A', 2]
sage: CartanType(["I",4])
['C', 2]
sage: CartanType(["I",6])
['G', 2]
>>> from sage.all import *
>>> CartanType(["I",Integer(1)])
A1xA1
>>> CartanType(["I",Integer(3)])
['A', 2]
>>> CartanType(["I",Integer(4)])
['C', 2]
>>> CartanType(["I",Integer(6)])
['G', 2]

The Dynkin diagrams for types \(B_1\), \(C_1\), \(D_2\), and \(D_3\) are isomorphic to that for \(A_1\), \(A_1\), \(A_1 \times A_1\), and \(A_3\), respectively. However their natural ambient space realizations (stemming from the corresponding infinite families of Lie groups) are different. Therefore, the Cartan types are considered as distinct:

sage: CartanType(['B',1])
['B', 1]
sage: CartanType(['C',1])
['C', 1]
sage: CartanType(['D',2])
['D', 2]
sage: CartanType(['D',3])
['D', 3]
>>> from sage.all import *
>>> CartanType(['B',Integer(1)])
['B', 1]
>>> CartanType(['C',Integer(1)])
['C', 1]
>>> CartanType(['D',Integer(2)])
['D', 2]
>>> CartanType(['D',Integer(3)])
['D', 3]

Affine Cartan types

For affine types, we use the usual conventions for affine Coxeter groups: each affine type is either untwisted (that is arise from the natural affinisation of a finite Cartan type):

sage: CartanType(["A", 4, 1]).dynkin_diagram()                                      # needs sage.graphs
0
O-----------+
|           |
|           |
O---O---O---O
1   2   3   4
A4~
sage: CartanType(["B", 4, 1]).dynkin_diagram()                                      # needs sage.graphs
    O 0
    |
    |
O---O---O=>=O
1   2   3   4
B4~
>>> from sage.all import *
>>> CartanType(["A", Integer(4), Integer(1)]).dynkin_diagram()                                      # needs sage.graphs
0
O-----------+
|           |
|           |
O---O---O---O
1   2   3   4
A4~
>>> CartanType(["B", Integer(4), Integer(1)]).dynkin_diagram()                                      # needs sage.graphs
    O 0
    |
    |
O---O---O=>=O
1   2   3   4
B4~

or dual thereof:

sage: CartanType(["B", 4, 1]).dual().dynkin_diagram()                               # needs sage.graphs
    O 0
    |
    |
O---O---O=<=O
1   2   3   4
B4~*
>>> from sage.all import *
>>> CartanType(["B", Integer(4), Integer(1)]).dual().dynkin_diagram()                               # needs sage.graphs
    O 0
    |
    |
O---O---O=<=O
1   2   3   4
B4~*

or is of type \(\widetilde{BC}_n\) (which yields an irreducible, but nonreduced root system):

sage: CartanType(["BC", 4, 2]).dynkin_diagram()                                     # needs sage.graphs
O=<=O---O---O=<=O
0   1   2   3   4
BC4~
>>> from sage.all import *
>>> CartanType(["BC", Integer(4), Integer(2)]).dynkin_diagram()                                     # needs sage.graphs
O=<=O---O---O=<=O
0   1   2   3   4
BC4~

This includes the two degenerate cases:

sage: CartanType(["A", 1, 1]).dynkin_diagram()                                      # needs sage.graphs
O<=>O
0   1
A1~
sage: CartanType(["BC", 1, 2]).dynkin_diagram()                                     # needs sage.graphs
  4
O=<=O
0   1
BC1~
>>> from sage.all import *
>>> CartanType(["A", Integer(1), Integer(1)]).dynkin_diagram()                                      # needs sage.graphs
O<=>O
0   1
A1~
>>> CartanType(["BC", Integer(1), Integer(2)]).dynkin_diagram()                                     # needs sage.graphs
  4
O=<=O
0   1
BC1~

For the user convenience, Kac’s notations for twisted affine types are automatically translated into the previous ones:

sage: # needs sage.graphs
sage: CartanType(["A", 9, 2])
['B', 5, 1]^*
sage: CartanType(["A", 9, 2]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
B5~*
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
BC5~
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
C4~*
sage: CartanType(["D", 4, 3]).dynkin_diagram()
  3
O=>=O---O
2   1   0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
F4~*
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType(["A", Integer(9), Integer(2)])
['B', 5, 1]^*
>>> CartanType(["A", Integer(9), Integer(2)]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
B5~*
>>> CartanType(["A", Integer(10), Integer(2)]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
BC5~
>>> CartanType(["D", Integer(5), Integer(2)]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
C4~*
>>> CartanType(["D", Integer(4), Integer(3)]).dynkin_diagram()
  3
O=>=O---O
2   1   0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
>>> CartanType(["E", Integer(6), Integer(2)]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
F4~*

Additionally one can set the notation option to use Kac’s notation:

sage: # needs sage.graphs
sage: CartanType.options['notation'] = 'Kac'
sage: CartanType(["A", 9, 2])
['A', 9, 2]
sage: CartanType(["A", 9, 2]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
A9^2
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
A10^2
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
D5^2
sage: CartanType(["D", 4, 3]).dynkin_diagram()
  3
O=>=O---O
2   1   0
D4^3
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
E6^2
sage: CartanType.options['notation'] = 'BC'
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType.options['notation'] = 'Kac'
>>> CartanType(["A", Integer(9), Integer(2)])
['A', 9, 2]
>>> CartanType(["A", Integer(9), Integer(2)]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
A9^2
>>> CartanType(["A", Integer(10), Integer(2)]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
A10^2
>>> CartanType(["D", Integer(5), Integer(2)]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
D5^2
>>> CartanType(["D", Integer(4), Integer(3)]).dynkin_diagram()
  3
O=>=O---O
2   1   0
D4^3
>>> CartanType(["E", Integer(6), Integer(2)]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
E6^2
>>> CartanType.options['notation'] = 'BC'

Infinite Cartan types

There are minimal implementations of the Cartan types \(A_{\infty}\) and \(A_{+\infty}\). In sage \(oo\) is the same as \(+Infinity\), so \(NN\) and \(ZZ\) are used to differentiate between the \(A_{+\infty}\) and \(A_{\infty}\) root systems:

sage: CartanType(['A', NN])
['A', NN]
sage: print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0   1   2   3   4   5   6
sage: CartanType(['A', ZZ])
['A', ZZ]
sage: print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..
    -3  -2  -1   0   1   2   3
>>> from sage.all import *
>>> CartanType(['A', NN])
['A', NN]
>>> print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0   1   2   3   4   5   6
>>> CartanType(['A', ZZ])
['A', ZZ]
>>> print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..
    -3  -2  -1   0   1   2   3

There are also the following shorthands:

sage: CartanType("Aoo")
['A', ZZ]
sage: CartanType("A+oo")
['A', NN]
>>> from sage.all import *
>>> CartanType("Aoo")
['A', ZZ]
>>> CartanType("A+oo")
['A', NN]

Abstract classes for Cartan types

Concrete classes for Cartan types

Type specific data

The data essentially consists of a description of the Dynkin/Coxeter diagram and, when relevant, of the natural embedding of the root system in an Euclidean space. Everything else is reconstructed from this data.

Todo

Should those indexes come before the introduction?

sage.combinat.root_system.cartan_type.CartanType(*args)[source]#

Cartan types

Todo

Why does sphinx complain if I use sections here?

Introduction

Loosely speaking, Dynkin diagrams (or equivalently Cartan matrices) are graphs which are used to classify root systems, Coxeter and Weyl groups, Lie algebras, Lie groups, crystals, etc. up to an isomorphism. Cartan types are a standard set of names for those Dynkin diagrams (see Wikipedia article Dynkin_diagram).

Let us consider, for example, the Cartan type \(A_4\):

sage: T = CartanType(['A', 4]); T
['A', 4]
>>> from sage.all import *
>>> T = CartanType(['A', Integer(4)]); T
['A', 4]

It is the name of the following Dynkin diagram:

sage: DynkinDiagram(T)                                                              # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> from sage.all import *
>>> DynkinDiagram(T)                                                              # needs sage.graphs
O---O---O---O
1   2   3   4
A4

Note

For convenience, the following shortcuts are available:

sage: DynkinDiagram(['A',4])                                                    # needs sage.graphs
O---O---O---O
1   2   3   4
A4
sage: DynkinDiagram('A4')                                                       # needs sage.graphs
O---O---O---O
1   2   3   4
A4
sage: T.dynkin_diagram()                                                        # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> from sage.all import *
>>> DynkinDiagram(['A',Integer(4)])                                                    # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> DynkinDiagram('A4')                                                       # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> T.dynkin_diagram()                                                        # needs sage.graphs
O---O---O---O
1   2   3   4
A4

See DynkinDiagram for how to further manipulate Dynkin diagrams.

From this data (the Cartan datum), one can construct the associated root system:

sage: RootSystem(T)
Root system of type ['A', 4]
>>> from sage.all import *
>>> RootSystem(T)
Root system of type ['A', 4]

The associated Weyl group of \(A_n\) is the symmetric group \(S_{n+1}\):

sage: W = WeylGroup(T); W                                                           # needs sage.libs.gap
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
sage: W.cardinality()                                                               # needs sage.libs.gap
120
>>> from sage.all import *
>>> W = WeylGroup(T); W                                                           # needs sage.libs.gap
Weyl Group of type ['A', 4] (as a matrix group acting on the ambient space)
>>> W.cardinality()                                                               # needs sage.libs.gap
120

while the Lie algebra is \(sl_{n+1}\), and the Lie group \(SL_{n+1}\) (TODO: illustrate this once this is implemented).

One may also construct crystals associated to various Dynkin diagrams. For example:

sage: C = crystals.Letters(T); C                                                    # needs sage.combinat
The crystal of letters for type ['A', 4]
sage: C.list()                                                                      # needs sage.combinat
[1, 2, 3, 4, 5]

sage: C = crystals.Tableaux(T, shape=[2]); C                                        # needs sage.combinat
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
sage: C.cardinality()                                                               # needs sage.combinat
15
>>> from sage.all import *
>>> C = crystals.Letters(T); C                                                    # needs sage.combinat
The crystal of letters for type ['A', 4]
>>> C.list()                                                                      # needs sage.combinat
[1, 2, 3, 4, 5]

>>> C = crystals.Tableaux(T, shape=[Integer(2)]); C                                        # needs sage.combinat
The crystal of tableaux of type ['A', 4] and shape(s) [[2]]
>>> C.cardinality()                                                               # needs sage.combinat
15

Here is a sample of all the finite irreducible crystallographic Cartan types:

sage: CartanType.samples(finite=True, crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]
>>> from sage.all import *
>>> CartanType.samples(finite=True, crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2]]

One can also get latex representations of the crystallographic Cartan types and their corresponding Dynkin diagrams:

sage: [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
 E_6, E_7, E_8, F_4, G_2,
 A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)},
 C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^{(1)}, D_{5}^{(1)},
 E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
 BC_{1}^{(2)}, BC_{5}^{(2)},
 B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee},
 G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}^{(2)\vee}]
sage: view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) # not tested
>>> from sage.all import *
>>> [latex(ct) for ct in CartanType.samples(crystallographic=True)]
[A_{1}, A_{5}, B_{1}, B_{5}, C_{1}, C_{5}, D_{2}, D_{3}, D_{5},
 E_6, E_7, E_8, F_4, G_2,
 A_{1}^{(1)}, A_{5}^{(1)}, B_{1}^{(1)}, B_{5}^{(1)},
 C_{1}^{(1)}, C_{5}^{(1)}, D_{3}^{(1)}, D_{5}^{(1)},
 E_6^{(1)}, E_7^{(1)}, E_8^{(1)}, F_4^{(1)}, G_2^{(1)},
 BC_{1}^{(2)}, BC_{5}^{(2)},
 B_{5}^{(1)\vee}, C_{4}^{(1)\vee}, F_4^{(1)\vee},
 G_2^{(1)\vee}, BC_{1}^{(2)\vee}, BC_{5}^{(2)\vee}]
>>> view([DynkinDiagram(ct) for ct in CartanType.samples(crystallographic=True)]) # not tested

Non-crystallographic Cartan types are also partially supported:

sage: CartanType.samples(finite=True, crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]
>>> from sage.all import *
>>> CartanType.samples(finite=True, crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]

In Sage, a Cartan type is used as a database of type-specific information and algorithms (see e.g. sage.combinat.root_system.type_A). This database includes how to construct the Dynkin diagram, the ambient space for the root system (see Wikipedia article Root_system), and further mathematical properties:

sage: T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)
>>> from sage.all import *
>>> T.is_finite(), T.is_simply_laced(), T.is_affine(), T.is_crystallographic()
(True, True, False, True)

In particular, a Sage Cartan type is endowed with a fixed choice of labels for the nodes of the Dynkin diagram. This choice follows the conventions of Nicolas Bourbaki, Lie Groups and Lie Algebras: Chapter 4-6, Elements of Mathematics, Springer (2002). ISBN 978-3540426509. For example:

sage: T = CartanType(['D', 4])
sage: DynkinDiagram(T)                                                              # needs sage.graphs
    O 4
    |
    |
O---O---O
1   2   3
D4

sage: E6 = CartanType(['E',6])
sage: DynkinDiagram(E6)                                                             # needs sage.graphs
        O 2
        |
        |
O---O---O---O---O
1   3   4   5   6
E6
>>> from sage.all import *
>>> T = CartanType(['D', Integer(4)])
>>> DynkinDiagram(T)                                                              # needs sage.graphs
    O 4
    |
    |
O---O---O
1   2   3
D4

>>> E6 = CartanType(['E',Integer(6)])
>>> DynkinDiagram(E6)                                                             # needs sage.graphs
        O 2
        |
        |
O---O---O---O---O
1   3   4   5   6
E6

Note

The direction of the arrows is the opposite (i.e. the transpose) of Bourbaki’s convention, but agrees with Kac’s.

For example, in type \(C_2\), we have:

sage: C2 = DynkinDiagram(['C',2]); C2                                           # needs sage.graphs
O=<=O
1   2
C2
sage: C2.cartan_matrix()                                                        # needs sage.graphs
[ 2 -2]
[-1  2]
>>> from sage.all import *
>>> C2 = DynkinDiagram(['C',Integer(2)]); C2                                           # needs sage.graphs
O=<=O
1   2
C2
>>> C2.cartan_matrix()                                                        # needs sage.graphs
[ 2 -2]
[-1  2]

However Bourbaki would have the Cartan matrix as:

\[\begin{split}\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}.\end{split}\]

If desired, other node labelling conventions can be achieved. For example the Kac labelling for type \(E_6\) can be obtained via:

sage: E6.relabel({1:1,2:6,3:2,4:3,5:4,6:5}).dynkin_diagram()                        # needs sage.graphs
        O 6
        |
        |
O---O---O---O---O
1   2   3   4   5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}
>>> from sage.all import *
>>> E6.relabel({Integer(1):Integer(1),Integer(2):Integer(6),Integer(3):Integer(2),Integer(4):Integer(3),Integer(5):Integer(4),Integer(6):Integer(5)}).dynkin_diagram()                        # needs sage.graphs
        O 6
        |
        |
O---O---O---O---O
1   2   3   4   5
E6 relabelled by {1: 1, 2: 6, 3: 2, 4: 3, 5: 4, 6: 5}

Contributions implementing other conventions are very welcome.

Another option is to build from scratch a new Dynkin diagram. The architecture has been designed to make it fairly easy to add other labelling conventions. In particular, we strived at choosing type free algorithms whenever possible, so in principle most features should remain available even with custom Cartan types. This has not been used much yet, so some rough corners certainly remain.

Here, we construct the hyperbolic example of Exercise 4.9 p. 57 of Kac, Infinite Dimensional Lie Algebras. We start with an empty Dynkin diagram, and add a couple nodes:

sage: g = DynkinDiagram()                                                           # needs sage.graphs
sage: g.add_vertices([1,2,3])                                                       # needs sage.graphs
>>> from sage.all import *
>>> g = DynkinDiagram()                                                           # needs sage.graphs
>>> g.add_vertices([Integer(1),Integer(2),Integer(3)])                                                       # needs sage.graphs

Note that the diagonal of the Cartan matrix is already initialized:

sage: g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]
>>> from sage.all import *
>>> g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]

Then we add a couple edges:

sage: g.add_edge(1,2,2)                                                             # needs sage.graphs
sage: g.add_edge(1,3)                                                               # needs sage.graphs
sage: g.add_edge(2,3)                                                               # needs sage.graphs
>>> from sage.all import *
>>> g.add_edge(Integer(1),Integer(2),Integer(2))                                                             # needs sage.graphs
>>> g.add_edge(Integer(1),Integer(3))                                                               # needs sage.graphs
>>> g.add_edge(Integer(2),Integer(3))                                                               # needs sage.graphs

and we get the desired Cartan matrix:

sage: g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]
>>> from sage.all import *
>>> g.cartan_matrix()                                                             # needs sage.graphs
[2 0 0]
[0 2 0]
[0 0 2]

Oops, the Cartan matrix did not change! This is because it is cached for efficiency (see cached_method). In general, a Dynkin diagram should not be modified after having been used.

Warning

this is not checked currently

Todo

add a method set_mutable() as, say, for matrices

Here, we can work around this by clearing the cache:

sage: delattr(g, 'cartan_matrix')                                                   # needs sage.graphs
>>> from sage.all import *
>>> delattr(g, 'cartan_matrix')                                                   # needs sage.graphs

Now we get the desired Cartan matrix:

sage: g.cartan_matrix()                                                             # needs sage.graphs
[ 2 -1 -1]
[-2  2 -1]
[-1 -1  2]
>>> from sage.all import *
>>> g.cartan_matrix()                                                             # needs sage.graphs
[ 2 -1 -1]
[-2  2 -1]
[-1 -1  2]

Note that backward edges have been automatically added:

sage: g.edges(sort=True)                                                            # needs sage.graphs
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]
>>> from sage.all import *
>>> g.edges(sort=True)                                                            # needs sage.graphs
[(1, 2, 2), (1, 3, 1), (2, 1, 1), (2, 3, 1), (3, 1, 1), (3, 2, 1)]

Reducible Cartan types

Reducible Cartan types can be specified by passing a sequence or list of irreducible Cartan types:

sage: CartanType(['A',2],['B',2])
A2xB2
sage: CartanType([['A',2],['B',2]])
A2xB2
sage: CartanType(['A',2],['B',2]).is_reducible()
True
>>> from sage.all import *
>>> CartanType(['A',Integer(2)],['B',Integer(2)])
A2xB2
>>> CartanType([['A',Integer(2)],['B',Integer(2)]])
A2xB2
>>> CartanType(['A',Integer(2)],['B',Integer(2)]).is_reducible()
True

or using the following short hand notation:

sage: CartanType("A2xB2")
A2xB2
sage: CartanType("A2","B2") == CartanType("A2xB2")
True
>>> from sage.all import *
>>> CartanType("A2xB2")
A2xB2
>>> CartanType("A2","B2") == CartanType("A2xB2")
True

Degenerate cases

When possible, type \(I_n\) is automatically converted to the isomorphic crystallographic Cartan types (any reason not to do so?):

sage: CartanType(["I",1])
A1xA1
sage: CartanType(["I",3])
['A', 2]
sage: CartanType(["I",4])
['C', 2]
sage: CartanType(["I",6])
['G', 2]
>>> from sage.all import *
>>> CartanType(["I",Integer(1)])
A1xA1
>>> CartanType(["I",Integer(3)])
['A', 2]
>>> CartanType(["I",Integer(4)])
['C', 2]
>>> CartanType(["I",Integer(6)])
['G', 2]

The Dynkin diagrams for types \(B_1\), \(C_1\), \(D_2\), and \(D_3\) are isomorphic to that for \(A_1\), \(A_1\), \(A_1 \times A_1\), and \(A_3\), respectively. However their natural ambient space realizations (stemming from the corresponding infinite families of Lie groups) are different. Therefore, the Cartan types are considered as distinct:

sage: CartanType(['B',1])
['B', 1]
sage: CartanType(['C',1])
['C', 1]
sage: CartanType(['D',2])
['D', 2]
sage: CartanType(['D',3])
['D', 3]
>>> from sage.all import *
>>> CartanType(['B',Integer(1)])
['B', 1]
>>> CartanType(['C',Integer(1)])
['C', 1]
>>> CartanType(['D',Integer(2)])
['D', 2]
>>> CartanType(['D',Integer(3)])
['D', 3]

Affine Cartan types

For affine types, we use the usual conventions for affine Coxeter groups: each affine type is either untwisted (that is arise from the natural affinisation of a finite Cartan type):

sage: CartanType(["A", 4, 1]).dynkin_diagram()                                      # needs sage.graphs
0
O-----------+
|           |
|           |
O---O---O---O
1   2   3   4
A4~
sage: CartanType(["B", 4, 1]).dynkin_diagram()                                      # needs sage.graphs
    O 0
    |
    |
O---O---O=>=O
1   2   3   4
B4~
>>> from sage.all import *
>>> CartanType(["A", Integer(4), Integer(1)]).dynkin_diagram()                                      # needs sage.graphs
0
O-----------+
|           |
|           |
O---O---O---O
1   2   3   4
A4~
>>> CartanType(["B", Integer(4), Integer(1)]).dynkin_diagram()                                      # needs sage.graphs
    O 0
    |
    |
O---O---O=>=O
1   2   3   4
B4~

or dual thereof:

sage: CartanType(["B", 4, 1]).dual().dynkin_diagram()                               # needs sage.graphs
    O 0
    |
    |
O---O---O=<=O
1   2   3   4
B4~*
>>> from sage.all import *
>>> CartanType(["B", Integer(4), Integer(1)]).dual().dynkin_diagram()                               # needs sage.graphs
    O 0
    |
    |
O---O---O=<=O
1   2   3   4
B4~*

or is of type \(\widetilde{BC}_n\) (which yields an irreducible, but nonreduced root system):

sage: CartanType(["BC", 4, 2]).dynkin_diagram()                                     # needs sage.graphs
O=<=O---O---O=<=O
0   1   2   3   4
BC4~
>>> from sage.all import *
>>> CartanType(["BC", Integer(4), Integer(2)]).dynkin_diagram()                                     # needs sage.graphs
O=<=O---O---O=<=O
0   1   2   3   4
BC4~

This includes the two degenerate cases:

sage: CartanType(["A", 1, 1]).dynkin_diagram()                                      # needs sage.graphs
O<=>O
0   1
A1~
sage: CartanType(["BC", 1, 2]).dynkin_diagram()                                     # needs sage.graphs
  4
O=<=O
0   1
BC1~
>>> from sage.all import *
>>> CartanType(["A", Integer(1), Integer(1)]).dynkin_diagram()                                      # needs sage.graphs
O<=>O
0   1
A1~
>>> CartanType(["BC", Integer(1), Integer(2)]).dynkin_diagram()                                     # needs sage.graphs
  4
O=<=O
0   1
BC1~

For the user convenience, Kac’s notations for twisted affine types are automatically translated into the previous ones:

sage: # needs sage.graphs
sage: CartanType(["A", 9, 2])
['B', 5, 1]^*
sage: CartanType(["A", 9, 2]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
B5~*
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
BC5~
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
C4~*
sage: CartanType(["D", 4, 3]).dynkin_diagram()
  3
O=>=O---O
2   1   0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
F4~*
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType(["A", Integer(9), Integer(2)])
['B', 5, 1]^*
>>> CartanType(["A", Integer(9), Integer(2)]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
B5~*
>>> CartanType(["A", Integer(10), Integer(2)]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
BC5~
>>> CartanType(["D", Integer(5), Integer(2)]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
C4~*
>>> CartanType(["D", Integer(4), Integer(3)]).dynkin_diagram()
  3
O=>=O---O
2   1   0
G2~* relabelled by {0: 0, 1: 2, 2: 1}
>>> CartanType(["E", Integer(6), Integer(2)]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
F4~*

Additionally one can set the notation option to use Kac’s notation:

sage: # needs sage.graphs
sage: CartanType.options['notation'] = 'Kac'
sage: CartanType(["A", 9, 2])
['A', 9, 2]
sage: CartanType(["A", 9, 2]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
A9^2
sage: CartanType(["A", 10, 2]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
A10^2
sage: CartanType(["D", 5, 2]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
D5^2
sage: CartanType(["D", 4, 3]).dynkin_diagram()
  3
O=>=O---O
2   1   0
D4^3
sage: CartanType(["E", 6, 2]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
E6^2
sage: CartanType.options['notation'] = 'BC'
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType.options['notation'] = 'Kac'
>>> CartanType(["A", Integer(9), Integer(2)])
['A', 9, 2]
>>> CartanType(["A", Integer(9), Integer(2)]).dynkin_diagram()
    O 0
    |
    |
O---O---O---O=<=O
1   2   3   4   5
A9^2
>>> CartanType(["A", Integer(10), Integer(2)]).dynkin_diagram()
O=<=O---O---O---O=<=O
0   1   2   3   4   5
A10^2
>>> CartanType(["D", Integer(5), Integer(2)]).dynkin_diagram()
O=<=O---O---O=>=O
0   1   2   3   4
D5^2
>>> CartanType(["D", Integer(4), Integer(3)]).dynkin_diagram()
  3
O=>=O---O
2   1   0
D4^3
>>> CartanType(["E", Integer(6), Integer(2)]).dynkin_diagram()
O---O---O=<=O---O
0   1   2   3   4
E6^2
>>> CartanType.options['notation'] = 'BC'

Infinite Cartan types

There are minimal implementations of the Cartan types \(A_{\infty}\) and \(A_{+\infty}\). In sage \(oo\) is the same as \(+Infinity\), so \(NN\) and \(ZZ\) are used to differentiate between the \(A_{+\infty}\) and \(A_{\infty}\) root systems:

sage: CartanType(['A', NN])
['A', NN]
sage: print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0   1   2   3   4   5   6
sage: CartanType(['A', ZZ])
['A', ZZ]
sage: print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..
    -3  -2  -1   0   1   2   3
>>> from sage.all import *
>>> CartanType(['A', NN])
['A', NN]
>>> print(CartanType(['A', NN]).ascii_art())
O---O---O---O---O---O---O---..
0   1   2   3   4   5   6
>>> CartanType(['A', ZZ])
['A', ZZ]
>>> print(CartanType(['A', ZZ]).ascii_art())
..---O---O---O---O---O---O---O---..
    -3  -2  -1   0   1   2   3

There are also the following shorthands:

sage: CartanType("Aoo")
['A', ZZ]
sage: CartanType("A+oo")
['A', NN]
>>> from sage.all import *
>>> CartanType("Aoo")
['A', ZZ]
>>> CartanType("A+oo")
['A', NN]

Abstract classes for Cartan types

Concrete classes for Cartan types

Type specific data

The data essentially consists of a description of the Dynkin/Coxeter diagram and, when relevant, of the natural embedding of the root system in an Euclidean space. Everything else is reconstructed from this data.

Todo

Should those indexes come before the introduction?

class sage.combinat.root_system.cartan_type.CartanTypeFactory[source]#

Bases: SageObject

classmethod color(i)[source]#

Default color scheme for the vertices of a Dynkin diagram (and associated objects)

EXAMPLES:

sage: CartanType.color(1)
'blue'
sage: CartanType.color(2)
'red'
sage: CartanType.color(3)
'green'
>>> from sage.all import *
>>> CartanType.color(Integer(1))
'blue'
>>> CartanType.color(Integer(2))
'red'
>>> CartanType.color(Integer(3))
'green'

The default color is black:

sage: CartanType.color(0)
'black'
>>> from sage.all import *
>>> CartanType.color(Integer(0))
'black'

Negative indices get the same color as their positive counterparts:

sage: CartanType.color(-1)
'blue'
sage: CartanType.color(-2)
'red'
sage: CartanType.color(-3)
'green'
>>> from sage.all import *
>>> CartanType.color(-Integer(1))
'blue'
>>> CartanType.color(-Integer(2))
'red'
>>> CartanType.color(-Integer(3))
'green'
options = Current options for CartanType   - dual_latex:        \vee   - dual_str:          *   - latex_marked:      True   - latex_relabel:     True   - mark_special_node: none   - marked_node_str:   X   - notation:          Stembridge   - special_node_str:  @[source]#
samples(finite=None, affine=None, crystallographic=None)[source]#

Return a sample of the available Cartan types.

INPUT:

  • finite – a boolean or None (default: None)

  • affine – a boolean or None (default: None)

  • crystallographic – a boolean or None (default: None)

The sample contains all the exceptional finite and affine Cartan types, as well as typical representatives of the infinite families.

EXAMPLES:

sage: CartanType.samples()
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4],
 ['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
 ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
 ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2],
 ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]
>>> from sage.all import *
>>> CartanType.samples()
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4],
 ['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
 ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
 ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2],
 ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]

The finite, affine and crystallographic options allow respectively for restricting to (non) finite, (non) affine, and (non) crystallographic Cartan types:

sage: CartanType.samples(finite=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4]]

sage: CartanType.samples(affine=True)
[['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
 ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
 ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2],
 ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]

sage: CartanType.samples(crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2],
 ['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
 ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
 ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2],
 ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]

sage: CartanType.samples(crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]
>>> from sage.all import *
>>> CartanType.samples(finite=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2], ['I', 5], ['H', 3], ['H', 4]]

>>> CartanType.samples(affine=True)
[['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
 ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
 ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2],
 ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]

>>> CartanType.samples(crystallographic=True)
[['A', 1], ['A', 5], ['B', 1], ['B', 5], ['C', 1], ['C', 5], ['D', 2], ['D', 3], ['D', 5],
 ['E', 6], ['E', 7], ['E', 8], ['F', 4], ['G', 2],
 ['A', 1, 1], ['A', 5, 1], ['B', 1, 1], ['B', 5, 1],
 ['C', 1, 1], ['C', 5, 1], ['D', 3, 1], ['D', 5, 1],
 ['E', 6, 1], ['E', 7, 1], ['E', 8, 1], ['F', 4, 1], ['G', 2, 1], ['BC', 1, 2], ['BC', 5, 2],
 ['B', 5, 1]^*, ['C', 4, 1]^*, ['F', 4, 1]^*, ['G', 2, 1]^*, ['BC', 1, 2]^*, ['BC', 5, 2]^*]

>>> CartanType.samples(crystallographic=False)
[['I', 5], ['H', 3], ['H', 4]]

Todo

add some reducible Cartan types (suggestions?)

class sage.combinat.root_system.cartan_type.CartanType_abstract[source]#

Bases: object

Abstract class for Cartan types

Subclasses should implement:

as_folding(folding_of=None, sigma=None)[source]#

Return self realized as a folded Cartan type.

For finite and affine types, this is realized by the Dynkin diagram foldings:

\[\begin{split}\begin{array}{ccl} C_n^{(1)}, A_{2n}^{(2)}, A_{2n}^{(2)\dagger}, D_{n+1}^{(2)} & \hookrightarrow & A_{2n-1}^{(1)}, \\ A_{2n-1}^{(2)}, B_n^{(1)} & \hookrightarrow & D_{n+1}^{(1)}, \\ E_6^{(2)}, F_4^{(1)} & \hookrightarrow & E_6^{(1)}, \\ D_4^{(3)}, G_2^{(1)} & \hookrightarrow & D_4^{(1)}, \\ C_n & \hookrightarrow & A_{2n-1}, \\ B_n & \hookrightarrow & D_{n+1}, \\ F_4 & \hookrightarrow & E_6, \\ G_2 & \hookrightarrow & D_4. \end{array}\end{split}\]

For general types, this returns self as a folded type of self with \(\sigma\) as the identity map.

For more information on these foldings and folded Cartan types, see sage.combinat.root_system.type_folded.CartanTypeFolded.

If the optional inputs folding_of and sigma are specified, then this returns the folded Cartan type of self in folding_of given by the automorphism sigma.

EXAMPLES:

sage: CartanType(['B', 3, 1]).as_folding()
['B', 3, 1] as a folding of  ['D', 4, 1]
sage: CartanType(['F', 4]).as_folding()
['F', 4] as a folding of  ['E', 6]
sage: CartanType(['BC', 3, 2]).as_folding()
['BC', 3, 2] as a folding of  ['A', 5, 1]
sage: CartanType(['D', 4, 3]).as_folding()
['G', 2, 1]^* relabelled by {0: 0, 1: 2, 2: 1} as a folding of ['D', 4, 1]
>>> from sage.all import *
>>> CartanType(['B', Integer(3), Integer(1)]).as_folding()
['B', 3, 1] as a folding of  ['D', 4, 1]
>>> CartanType(['F', Integer(4)]).as_folding()
['F', 4] as a folding of  ['E', 6]
>>> CartanType(['BC', Integer(3), Integer(2)]).as_folding()
['BC', 3, 2] as a folding of  ['A', 5, 1]
>>> CartanType(['D', Integer(4), Integer(3)]).as_folding()
['G', 2, 1]^* relabelled by {0: 0, 1: 2, 2: 1} as a folding of ['D', 4, 1]
coxeter_diagram()[source]#

Return the Coxeter diagram for self.

EXAMPLES:

sage: # needs sage.graphs
sage: CartanType(['B',3]).coxeter_diagram()
Graph on 3 vertices
sage: CartanType(['A',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3)]
sage: CartanType(['B',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4)]
sage: CartanType(['G',2]).coxeter_diagram().edges(sort=True)
[(1, 2, 6)]
sage: CartanType(['F',4]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3)]
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType(['B',Integer(3)]).coxeter_diagram()
Graph on 3 vertices
>>> CartanType(['A',Integer(3)]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3)]
>>> CartanType(['B',Integer(3)]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4)]
>>> CartanType(['G',Integer(2)]).coxeter_diagram().edges(sort=True)
[(1, 2, 6)]
>>> CartanType(['F',Integer(4)]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3)]
coxeter_matrix()[source]#

Return the Coxeter matrix for self.

EXAMPLES:

sage: CartanType(['A', 4]).coxeter_matrix()                                 # needs sage.graphs
[1 3 2 2]
[3 1 3 2]
[2 3 1 3]
[2 2 3 1]
>>> from sage.all import *
>>> CartanType(['A', Integer(4)]).coxeter_matrix()                                 # needs sage.graphs
[1 3 2 2]
[3 1 3 2]
[2 3 1 3]
[2 2 3 1]
coxeter_type()[source]#

Return the Coxeter type for self.

EXAMPLES:

sage: CartanType(['A', 4]).coxeter_type()
Coxeter type of ['A', 4]
>>> from sage.all import *
>>> CartanType(['A', Integer(4)]).coxeter_type()
Coxeter type of ['A', 4]
dual()[source]#

Return the dual Cartan type, possibly just as a formal dual.

EXAMPLES:

sage: CartanType(['A',3]).dual()
['A', 3]
sage: CartanType(["B", 3]).dual()
['C', 3]
sage: CartanType(['C',2]).dual()
['B', 2]
sage: CartanType(['D',4]).dual()
['D', 4]
sage: CartanType(['E',8]).dual()
['E', 8]
sage: CartanType(['F',4]).dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
>>> from sage.all import *
>>> CartanType(['A',Integer(3)]).dual()
['A', 3]
>>> CartanType(["B", Integer(3)]).dual()
['C', 3]
>>> CartanType(['C',Integer(2)]).dual()
['B', 2]
>>> CartanType(['D',Integer(4)]).dual()
['D', 4]
>>> CartanType(['E',Integer(8)]).dual()
['E', 8]
>>> CartanType(['F',Integer(4)]).dual()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
index_set()[source]#

Return the index set for self.

This is the list of the nodes of the associated Coxeter or Dynkin diagram.

EXAMPLES:

sage: CartanType(['A', 3, 1]).index_set()
(0, 1, 2, 3)
sage: CartanType(['D', 4]).index_set()
(1, 2, 3, 4)
sage: CartanType(['A', 7, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CartanType(['A', 7, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CartanType(['A', 6, 2]).index_set()
(0, 1, 2, 3)
sage: CartanType(['D', 6, 2]).index_set()
(0, 1, 2, 3, 4, 5)
sage: CartanType(['E', 6, 1]).index_set()
(0, 1, 2, 3, 4, 5, 6)
sage: CartanType(['E', 6, 2]).index_set()
(0, 1, 2, 3, 4)
sage: CartanType(['A', 2, 2]).index_set()
(0, 1)
sage: CartanType(['G', 2, 1]).index_set()
(0, 1, 2)
sage: CartanType(['F', 4, 1]).index_set()
(0, 1, 2, 3, 4)
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).index_set()
(0, 1, 2, 3)
>>> CartanType(['D', Integer(4)]).index_set()
(1, 2, 3, 4)
>>> CartanType(['A', Integer(7), Integer(2)]).index_set()
(0, 1, 2, 3, 4)
>>> CartanType(['A', Integer(7), Integer(2)]).index_set()
(0, 1, 2, 3, 4)
>>> CartanType(['A', Integer(6), Integer(2)]).index_set()
(0, 1, 2, 3)
>>> CartanType(['D', Integer(6), Integer(2)]).index_set()
(0, 1, 2, 3, 4, 5)
>>> CartanType(['E', Integer(6), Integer(1)]).index_set()
(0, 1, 2, 3, 4, 5, 6)
>>> CartanType(['E', Integer(6), Integer(2)]).index_set()
(0, 1, 2, 3, 4)
>>> CartanType(['A', Integer(2), Integer(2)]).index_set()
(0, 1)
>>> CartanType(['G', Integer(2), Integer(1)]).index_set()
(0, 1, 2)
>>> CartanType(['F', Integer(4), Integer(1)]).index_set()
(0, 1, 2, 3, 4)
is_affine()[source]#

Return whether self is affine.

EXAMPLES:

sage: CartanType(['A', 3]).is_affine()
False
sage: CartanType(['A', 3, 1]).is_affine()
True
>>> from sage.all import *
>>> CartanType(['A', Integer(3)]).is_affine()
False
>>> CartanType(['A', Integer(3), Integer(1)]).is_affine()
True
is_atomic()[source]#

This method is usually equivalent to is_reducible(), except for the Cartan type \(D_2\).

\(D_2\) is not a standard Cartan type. It is equivalent to type \(A_1 \times A_1\) which is reducible; however the isomorphism from its ambient space (for the orthogonal group of degree 4) to that of \(A_1 \times A_1\) is non trivial, and it is useful to have it.

From a programming point of view its implementation is more similar to the irreducible types, and so the method is_atomic() is supplied.

EXAMPLES:

sage: CartanType("D2").is_atomic()
True
sage: CartanType("D2").is_irreducible()
False
>>> from sage.all import *
>>> CartanType("D2").is_atomic()
True
>>> CartanType("D2").is_irreducible()
False
is_compound()[source]#

A short hand for not is_atomic().

is_crystallographic()[source]#

Return whether this Cartan type is crystallographic.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: [ [t, t.is_crystallographic() ] for t in CartanType.samples(finite=True) ]
[[['A', 1], True], [['A', 5], True],
 [['B', 1], True], [['B', 5], True],
 [['C', 1], True], [['C', 5], True],
 [['D', 2], True], [['D', 3], True], [['D', 5], True],
 [['E', 6], True], [['E', 7], True], [['E', 8], True],
 [['F', 4], True], [['G', 2], True],
 [['I', 5], False], [['H', 3], False], [['H', 4], False]]
>>> from sage.all import *
>>> [ [t, t.is_crystallographic() ] for t in CartanType.samples(finite=True) ]
[[['A', 1], True], [['A', 5], True],
 [['B', 1], True], [['B', 5], True],
 [['C', 1], True], [['C', 5], True],
 [['D', 2], True], [['D', 3], True], [['D', 5], True],
 [['E', 6], True], [['E', 7], True], [['E', 8], True],
 [['F', 4], True], [['G', 2], True],
 [['I', 5], False], [['H', 3], False], [['H', 4], False]]
is_finite()[source]#

Return whether this Cartan type is finite.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_type import CartanType_abstract
sage: C = CartanType_abstract()
sage: C.is_finite()
Traceback (most recent call last):
...
NotImplementedError: <abstract method is_finite at ...>
>>> from sage.all import *
>>> from sage.combinat.root_system.cartan_type import CartanType_abstract
>>> C = CartanType_abstract()
>>> C.is_finite()
Traceback (most recent call last):
...
NotImplementedError: <abstract method is_finite at ...>
sage: CartanType(['A',4]).is_finite()
True
sage: CartanType(['A',4, 1]).is_finite()
False
>>> from sage.all import *
>>> CartanType(['A',Integer(4)]).is_finite()
True
>>> CartanType(['A',Integer(4), Integer(1)]).is_finite()
False
is_implemented()[source]#

Check whether the Cartan datum for self is actually implemented.

EXAMPLES:

sage: CartanType(["A",4,1]).is_implemented()                                # needs sage.graphs
True
sage: CartanType(['H',3]).is_implemented()
True
>>> from sage.all import *
>>> CartanType(["A",Integer(4),Integer(1)]).is_implemented()                                # needs sage.graphs
True
>>> CartanType(['H',Integer(3)]).is_implemented()
True
is_irreducible()[source]#

Report whether this Cartan type is irreducible (i.e. simple). This should be overridden in any subclass.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_type import CartanType_abstract
sage: C = CartanType_abstract()
sage: C.is_irreducible()
False
>>> from sage.all import *
>>> from sage.combinat.root_system.cartan_type import CartanType_abstract
>>> C = CartanType_abstract()
>>> C.is_irreducible()
False
is_reducible()[source]#

Report whether the root system is reducible (i.e. not simple), that is whether it can be factored as a product of root systems.

EXAMPLES:

sage: CartanType("A2xB3").is_reducible()
True
sage: CartanType(['A',2]).is_reducible()
False
>>> from sage.all import *
>>> CartanType("A2xB3").is_reducible()
True
>>> CartanType(['A',Integer(2)]).is_reducible()
False
is_simply_laced()[source]#

Return whether this Cartan type is simply laced.

This returns False by default. Derived class should override this appropriately.

EXAMPLES:

sage: [ [t, t.is_simply_laced() ] for t in CartanType.samples() ]
[[['A', 1], True], [['A', 5], True],
 [['B', 1], True], [['B', 5], False],
 [['C', 1], True], [['C', 5], False],
 [['D', 2], True], [['D', 3], True], [['D', 5], True],
 [['E', 6], True], [['E', 7], True], [['E', 8], True],
 [['F', 4], False], [['G', 2], False], [['I', 5], False],
 [['H', 3], False], [['H', 4], False],
 [['A', 1, 1], False], [['A', 5, 1], True],
 [['B', 1, 1], False], [['B', 5, 1], False],
 [['C', 1, 1], False], [['C', 5, 1], False],
 [['D', 3, 1], True], [['D', 5, 1], True],
 [['E', 6, 1], True], [['E', 7, 1], True], [['E', 8, 1], True],
 [['F', 4, 1], False], [['G', 2, 1], False],
 [['BC', 1, 2], False], [['BC', 5, 2], False],
 [['B', 5, 1]^*, False], [['C', 4, 1]^*, False],
 [['F', 4, 1]^*, False], [['G', 2, 1]^*, False],
 [['BC', 1, 2]^*, False], [['BC', 5, 2]^*, False]]
>>> from sage.all import *
>>> [ [t, t.is_simply_laced() ] for t in CartanType.samples() ]
[[['A', 1], True], [['A', 5], True],
 [['B', 1], True], [['B', 5], False],
 [['C', 1], True], [['C', 5], False],
 [['D', 2], True], [['D', 3], True], [['D', 5], True],
 [['E', 6], True], [['E', 7], True], [['E', 8], True],
 [['F', 4], False], [['G', 2], False], [['I', 5], False],
 [['H', 3], False], [['H', 4], False],
 [['A', 1, 1], False], [['A', 5, 1], True],
 [['B', 1, 1], False], [['B', 5, 1], False],
 [['C', 1, 1], False], [['C', 5, 1], False],
 [['D', 3, 1], True], [['D', 5, 1], True],
 [['E', 6, 1], True], [['E', 7, 1], True], [['E', 8, 1], True],
 [['F', 4, 1], False], [['G', 2, 1], False],
 [['BC', 1, 2], False], [['BC', 5, 2], False],
 [['B', 5, 1]^*, False], [['C', 4, 1]^*, False],
 [['F', 4, 1]^*, False], [['G', 2, 1]^*, False],
 [['BC', 1, 2]^*, False], [['BC', 5, 2]^*, False]]
marked_nodes(marked_nodes)[source]#

Return a Cartan type with the nodes marked_nodes marked.

INPUT:

  • marked_nodes – a list of nodes to mark

EXAMPLES:

sage: CartanType(['F',4]).marked_nodes([1, 3]).dynkin_diagram()             # needs sage.graphs
X---O=>=X---O
1   2   3   4
F4 with nodes (1, 3) marked
>>> from sage.all import *
>>> CartanType(['F',Integer(4)]).marked_nodes([Integer(1), Integer(3)]).dynkin_diagram()             # needs sage.graphs
X---O=>=X---O
1   2   3   4
F4 with nodes (1, 3) marked
options = Current options for CartanType   - dual_latex:        \vee   - dual_str:          *   - latex_marked:      True   - latex_relabel:     True   - mark_special_node: none   - marked_node_str:   X   - notation:          Stembridge   - special_node_str:  @[source]#
rank()[source]#

Return the rank of self.

This is the number of nodes of the associated Coxeter or Dynkin diagram.

EXAMPLES:

sage: CartanType(['A', 4]).rank()
4
sage: CartanType(['A', 7, 2]).rank()
5
sage: CartanType(['I', 8]).rank()
2
>>> from sage.all import *
>>> CartanType(['A', Integer(4)]).rank()
4
>>> CartanType(['A', Integer(7), Integer(2)]).rank()
5
>>> CartanType(['I', Integer(8)]).rank()
2
relabel(relabelling)[source]#

Return a relabelled copy of this Cartan type.

INPUT:

  • relabelling – a function (or a list or dictionary)

OUTPUT:

an isomorphic Cartan type obtained by relabelling the nodes of the Dynkin diagram. Namely, the node with label i is relabelled f(i) (or, by f[i] if f is a list or dictionary).

EXAMPLES:

sage: CartanType(['F',4]).relabel({ 1:4, 2:3, 3:2, 4:1 }).dynkin_diagram()   # needs sage.graphs
O---O=>=O---O
4   3   2   1
F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
>>> from sage.all import *
>>> CartanType(['F',Integer(4)]).relabel({ Integer(1):Integer(4), Integer(2):Integer(3), Integer(3):Integer(2), Integer(4):Integer(1) }).dynkin_diagram()   # needs sage.graphs
O---O=>=O---O
4   3   2   1
F4 relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
root_system()[source]#

Return the root system associated to self.

EXAMPLES:

sage: CartanType(['A',4]).root_system()
Root system of type ['A', 4]
>>> from sage.all import *
>>> CartanType(['A',Integer(4)]).root_system()
Root system of type ['A', 4]
subtype(index_set)[source]#

Return a subtype of self given by index_set.

A subtype can be considered the Dynkin diagram induced from the Dynkin diagram of self by index_set.

EXAMPLES:

sage: ct = CartanType(['A',6,2])
sage: ct.dynkin_diagram()                                                   # needs sage.graphs
O=<=O---O=<=O
0   1   2   3
BC3~
sage: ct.subtype([1,2,3])                                                   # needs sage.graphs
['C', 3]
>>> from sage.all import *
>>> ct = CartanType(['A',Integer(6),Integer(2)])
>>> ct.dynkin_diagram()                                                   # needs sage.graphs
O=<=O---O=<=O
0   1   2   3
BC3~
>>> ct.subtype([Integer(1),Integer(2),Integer(3)])                                                   # needs sage.graphs
['C', 3]
type()[source]#

Return the type of self, or None if unknown.

This method should be overridden in any subclass.

EXAMPLES:

sage: from sage.combinat.root_system.cartan_type import CartanType_abstract
sage: C = CartanType_abstract()
sage: C.type() is None
True
>>> from sage.all import *
>>> from sage.combinat.root_system.cartan_type import CartanType_abstract
>>> C = CartanType_abstract()
>>> C.type() is None
True
class sage.combinat.root_system.cartan_type.CartanType_affine[source]#

Bases: CartanType_simple, CartanType_crystallographic

An abstract class for simple affine Cartan types

AmbientSpace[source]#

alias of AmbientSpace

a()[source]#

Return the unique minimal non trivial annihilating linear combination of \(\alpha^\vee_0, \alpha^\vee, \ldots, \alpha^\vee\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the columns of the Cartan matrix with non-negative coefficients).

Throw an error if the existence or uniqueness does not hold

FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.

EXAMPLES:

sage: # needs sage.graphs
sage: RootSystem(['C',2,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().a()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2}
sage: RootSystem(['BC',4,2]).cartan_type().a()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
>>> from sage.all import *
>>> # needs sage.graphs
>>> RootSystem(['C',Integer(2),Integer(1)]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 1}
>>> RootSystem(['D',Integer(4),Integer(1)]).cartan_type().a()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
>>> RootSystem(['F',Integer(4),Integer(1)]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2}
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().a()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}

a is a shortcut for col_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().col_annihilator()                # needs sage.graphs
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
>>> from sage.all import *
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().col_annihilator()                # needs sage.graphs
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
acheck(m=None)[source]#

Return the unique minimal non trivial annihilating linear combination of \(\alpha_0, \alpha_1, \ldots, \alpha_n\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the rows of the Cartan matrix with non-negative coefficients).

Throw an error if the existence of uniqueness does not hold

The optional argument m is for internal use only.

EXAMPLES:

sage: # needs sage.graphs
sage: RootSystem(['C',2,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1}
sage: RootSystem(['BC',4,2]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
>>> from sage.all import *
>>> # needs sage.graphs
>>> RootSystem(['C',Integer(2),Integer(1)]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 1}
>>> RootSystem(['D',Integer(4),Integer(1)]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
>>> RootSystem(['F',Integer(4),Integer(1)]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1}
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

acheck is a shortcut for row_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().row_annihilator()                # needs sage.graphs
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
>>> from sage.all import *
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().row_annihilator()                # needs sage.graphs
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

FIXME:

  • The current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.

  • This really should be a method of CartanMatrix.

basic_untwisted()[source]#

Return the basic untwisted Cartan type associated with this affine Cartan type.

Given an affine type \(X_n^{(r)}\), the basic untwisted type is \(X_n\). In other words, it is the classical Cartan type that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 1, 1]).basic_untwisted()
['A', 1]
sage: CartanType(['A', 3, 1]).basic_untwisted()
['A', 3]
sage: CartanType(['B', 3, 1]).basic_untwisted()
['B', 3]
sage: CartanType(['E', 6, 1]).basic_untwisted()
['E', 6]
sage: CartanType(['G', 2, 1]).basic_untwisted()
['G', 2]

sage: CartanType(['A', 2, 2]).basic_untwisted()
['A', 2]
sage: CartanType(['A', 4, 2]).basic_untwisted()
['A', 4]
sage: CartanType(['A', 11, 2]).basic_untwisted()
['A', 11]
sage: CartanType(['D', 5, 2]).basic_untwisted()
['D', 5]
sage: CartanType(['E', 6, 2]).basic_untwisted()
['E', 6]
sage: CartanType(['D', 4, 3]).basic_untwisted()
['D', 4]
>>> from sage.all import *
>>> CartanType(['A', Integer(1), Integer(1)]).basic_untwisted()
['A', 1]
>>> CartanType(['A', Integer(3), Integer(1)]).basic_untwisted()
['A', 3]
>>> CartanType(['B', Integer(3), Integer(1)]).basic_untwisted()
['B', 3]
>>> CartanType(['E', Integer(6), Integer(1)]).basic_untwisted()
['E', 6]
>>> CartanType(['G', Integer(2), Integer(1)]).basic_untwisted()
['G', 2]

>>> CartanType(['A', Integer(2), Integer(2)]).basic_untwisted()
['A', 2]
>>> CartanType(['A', Integer(4), Integer(2)]).basic_untwisted()
['A', 4]
>>> CartanType(['A', Integer(11), Integer(2)]).basic_untwisted()
['A', 11]
>>> CartanType(['D', Integer(5), Integer(2)]).basic_untwisted()
['D', 5]
>>> CartanType(['E', Integer(6), Integer(2)]).basic_untwisted()
['E', 6]
>>> CartanType(['D', Integer(4), Integer(3)]).basic_untwisted()
['D', 4]
c()[source]#

Returns the family (c_i)_i of integer coefficients defined by \(c_i=max(1, a_i/a^vee_i)\) (see e.g. [FSS07] p. 3)

FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.

EXAMPLES:

sage: # needs sage.graphs
sage: RootSystem(['C',2,1]).cartan_type().c()
Finite family {0: 1, 1: 2, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().c()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().c()
Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2}
sage: RootSystem(['BC',4,2]).cartan_type().c()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}
>>> from sage.all import *
>>> # needs sage.graphs
>>> RootSystem(['C',Integer(2),Integer(1)]).cartan_type().c()
Finite family {0: 1, 1: 2, 2: 1}
>>> RootSystem(['D',Integer(4),Integer(1)]).cartan_type().c()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
>>> RootSystem(['F',Integer(4),Integer(1)]).cartan_type().c()
Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2}
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().c()
Finite family {0: 2, 1: 1, 2: 1, 3: 1, 4: 1}

REFERENCES:

[FSS07]

G. Fourier, A. Schilling, and M. Shimozono, Demazure structure inside Kirillov-Reshetikhin crystals, J. Algebra, Vol. 309, (2007), p. 386-404 arXiv math/0605451

classical()[source]#

Return the classical Cartan type associated with this affine Cartan type.

EXAMPLES:

sage: CartanType(['A', 1, 1]).classical()
['A', 1]
sage: CartanType(['A', 3, 1]).classical()
['A', 3]
sage: CartanType(['B', 3, 1]).classical()
['B', 3]

sage: CartanType(['A', 2, 2]).classical()
['C', 1]
sage: CartanType(['BC', 1, 2]).classical()
['C', 1]
sage: CartanType(['A', 4, 2]).classical()
['C', 2]
sage: CartanType(['BC', 2, 2]).classical()
['C', 2]
sage: CartanType(['A', 10, 2]).classical()
['C', 5]
sage: CartanType(['BC', 5, 2]).classical()
['C', 5]

sage: CartanType(['D', 5, 2]).classical()
['B', 4]
sage: CartanType(['E', 6, 1]).classical()
['E', 6]
sage: CartanType(['G', 2, 1]).classical()
['G', 2]
sage: CartanType(['E', 6, 2]).classical()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
sage: CartanType(['D', 4, 3]).classical()
['G', 2]
>>> from sage.all import *
>>> CartanType(['A', Integer(1), Integer(1)]).classical()
['A', 1]
>>> CartanType(['A', Integer(3), Integer(1)]).classical()
['A', 3]
>>> CartanType(['B', Integer(3), Integer(1)]).classical()
['B', 3]

>>> CartanType(['A', Integer(2), Integer(2)]).classical()
['C', 1]
>>> CartanType(['BC', Integer(1), Integer(2)]).classical()
['C', 1]
>>> CartanType(['A', Integer(4), Integer(2)]).classical()
['C', 2]
>>> CartanType(['BC', Integer(2), Integer(2)]).classical()
['C', 2]
>>> CartanType(['A', Integer(10), Integer(2)]).classical()
['C', 5]
>>> CartanType(['BC', Integer(5), Integer(2)]).classical()
['C', 5]

>>> CartanType(['D', Integer(5), Integer(2)]).classical()
['B', 4]
>>> CartanType(['E', Integer(6), Integer(1)]).classical()
['E', 6]
>>> CartanType(['G', Integer(2), Integer(1)]).classical()
['G', 2]
>>> CartanType(['E', Integer(6), Integer(2)]).classical()
['F', 4] relabelled by {1: 4, 2: 3, 3: 2, 4: 1}
>>> CartanType(['D', Integer(4), Integer(3)]).classical()
['G', 2]

We check that classical(), sage.combinat.root_system.cartan_type.CartanType_crystallographic.dynkin_diagram(), and special_node() are consistent:

sage: for ct in CartanType.samples(affine=True):                            # needs sage.graphs
....:     g1 = ct.classical().dynkin_diagram()
....:     g2 = ct.dynkin_diagram()
....:     g2.delete_vertex(ct.special_node())
....:     assert g1.vertices(sort=True) == g2.vertices(sort=True)
....:     assert g1.edges(sort=True) == g2.edges(sort=True)
>>> from sage.all import *
>>> for ct in CartanType.samples(affine=True):                            # needs sage.graphs
...     g1 = ct.classical().dynkin_diagram()
...     g2 = ct.dynkin_diagram()
...     g2.delete_vertex(ct.special_node())
...     assert g1.vertices(sort=True) == g2.vertices(sort=True)
...     assert g1.edges(sort=True) == g2.edges(sort=True)
col_annihilator()[source]#

Return the unique minimal non trivial annihilating linear combination of \(\alpha^\vee_0, \alpha^\vee, \ldots, \alpha^\vee\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the columns of the Cartan matrix with non-negative coefficients).

Throw an error if the existence or uniqueness does not hold

FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.

EXAMPLES:

sage: # needs sage.graphs
sage: RootSystem(['C',2,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().a()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2}
sage: RootSystem(['BC',4,2]).cartan_type().a()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
>>> from sage.all import *
>>> # needs sage.graphs
>>> RootSystem(['C',Integer(2),Integer(1)]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 1}
>>> RootSystem(['D',Integer(4),Integer(1)]).cartan_type().a()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
>>> RootSystem(['F',Integer(4),Integer(1)]).cartan_type().a()
Finite family {0: 1, 1: 2, 2: 3, 3: 4, 4: 2}
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().a()
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}

a is a shortcut for col_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().col_annihilator()                # needs sage.graphs
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
>>> from sage.all import *
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().col_annihilator()                # needs sage.graphs
Finite family {0: 2, 1: 2, 2: 2, 3: 2, 4: 1}
is_affine()[source]#

EXAMPLES:

sage: CartanType(['A', 3, 1]).is_affine()
True
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).is_affine()
True
is_finite()[source]#

EXAMPLES:

sage: CartanType(['A', 3, 1]).is_finite()
False
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).is_finite()
False
is_untwisted_affine()[source]#

Return whether self is untwisted affine

A Cartan type is untwisted affine if it is the canonical affine extension of some finite type. Every affine type is either untwisted affine, dual thereof, or of type BC.

EXAMPLES:

sage: CartanType(['A', 3, 1]).is_untwisted_affine()
True
sage: CartanType(['A', 3, 1]).dual().is_untwisted_affine()  # this one is self dual!
True
sage: CartanType(['B', 3, 1]).dual().is_untwisted_affine()
False
sage: CartanType(['BC', 3, 2]).is_untwisted_affine()
False
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).is_untwisted_affine()
True
>>> CartanType(['A', Integer(3), Integer(1)]).dual().is_untwisted_affine()  # this one is self dual!
True
>>> CartanType(['B', Integer(3), Integer(1)]).dual().is_untwisted_affine()
False
>>> CartanType(['BC', Integer(3), Integer(2)]).is_untwisted_affine()
False
other_affinization()[source]#

Return the other affinization of the same classical type.

EXAMPLES:

sage: CartanType(["A", 3, 1]).other_affinization()
['A', 3, 1]
sage: CartanType(["B", 3, 1]).other_affinization()
['C', 3, 1]^*
sage: CartanType(["C", 3, 1]).dual().other_affinization()
['B', 3, 1]
>>> from sage.all import *
>>> CartanType(["A", Integer(3), Integer(1)]).other_affinization()
['A', 3, 1]
>>> CartanType(["B", Integer(3), Integer(1)]).other_affinization()
['C', 3, 1]^*
>>> CartanType(["C", Integer(3), Integer(1)]).dual().other_affinization()
['B', 3, 1]

Is this what we want?:

sage: CartanType(["BC", 3, 2]).dual().other_affinization()
['B', 3, 1]
>>> from sage.all import *
>>> CartanType(["BC", Integer(3), Integer(2)]).dual().other_affinization()
['B', 3, 1]
row_annihilator(m=None)[source]#

Return the unique minimal non trivial annihilating linear combination of \(\alpha_0, \alpha_1, \ldots, \alpha_n\) with nonnegative coefficients (or alternatively, the unique minimal non trivial annihilating linear combination of the rows of the Cartan matrix with non-negative coefficients).

Throw an error if the existence of uniqueness does not hold

The optional argument m is for internal use only.

EXAMPLES:

sage: # needs sage.graphs
sage: RootSystem(['C',2,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 1}
sage: RootSystem(['D',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
sage: RootSystem(['F',4,1]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1}
sage: RootSystem(['BC',4,2]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
>>> from sage.all import *
>>> # needs sage.graphs
>>> RootSystem(['C',Integer(2),Integer(1)]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 1}
>>> RootSystem(['D',Integer(4),Integer(1)]).cartan_type().acheck()
Finite family {0: 1, 1: 1, 2: 2, 3: 1, 4: 1}
>>> RootSystem(['F',Integer(4),Integer(1)]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 3, 3: 2, 4: 1}
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().acheck()
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

acheck is a shortcut for row_annihilator:

sage: RootSystem(['BC',4,2]).cartan_type().row_annihilator()                # needs sage.graphs
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}
>>> from sage.all import *
>>> RootSystem(['BC',Integer(4),Integer(2)]).cartan_type().row_annihilator()                # needs sage.graphs
Finite family {0: 1, 1: 2, 2: 2, 3: 2, 4: 2}

FIXME:

  • The current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.

  • This really should be a method of CartanMatrix.

special_node()[source]#

Return a special node of the Dynkin diagram.

A special node is a node of the Dynkin diagram such that pruning it yields a Dynkin diagram for the associated classical type (see classical()).

This method returns the label of some special node. This is usually \(0\) in the standard conventions.

EXAMPLES:

sage: CartanType(['A', 3, 1]).special_node()
0
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).special_node()
0

The choice is guaranteed to be consistent with the indexing of the nodes of the classical Dynkin diagram:

sage: CartanType(['A', 3, 1]).index_set()
(0, 1, 2, 3)
sage: CartanType(['A', 3, 1]).classical().index_set()
(1, 2, 3)
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).index_set()
(0, 1, 2, 3)
>>> CartanType(['A', Integer(3), Integer(1)]).classical().index_set()
(1, 2, 3)
special_nodes()[source]#

Return the set of special nodes of the affine Dynkin diagram.

EXAMPLES:

sage: # needs sage.graphs sage.groups
sage: CartanType(['A',3,1]).special_nodes()
(0, 1, 2, 3)
sage: CartanType(['C',2,1]).special_nodes()
(0, 2)
sage: CartanType(['D',4,1]).special_nodes()
(0, 1, 3, 4)
sage: CartanType(['E',6,1]).special_nodes()
(0, 1, 6)
sage: CartanType(['D',3,2]).special_nodes()
(0, 2)
sage: CartanType(['A',4,2]).special_nodes()
(0,)
>>> from sage.all import *
>>> # needs sage.graphs sage.groups
>>> CartanType(['A',Integer(3),Integer(1)]).special_nodes()
(0, 1, 2, 3)
>>> CartanType(['C',Integer(2),Integer(1)]).special_nodes()
(0, 2)
>>> CartanType(['D',Integer(4),Integer(1)]).special_nodes()
(0, 1, 3, 4)
>>> CartanType(['E',Integer(6),Integer(1)]).special_nodes()
(0, 1, 6)
>>> CartanType(['D',Integer(3),Integer(2)]).special_nodes()
(0, 2)
>>> CartanType(['A',Integer(4),Integer(2)]).special_nodes()
(0,)
translation_factors()[source]#

Return the translation factors for self.

Those are the smallest factors \(t_i\) such that the translation by \(t_i \alpha_i\) maps the fundamental polygon to another polygon in the alcove picture.

OUTPUT:

a dictionary from self.index_set() to \(\ZZ\) (or \(\QQ\) for affine type \(BC\))

Those coefficients are all \(1\) for dual untwisted, and in particular for simply laced. They coincide with the usual \(c_i\) coefficients (see c()) for untwisted and dual thereof. See the discussion below for affine type \(BC\).

Note

One usually realizes the alcove picture in the coweight lattice, with translations by coroots; in that case, one will use the translation factors for the dual Cartan type.

FIXME: the current implementation assumes that the Cartan matrix is indexed by \([0,1,...]\), in the same order as the index set.

EXAMPLES:

sage: # needs sage.graphs
sage: CartanType(['C',2,1]).translation_factors()
Finite family {0: 1, 1: 2, 2: 1}
sage: CartanType(['C',2,1]).dual().translation_factors()
Finite family {0: 1, 1: 1, 2: 1}
sage: CartanType(['D',4,1]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
sage: CartanType(['F',4,1]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2}
sage: CartanType(['BC',4,2]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1/2}
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType(['C',Integer(2),Integer(1)]).translation_factors()
Finite family {0: 1, 1: 2, 2: 1}
>>> CartanType(['C',Integer(2),Integer(1)]).dual().translation_factors()
Finite family {0: 1, 1: 1, 2: 1}
>>> CartanType(['D',Integer(4),Integer(1)]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1}
>>> CartanType(['F',Integer(4),Integer(1)]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 2, 4: 2}
>>> CartanType(['BC',Integer(4),Integer(2)]).translation_factors()
Finite family {0: 1, 1: 1, 2: 1, 3: 1, 4: 1/2}

We proceed with systematic tests taken from MuPAD-Combinat’s testsuite:

sage: # needs sage.graphs
sage: list(CartanType(["A", 1, 1]).translation_factors())
[1, 1]
sage: list(CartanType(["A", 5, 1]).translation_factors())
[1, 1, 1, 1, 1, 1]
sage: list(CartanType(["B", 5, 1]).translation_factors())
[1, 1, 1, 1, 1, 2]
sage: list(CartanType(["C", 5, 1]).translation_factors())
[1, 2, 2, 2, 2, 1]
sage: list(CartanType(["D", 5, 1]).translation_factors())
[1, 1, 1, 1, 1, 1]
sage: list(CartanType(["E", 6, 1]).translation_factors())
[1, 1, 1, 1, 1, 1, 1]
sage: list(CartanType(["E", 7, 1]).translation_factors())
[1, 1, 1, 1, 1, 1, 1, 1]
sage: list(CartanType(["E", 8, 1]).translation_factors())
[1, 1, 1, 1, 1, 1, 1, 1, 1]
sage: list(CartanType(["F", 4, 1]).translation_factors())
[1, 1, 1, 2, 2]
sage: list(CartanType(["G", 2, 1]).translation_factors())
[1, 3, 1]
sage: list(CartanType(["A", 2, 2]).translation_factors())
[1, 1/2]
sage: list(CartanType(["A", 2, 2]).dual().translation_factors())
[1/2, 1]
sage: list(CartanType(["A", 10, 2]).translation_factors())
[1, 1, 1, 1, 1, 1/2]
sage: list(CartanType(["A", 10, 2]).dual().translation_factors())
[1/2, 1, 1, 1, 1, 1]
sage: list(CartanType(["A", 9, 2]).translation_factors())
[1, 1, 1, 1, 1, 1]
sage: list(CartanType(["D", 5, 2]).translation_factors())
[1, 1, 1, 1, 1]
sage: list(CartanType(["D", 4, 3]).translation_factors())
[1, 1, 1]
sage: list(CartanType(["E", 6, 2]).translation_factors())
[1, 1, 1, 1, 1]
>>> from sage.all import *
>>> # needs sage.graphs
>>> list(CartanType(["A", Integer(1), Integer(1)]).translation_factors())
[1, 1]
>>> list(CartanType(["A", Integer(5), Integer(1)]).translation_factors())
[1, 1, 1, 1, 1, 1]
>>> list(CartanType(["B", Integer(5), Integer(1)]).translation_factors())
[1, 1, 1, 1, 1, 2]
>>> list(CartanType(["C", Integer(5), Integer(1)]).translation_factors())
[1, 2, 2, 2, 2, 1]
>>> list(CartanType(["D", Integer(5), Integer(1)]).translation_factors())
[1, 1, 1, 1, 1, 1]
>>> list(CartanType(["E", Integer(6), Integer(1)]).translation_factors())
[1, 1, 1, 1, 1, 1, 1]
>>> list(CartanType(["E", Integer(7), Integer(1)]).translation_factors())
[1, 1, 1, 1, 1, 1, 1, 1]
>>> list(CartanType(["E", Integer(8), Integer(1)]).translation_factors())
[1, 1, 1, 1, 1, 1, 1, 1, 1]
>>> list(CartanType(["F", Integer(4), Integer(1)]).translation_factors())
[1, 1, 1, 2, 2]
>>> list(CartanType(["G", Integer(2), Integer(1)]).translation_factors())
[1, 3, 1]
>>> list(CartanType(["A", Integer(2), Integer(2)]).translation_factors())
[1, 1/2]
>>> list(CartanType(["A", Integer(2), Integer(2)]).dual().translation_factors())
[1/2, 1]
>>> list(CartanType(["A", Integer(10), Integer(2)]).translation_factors())
[1, 1, 1, 1, 1, 1/2]
>>> list(CartanType(["A", Integer(10), Integer(2)]).dual().translation_factors())
[1/2, 1, 1, 1, 1, 1]
>>> list(CartanType(["A", Integer(9), Integer(2)]).translation_factors())
[1, 1, 1, 1, 1, 1]
>>> list(CartanType(["D", Integer(5), Integer(2)]).translation_factors())
[1, 1, 1, 1, 1]
>>> list(CartanType(["D", Integer(4), Integer(3)]).translation_factors())
[1, 1, 1]
>>> list(CartanType(["E", Integer(6), Integer(2)]).translation_factors())
[1, 1, 1, 1, 1]

We conclude with a discussion of the appropriate value for affine type \(BC\). Let us consider the alcove picture realized in the weight lattice. It is obtained by taking the level-\(1\) affine hyperplane in the weight lattice, and projecting it along \(\Lambda_0\):

sage: R = RootSystem(["BC",2,2])
sage: alpha = R.weight_space().simple_roots()                               # needs sage.graphs
sage: alphacheck = R.coroot_space().simple_roots()
sage: Lambda = R.weight_space().fundamental_weights()
>>> from sage.all import *
>>> R = RootSystem(["BC",Integer(2),Integer(2)])
>>> alpha = R.weight_space().simple_roots()                               # needs sage.graphs
>>> alphacheck = R.coroot_space().simple_roots()
>>> Lambda = R.weight_space().fundamental_weights()

Here are the levels of the fundamental weights:

sage: Lambda[0].level(), Lambda[1].level(), Lambda[2].level()               # needs sage.graphs
(1, 2, 2)
>>> from sage.all import *
>>> Lambda[Integer(0)].level(), Lambda[Integer(1)].level(), Lambda[Integer(2)].level()               # needs sage.graphs
(1, 2, 2)

So the “center” of the fundamental polygon at level \(1\) is:

sage: O = Lambda[0]
sage: O.level()                                                             # needs sage.graphs
1
>>> from sage.all import *
>>> O = Lambda[Integer(0)]
>>> O.level()                                                             # needs sage.graphs
1

We take the projection \(\omega_1\) at level \(0\) of \(\Lambda_1\) as unit vector on the \(x\)-axis, and the projection \(\omega_2\) at level 0 of \(\Lambda_2\) as unit vector of the \(y\)-axis:

sage: omega1 = Lambda[1] - 2*Lambda[0]
sage: omega2 = Lambda[2] - 2*Lambda[0]
sage: omega1.level(), omega2.level()                                        # needs sage.graphs
(0, 0)
>>> from sage.all import *
>>> omega1 = Lambda[Integer(1)] - Integer(2)*Lambda[Integer(0)]
>>> omega2 = Lambda[Integer(2)] - Integer(2)*Lambda[Integer(0)]
>>> omega1.level(), omega2.level()                                        # needs sage.graphs
(0, 0)

The projections of the simple roots can be read off:

sage: alpha[0]                                                              # needs sage.graphs
2*Lambda[0] - Lambda[1]
sage: alpha[1]                                                              # needs sage.graphs
-2*Lambda[0] + 2*Lambda[1] - Lambda[2]
sage: alpha[2]                                                              # needs sage.graphs
-2*Lambda[1] + 2*Lambda[2]
>>> from sage.all import *
>>> alpha[Integer(0)]                                                              # needs sage.graphs
2*Lambda[0] - Lambda[1]
>>> alpha[Integer(1)]                                                              # needs sage.graphs
-2*Lambda[0] + 2*Lambda[1] - Lambda[2]
>>> alpha[Integer(2)]                                                              # needs sage.graphs
-2*Lambda[1] + 2*Lambda[2]

Namely \(\alpha_0 = -\omega_1\), \(\alpha_1 = 2\omega_1 - \omega_2\) and \(\alpha_2 = -2 \omega_1 + 2 \omega_2\).

The reflection hyperplane defined by \(\alpha_0^\vee\) goes through the points \(O+1/2 \omega_1\) and \(O+1/2 \omega_2\):

sage: (O+(1/2)*omega1).scalar(alphacheck[0])
0
sage: (O+(1/2)*omega2).scalar(alphacheck[0])
0
>>> from sage.all import *
>>> (O+(Integer(1)/Integer(2))*omega1).scalar(alphacheck[Integer(0)])
0
>>> (O+(Integer(1)/Integer(2))*omega2).scalar(alphacheck[Integer(0)])
0

Hence, the fundamental alcove is the triangle \((O, O+1/2 \omega_1, O+1/2 \omega_2)\). By successive reflections, one can tile the full plane. This induces a tiling of the full plane by translates of the fundamental polygon.

Todo

Add the picture here, once root system plots in the weight lattice will be implemented. In the mean time, the reader may look up the dual picture on Figure 2 of [HST09] which was produced by MuPAD-Combinat.

From this picture, one can read that translations by \(\alpha_0\), \(\alpha_1\), and \(1/2\alpha_2\) map the fundamental polygon to translates of it in the alcove picture, and are smallest with this property. Hence, the translation factors for affine type \(BC\) are \(t_0=1, t_1=1, t_2=1/2\):

sage: CartanType(['BC',2,2]).translation_factors()                          # needs sage.graphs
Finite family {0: 1, 1: 1, 2: 1/2}
>>> from sage.all import *
>>> CartanType(['BC',Integer(2),Integer(2)]).translation_factors()                          # needs sage.graphs
Finite family {0: 1, 1: 1, 2: 1/2}

REFERENCES:

[HST09]

F. Hivert, A. Schilling, and N. M. Thiery, Hecke group algebras as quotients of affine Hecke algebras at level 0, JCT A, Vol. 116, (2009) p. 844-863 arXiv 0804.3781

class sage.combinat.root_system.cartan_type.CartanType_crystallographic[source]#

Bases: CartanType_abstract

An abstract class for crystallographic Cartan types.

ascii_art(label='lambda x: x', node=None)[source]#

Return an ascii art representation of the Dynkin diagram.

INPUT:

  • label – (default: the identity) a relabeling function for the nodes

  • node – (optional) a function which returns the character for a node

EXAMPLES:

sage: cartan_type = CartanType(['B',5,1])
sage: print(cartan_type.ascii_art())
    O 0
    |
    |
O---O---O---O=>=O
1   2   3   4   5
>>> from sage.all import *
>>> cartan_type = CartanType(['B',Integer(5),Integer(1)])
>>> print(cartan_type.ascii_art())
    O 0
    |
    |
O---O---O---O=>=O
1   2   3   4   5

The label option is useful to visualize various statistics on the nodes of the Dynkin diagram:

sage: a = cartan_type.col_annihilator(); a                                  # needs sage.graphs
Finite family {0: 1, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2}
sage: print(CartanType(['B',5,1]).ascii_art(label=a.__getitem__))           # needs sage.graphs
    O 1
    |
    |
O---O---O---O=>=O
1   2   2   2   2
>>> from sage.all import *
>>> a = cartan_type.col_annihilator(); a                                  # needs sage.graphs
Finite family {0: 1, 1: 1, 2: 2, 3: 2, 4: 2, 5: 2}
>>> print(CartanType(['B',Integer(5),Integer(1)]).ascii_art(label=a.__getitem__))           # needs sage.graphs
    O 1
    |
    |
O---O---O---O=>=O
1   2   2   2   2
cartan_matrix()[source]#

Return the Cartan matrix associated with self.

EXAMPLES:

sage: CartanType(['A',4]).cartan_matrix()                                   # needs sage.graphs
[ 2 -1  0  0]
[-1  2 -1  0]
[ 0 -1  2 -1]
[ 0  0 -1  2]
>>> from sage.all import *
>>> CartanType(['A',Integer(4)]).cartan_matrix()                                   # needs sage.graphs
[ 2 -1  0  0]
[-1  2 -1  0]
[ 0 -1  2 -1]
[ 0  0 -1  2]
coxeter_diagram()[source]#

Return the Coxeter diagram for self.

This implementation constructs it from the Dynkin diagram.

EXAMPLES:

sage: # needs sage.graphs
sage: CartanType(['A',3]).coxeter_diagram()
Graph on 3 vertices
sage: CartanType(['A',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3)]
sage: CartanType(['B',3]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4)]
sage: CartanType(['G',2]).coxeter_diagram().edges(sort=True)
[(1, 2, 6)]
sage: CartanType(['F',4]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3)]
sage: CartanType(['A',2,2]).coxeter_diagram().edges(sort=True)
[(0, 1, +Infinity)]
>>> from sage.all import *
>>> # needs sage.graphs
>>> CartanType(['A',Integer(3)]).coxeter_diagram()
Graph on 3 vertices
>>> CartanType(['A',Integer(3)]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 3)]
>>> CartanType(['B',Integer(3)]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4)]
>>> CartanType(['G',Integer(2)]).coxeter_diagram().edges(sort=True)
[(1, 2, 6)]
>>> CartanType(['F',Integer(4)]).coxeter_diagram().edges(sort=True)
[(1, 2, 3), (2, 3, 4), (3, 4, 3)]
>>> CartanType(['A',Integer(2),Integer(2)]).coxeter_diagram().edges(sort=True)
[(0, 1, +Infinity)]
dynkin_diagram()[source]#

Return the Dynkin diagram associated with self.

EXAMPLES:

sage: CartanType(['A',4]).dynkin_diagram()                                  # needs sage.graphs
O---O---O---O
1   2   3   4
A4
>>> from sage.all import *
>>> CartanType(['A',Integer(4)]).dynkin_diagram()                                  # needs sage.graphs
O---O---O---O
1   2   3   4
A4

Note

Derived subclasses should typically implement this as a cached method.

index_set_bipartition()[source]#

Return a bipartition \(\{L,R\}\) of the vertices of the Dynkin diagram.

For \(i\) and \(j\) both in \(L\) (or both in \(R\)), the simple reflections \(s_i\) and \(s_j\) commute.

Of course, the Dynkin diagram should be bipartite. This is always the case for all finite types.

EXAMPLES:

sage: CartanType(['A',5]).index_set_bipartition()                           # needs sage.graphs
({1, 3, 5}, {2, 4})

sage: CartanType(['A',2,1]).index_set_bipartition()                         # needs sage.graphs
Traceback (most recent call last):
...
ValueError: the Dynkin diagram must be bipartite
>>> from sage.all import *
>>> CartanType(['A',Integer(5)]).index_set_bipartition()                           # needs sage.graphs
({1, 3, 5}, {2, 4})

>>> CartanType(['A',Integer(2),Integer(1)]).index_set_bipartition()                         # needs sage.graphs
Traceback (most recent call last):
...
ValueError: the Dynkin diagram must be bipartite
is_crystallographic()[source]#

Implements CartanType_abstract.is_crystallographic() by returning True.

EXAMPLES:

sage: CartanType(['A', 3, 1]).is_crystallographic()
True
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).is_crystallographic()
True
symmetrizer()[source]#

Return the symmetrizer of the Cartan matrix of self.

A Cartan matrix \(M\) is symmetrizable if there exists a non trivial diagonal matrix \(D\) such that \(DM\) is a symmetric matrix, that is \(DM = M^tD\). In that case, \(D\) is unique, up to a scalar factor for each connected component of the Dynkin diagram.

This method computes the unique minimal such \(D\) with positive integral coefficients. If \(D\) exists, it is returned as a family. Otherwise None is returned.

The coefficients are coerced to base_ring.

EXAMPLES:

sage: CartanType(["B",5]).symmetrizer()                                     # needs sage.graphs
Finite family {1: 2, 2: 2, 3: 2, 4: 2, 5: 1}
>>> from sage.all import *
>>> CartanType(["B",Integer(5)]).symmetrizer()                                     # needs sage.graphs
Finite family {1: 2, 2: 2, 3: 2, 4: 2, 5: 1}

Here is a neat trick to visualize it better:

sage: T = CartanType(["B",5])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O---O---O---O=>=O
2   2   2   2   1

sage: T = CartanType(["BC",5, 2])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O=<=O---O---O---O=<=O
1   2   2   2   2   4
>>> from sage.all import *
>>> T = CartanType(["B",Integer(5)])
>>> print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O---O---O---O=>=O
2   2   2   2   1

>>> T = CartanType(["BC",Integer(5), Integer(2)])
>>> print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O=<=O---O---O---O=<=O
1   2   2   2   2   4

Here is the symmetrizer of some reducible Cartan types:

sage: T = CartanType(["D", 2])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O   O
1   1

sage: T = CartanType(["B",5],["BC",5, 2])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O---O---O---O=>=O
2   2   2   2   1
O=<=O---O---O---O=<=O
1   2   2   2   2   4
>>> from sage.all import *
>>> T = CartanType(["D", Integer(2)])
>>> print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O   O
1   1

>>> T = CartanType(["B",Integer(5)],["BC",Integer(5), Integer(2)])
>>> print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O---O---O---O=>=O
2   2   2   2   1
O=<=O---O---O---O=<=O
1   2   2   2   2   4

Property: up to an overall scalar factor, this gives the norm of the simple roots in the ambient space:

sage: T = CartanType(["C",5])
sage: print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O---O---O---O=<=O
1   1   1   1   2

sage: alpha = RootSystem(T).ambient_space().simple_roots()
sage: print(T.ascii_art(lambda i: alpha[i].scalar(alpha[i])))
O---O---O---O=<=O
2   2   2   2   4
>>> from sage.all import *
>>> T = CartanType(["C",Integer(5)])
>>> print(T.ascii_art(T.symmetrizer().__getitem__))                       # needs sage.graphs
O---O---O---O=<=O
1   1   1   1   2

>>> alpha = RootSystem(T).ambient_space().simple_roots()
>>> print(T.ascii_art(lambda i: alpha[i].scalar(alpha[i])))
O---O---O---O=<=O
2   2   2   2   4
class sage.combinat.root_system.cartan_type.CartanType_decorator(ct)[source]#

Bases: UniqueRepresentation, SageObject, CartanType_abstract

Concrete base class for Cartan types that decorate another Cartan type.

index_set()[source]#

EXAMPLES:

sage: ct = CartanType(['F', 4, 1]).dual()
sage: ct.index_set()
(0, 1, 2, 3, 4)
>>> from sage.all import *
>>> ct = CartanType(['F', Integer(4), Integer(1)]).dual()
>>> ct.index_set()
(0, 1, 2, 3, 4)
is_affine()[source]#

EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_affine()
False
>>> from sage.all import *
>>> ct = CartanType(['G', Integer(2)]).relabel({Integer(1):Integer(2),Integer(2):Integer(1)})
>>> ct.is_affine()
False
is_crystallographic()[source]#

EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_crystallographic()
True
>>> from sage.all import *
>>> ct = CartanType(['G', Integer(2)]).relabel({Integer(1):Integer(2),Integer(2):Integer(1)})
>>> ct.is_crystallographic()
True
is_finite()[source]#

EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_finite()
True
>>> from sage.all import *
>>> ct = CartanType(['G', Integer(2)]).relabel({Integer(1):Integer(2),Integer(2):Integer(1)})
>>> ct.is_finite()
True
is_irreducible()[source]#

EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.is_irreducible()
True
>>> from sage.all import *
>>> ct = CartanType(['G', Integer(2)]).relabel({Integer(1):Integer(2),Integer(2):Integer(1)})
>>> ct.is_irreducible()
True
rank()[source]#

EXAMPLES:

sage: ct = CartanType(['G', 2]).relabel({1:2,2:1})
sage: ct.rank()
2
>>> from sage.all import *
>>> ct = CartanType(['G', Integer(2)]).relabel({Integer(1):Integer(2),Integer(2):Integer(1)})
>>> ct.rank()
2
class sage.combinat.root_system.cartan_type.CartanType_finite[source]#

Bases: CartanType_abstract

An abstract class for simple affine Cartan types.

is_affine()[source]#

EXAMPLES:

sage: CartanType(["A", 3]).is_affine()
False
>>> from sage.all import *
>>> CartanType(["A", Integer(3)]).is_affine()
False
is_finite()[source]#

EXAMPLES:

sage: CartanType(["A", 3]).is_finite()
True
>>> from sage.all import *
>>> CartanType(["A", Integer(3)]).is_finite()
True
class sage.combinat.root_system.cartan_type.CartanType_simple[source]#

Bases: CartanType_abstract

An abstract class for simple Cartan types.

is_irreducible()[source]#

Return whether self is irreducible, which is True.

EXAMPLES:

sage: CartanType(['A', 3]).is_irreducible()
True
>>> from sage.all import *
>>> CartanType(['A', Integer(3)]).is_irreducible()
True
class sage.combinat.root_system.cartan_type.CartanType_simple_finite[source]#

Bases: object

class sage.combinat.root_system.cartan_type.CartanType_simply_laced[source]#

Bases: CartanType_crystallographic

An abstract class for simply laced Cartan types.

dual()[source]#

Simply laced Cartan types are self-dual, so return self.

EXAMPLES:

sage: CartanType(["A", 3]).dual()
['A', 3]
sage: CartanType(["A", 3, 1]).dual()
['A', 3, 1]
sage: CartanType(["D", 3]).dual()
['D', 3]
sage: CartanType(["D", 4, 1]).dual()
['D', 4, 1]
sage: CartanType(["E", 6]).dual()
['E', 6]
sage: CartanType(["E", 6, 1]).dual()
['E', 6, 1]
>>> from sage.all import *
>>> CartanType(["A", Integer(3)]).dual()
['A', 3]
>>> CartanType(["A", Integer(3), Integer(1)]).dual()
['A', 3, 1]
>>> CartanType(["D", Integer(3)]).dual()
['D', 3]
>>> CartanType(["D", Integer(4), Integer(1)]).dual()
['D', 4, 1]
>>> CartanType(["E", Integer(6)]).dual()
['E', 6]
>>> CartanType(["E", Integer(6), Integer(1)]).dual()
['E', 6, 1]
is_simply_laced()[source]#

Return whether self is simply laced, which is True.

EXAMPLES:

sage: CartanType(['A',3,1]).is_simply_laced()
True
sage: CartanType(['A',2]).is_simply_laced()
True
>>> from sage.all import *
>>> CartanType(['A',Integer(3),Integer(1)]).is_simply_laced()
True
>>> CartanType(['A',Integer(2)]).is_simply_laced()
True
class sage.combinat.root_system.cartan_type.CartanType_standard[source]#

Bases: UniqueRepresentation, SageObject

class sage.combinat.root_system.cartan_type.CartanType_standard_affine(letter, n, affine=1)[source]#

Bases: CartanType_standard, CartanType_affine

A concrete class for affine simple Cartan types.

index_set()[source]#

Implements CartanType_abstract.index_set().

The index set for all standard affine Cartan types is of the form \(\{0, \ldots, n\}\).

EXAMPLES:

sage: CartanType(['A', 5, 1]).index_set()
(0, 1, 2, 3, 4, 5)
>>> from sage.all import *
>>> CartanType(['A', Integer(5), Integer(1)]).index_set()
(0, 1, 2, 3, 4, 5)
rank()[source]#

Return the rank of self which for type \(X_n^{(1)}\) is \(n + 1\).

EXAMPLES:

sage: CartanType(['A', 4, 1]).rank()
5
sage: CartanType(['B', 4, 1]).rank()
5
sage: CartanType(['C', 3, 1]).rank()
4
sage: CartanType(['D', 4, 1]).rank()
5
sage: CartanType(['E', 6, 1]).rank()
7
sage: CartanType(['E', 7, 1]).rank()
8
sage: CartanType(['F', 4, 1]).rank()
5
sage: CartanType(['G', 2, 1]).rank()
3
sage: CartanType(['A', 2, 2]).rank()
2
sage: CartanType(['A', 6, 2]).rank()
4
sage: CartanType(['A', 7, 2]).rank()
5
sage: CartanType(['D', 5, 2]).rank()
5
sage: CartanType(['E', 6, 2]).rank()
5
sage: CartanType(['D', 4, 3]).rank()
3
>>> from sage.all import *
>>> CartanType(['A', Integer(4), Integer(1)]).rank()
5
>>> CartanType(['B', Integer(4), Integer(1)]).rank()
5
>>> CartanType(['C', Integer(3), Integer(1)]).rank()
4
>>> CartanType(['D', Integer(4), Integer(1)]).rank()
5
>>> CartanType(['E', Integer(6), Integer(1)]).rank()
7
>>> CartanType(['E', Integer(7), Integer(1)]).rank()
8
>>> CartanType(['F', Integer(4), Integer(1)]).rank()
5
>>> CartanType(['G', Integer(2), Integer(1)]).rank()
3
>>> CartanType(['A', Integer(2), Integer(2)]).rank()
2
>>> CartanType(['A', Integer(6), Integer(2)]).rank()
4
>>> CartanType(['A', Integer(7), Integer(2)]).rank()
5
>>> CartanType(['D', Integer(5), Integer(2)]).rank()
5
>>> CartanType(['E', Integer(6), Integer(2)]).rank()
5
>>> CartanType(['D', Integer(4), Integer(3)]).rank()
3
special_node()[source]#

Implement CartanType_abstract.special_node().

With the standard labelling conventions, \(0\) is always a special node.

EXAMPLES:

sage: CartanType(['A', 3, 1]).special_node()
0
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).special_node()
0
type()[source]#

Return the type of self.

EXAMPLES:

sage: CartanType(['A', 4, 1]).type()
'A'
>>> from sage.all import *
>>> CartanType(['A', Integer(4), Integer(1)]).type()
'A'
class sage.combinat.root_system.cartan_type.CartanType_standard_finite(letter, n)[source]#

Bases: CartanType_standard, CartanType_finite

A concrete base class for the finite standard Cartan types.

This includes for example \(A_3\), \(D_4\), or \(E_8\).

affine()[source]#

Return the corresponding untwisted affine Cartan type.

EXAMPLES:

sage: CartanType(['A',3]).affine()
['A', 3, 1]
>>> from sage.all import *
>>> CartanType(['A',Integer(3)]).affine()
['A', 3, 1]
coxeter_number()[source]#

Return the Coxeter number associated with self.

The Coxeter number is the order of a Coxeter element of the corresponding Weyl group.

See Bourbaki, Lie Groups and Lie Algebras V.6.1 or Wikipedia article Coxeter_element for more information.

EXAMPLES:

sage: CartanType(['A',4]).coxeter_number()
5
sage: CartanType(['B',4]).coxeter_number()
8
sage: CartanType(['C',4]).coxeter_number()
8
>>> from sage.all import *
>>> CartanType(['A',Integer(4)]).coxeter_number()
5
>>> CartanType(['B',Integer(4)]).coxeter_number()
8
>>> CartanType(['C',Integer(4)]).coxeter_number()
8
dual_coxeter_number()[source]#

Return the Coxeter number associated with self.

EXAMPLES:

sage: CartanType(['A',4]).dual_coxeter_number()
5
sage: CartanType(['B',4]).dual_coxeter_number()
7
sage: CartanType(['C',4]).dual_coxeter_number()
5
>>> from sage.all import *
>>> CartanType(['A',Integer(4)]).dual_coxeter_number()
5
>>> CartanType(['B',Integer(4)]).dual_coxeter_number()
7
>>> CartanType(['C',Integer(4)]).dual_coxeter_number()
5
index_set()[source]#

Implements CartanType_abstract.index_set().

The index set for all standard finite Cartan types is of the form \(\{1, \ldots, n\}\). (See type_I for a slight abuse of this).

EXAMPLES:

sage: CartanType(['A', 5]).index_set()
(1, 2, 3, 4, 5)
>>> from sage.all import *
>>> CartanType(['A', Integer(5)]).index_set()
(1, 2, 3, 4, 5)
opposition_automorphism()[source]#

Return the opposition automorphism

The opposition automorphism is the automorphism \(i \mapsto i^*\) of the vertices Dynkin diagram such that, for \(w_0\) the longest element of the Weyl group, and any simple root \(\alpha_i\), one has \(\alpha_{i^*} = -w_0(\alpha_i)\).

The automorphism is returned as a Family.

EXAMPLES:

sage: ct = CartanType(['A', 5])
sage: ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 5, 2: 4, 3: 3, 4: 2, 5: 1}

sage: ct = CartanType(['D', 4])
sage: ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 1, 2: 2, 3: 3, 4: 4}

sage: ct = CartanType(['D', 5])
sage: ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 1, 2: 2, 3: 3, 4: 5, 5: 4}

sage: ct = CartanType(['C', 4])
sage: ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 1, 2: 2, 3: 3, 4: 4}
>>> from sage.all import *
>>> ct = CartanType(['A', Integer(5)])
>>> ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 5, 2: 4, 3: 3, 4: 2, 5: 1}

>>> ct = CartanType(['D', Integer(4)])
>>> ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 1, 2: 2, 3: 3, 4: 4}

>>> ct = CartanType(['D', Integer(5)])
>>> ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 1, 2: 2, 3: 3, 4: 5, 5: 4}

>>> ct = CartanType(['C', Integer(4)])
>>> ct.opposition_automorphism()                                          # needs sage.libs.gap
Finite family {1: 1, 2: 2, 3: 3, 4: 4}
rank()[source]#

Return the rank of self which for type \(X_n\) is \(n\).

EXAMPLES:

sage: CartanType(['A', 3]).rank()
3
sage: CartanType(['B', 3]).rank()
3
sage: CartanType(['C', 3]).rank()
3
sage: CartanType(['D', 4]).rank()
4
sage: CartanType(['E', 6]).rank()
6
>>> from sage.all import *
>>> CartanType(['A', Integer(3)]).rank()
3
>>> CartanType(['B', Integer(3)]).rank()
3
>>> CartanType(['C', Integer(3)]).rank()
3
>>> CartanType(['D', Integer(4)]).rank()
4
>>> CartanType(['E', Integer(6)]).rank()
6
type()[source]#

Return the type of self.

EXAMPLES:

sage: CartanType(['A', 4]).type()
'A'
sage: CartanType(['A', 4, 1]).type()
'A'
>>> from sage.all import *
>>> CartanType(['A', Integer(4)]).type()
'A'
>>> CartanType(['A', Integer(4), Integer(1)]).type()
'A'
class sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine(letter, n, affine=1)[source]#

Bases: CartanType_standard_affine

A concrete class for the standard untwisted affine Cartan types.

basic_untwisted()[source]#

Return the basic_untwisted Cartan type associated with this affine Cartan type.

Given an affine type \(X_n^{(r)}\), the basic_untwisted type is \(X_n\). In other words, it is the classical Cartan type that is twisted to obtain self.

EXAMPLES:

sage: CartanType(['A', 1, 1]).basic_untwisted()
['A', 1]
sage: CartanType(['A', 3, 1]).basic_untwisted()
['A', 3]
sage: CartanType(['B', 3, 1]).basic_untwisted()
['B', 3]
sage: CartanType(['E', 6, 1]).basic_untwisted()
['E', 6]
sage: CartanType(['G', 2, 1]).basic_untwisted()
['G', 2]
>>> from sage.all import *
>>> CartanType(['A', Integer(1), Integer(1)]).basic_untwisted()
['A', 1]
>>> CartanType(['A', Integer(3), Integer(1)]).basic_untwisted()
['A', 3]
>>> CartanType(['B', Integer(3), Integer(1)]).basic_untwisted()
['B', 3]
>>> CartanType(['E', Integer(6), Integer(1)]).basic_untwisted()
['E', 6]
>>> CartanType(['G', Integer(2), Integer(1)]).basic_untwisted()
['G', 2]
classical()[source]#

Return the classical Cartan type associated with self.

EXAMPLES:

sage: CartanType(['A', 3, 1]).classical()
['A', 3]
sage: CartanType(['B', 3, 1]).classical()
['B', 3]
sage: CartanType(['C', 3, 1]).classical()
['C', 3]
sage: CartanType(['D', 4, 1]).classical()
['D', 4]
sage: CartanType(['E', 6, 1]).classical()
['E', 6]
sage: CartanType(['F', 4, 1]).classical()
['F', 4]
sage: CartanType(['G', 2, 1]).classical()
['G', 2]
>>> from sage.all import *
>>> CartanType(['A', Integer(3), Integer(1)]).classical()
['A', 3]
>>> CartanType(['B', Integer(3), Integer(1)]).classical()
['B', 3]
>>> CartanType(['C', Integer(3), Integer(1)]).classical()
['C', 3]
>>> CartanType(['D', Integer(4), Integer(1)]).classical()
['D', 4]
>>> CartanType(['E', Integer(6), Integer(1)]).classical()
['E', 6]
>>> CartanType(['F', Integer(4), Integer(1)]).classical()
['F', 4]
>>> CartanType(['G', Integer(2), Integer(1)]).classical()
['G', 2]
is_untwisted_affine()[source]#

Implement CartanType_affine.is_untwisted_affine() by returning True.

EXAMPLES:

sage: CartanType(['B', 3, 1]).is_untwisted_affine()
True
>>> from sage.all import *
>>> CartanType(['B', Integer(3), Integer(1)]).is_untwisted_affine()
True
class sage.combinat.root_system.cartan_type.SuperCartanType_standard[source]#

Bases: UniqueRepresentation, SageObject

options = Current options for CartanType   - dual_latex:        \vee   - dual_str:          *   - latex_marked:      True   - latex_relabel:     True   - mark_special_node: none   - marked_node_str:   X   - notation:          Stembridge   - special_node_str:  @[source]#