Dancing links C++ wrapper#
- sage.combinat.matrices.dlxcpp.AllExactCovers(M)[source]#
Solves the exact cover problem on the matrix M (treated as a dense binary matrix).
EXAMPLES: No exact covers:
sage: M = Matrix([[1,1,0],[1,0,1],[0,1,1]]) # needs sage.modules sage: [cover for cover in AllExactCovers(M)] # needs sage.modules []
>>> from sage.all import * >>> M = Matrix([[Integer(1),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(1)]]) # needs sage.modules >>> [cover for cover in AllExactCovers(M)] # needs sage.modules []
Two exact covers:
sage: M = Matrix([[1,1,0],[1,0,1],[0,0,1],[0,1,0]]) # needs sage.modules sage: [cover for cover in AllExactCovers(M)] # needs sage.modules [[(1, 1, 0), (0, 0, 1)], [(1, 0, 1), (0, 1, 0)]]
>>> from sage.all import * >>> M = Matrix([[Integer(1),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1)],[Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(0)]]) # needs sage.modules >>> [cover for cover in AllExactCovers(M)] # needs sage.modules [[(1, 1, 0), (0, 0, 1)], [(1, 0, 1), (0, 1, 0)]]
- sage.combinat.matrices.dlxcpp.DLXCPP(rows)[source]#
Solves the Exact Cover problem by using the Dancing Links algorithm described by Knuth.
Consider a matrix M with entries of 0 and 1, and compute a subset of the rows of this matrix which sum to the vector of all 1’s.
The dancing links algorithm works particularly well for sparse matrices, so the input is a list of lists of the form:
[ [i_11,i_12,...,i_1r] ... [i_m1,i_m2,...,i_ms] ]
where M[j][i_jk] = 1.
The first example below corresponds to the matrix:
1110 1010 0100 0001
which is exactly covered by:
1110 0001
and
1010 0100 0001
If soln is a solution given by DLXCPP(rows) then
[ rows[soln[0]], rows[soln[1]], … rows[soln[len(soln)-1]] ]
is an exact cover.
Solutions are given as a list.
EXAMPLES:
sage: rows = [[0,1,2]] sage: rows+= [[0,2]] sage: rows+= [[1]] sage: rows+= [[3]] sage: [x for x in DLXCPP(rows)] [[3, 0], [3, 1, 2]]
>>> from sage.all import * >>> rows = [[Integer(0),Integer(1),Integer(2)]] >>> rows+= [[Integer(0),Integer(2)]] >>> rows+= [[Integer(1)]] >>> rows+= [[Integer(3)]] >>> [x for x in DLXCPP(rows)] [[3, 0], [3, 1, 2]]
- sage.combinat.matrices.dlxcpp.OneExactCover(M)[source]#
Solves the exact cover problem on the matrix M (treated as a dense binary matrix).
EXAMPLES:
sage: # needs sage.modules sage: M = Matrix([[1,1,0],[1,0,1],[0,1,1]]) # no exact covers sage: print(OneExactCover(M)) None sage: M = Matrix([[1,1,0],[1,0,1],[0,0,1],[0,1,0]]) # two exact covers sage: OneExactCover(M) [(1, 1, 0), (0, 0, 1)]
>>> from sage.all import * >>> # needs sage.modules >>> M = Matrix([[Integer(1),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(1)]]) # no exact covers >>> print(OneExactCover(M)) None >>> M = Matrix([[Integer(1),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1)],[Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(1),Integer(0)]]) # two exact covers >>> OneExactCover(M) [(1, 1, 0), (0, 0, 1)]