Colored Permutations¶
Todo
Much of the colored permutations (and element) class can be generalized to \(G \wr S_n\)
- class sage.combinat.colored_permutations.ColoredPermutation(parent, colors, perm)[source]¶
Bases:
MultiplicativeGroupElement
A colored permutation.
- colors()[source]¶
Return the colors of
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: s1,s2,t = C.gens() sage: x = s1*s2*t sage: x.colors() [1, 0, 0]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> s1,s2,t = C.gens() >>> x = s1*s2*t >>> x.colors() [1, 0, 0]
- has_left_descent(i)[source]¶
Return
True
ifi
is a left descent ofself
.Let \(p = ((s_1, \ldots s_n), \sigma)\) be a colored permutation. We say \(p\) has a left \(n\)-descent if \(s_n > 0\). If \(i < n\), then we say \(p\) has a left \(i\)-descent if either
\(s_i \neq 0, s_{i+1} = 0\) and \(\sigma_i < \sigma_{i+1}\) or
\(s_i = s_{i+1}\) and \(\sigma_i > \sigma_{i+1}\).
This notion of a left \(i\)-descent is done in order to recursively construct \(w(p) = \sigma_i w(\sigma_i^{-1} p)\), where \(w(p)\) denotes a reduced word of \(p\).
EXAMPLES:
sage: C = ColoredPermutations(2, 4) sage: s1,s2,s3,s4 = C.gens() sage: x = s4*s1*s2*s3*s4 sage: [x.has_left_descent(i) for i in C.index_set()] [True, False, False, True] sage: C = ColoredPermutations(1, 5) sage: s1,s2,s3,s4 = C.gens() sage: x = s4*s1*s2*s3*s4 sage: [x.has_left_descent(i) for i in C.index_set()] [True, False, False, True] sage: C = ColoredPermutations(3, 3) sage: x = C([[2,1,0],[3,1,2]]) sage: [x.has_left_descent(i) for i in C.index_set()] [False, True, False] sage: C = ColoredPermutations(4, 4) sage: x = C([[2,1,0,1],[3,2,4,1]]) sage: [x.has_left_descent(i) for i in C.index_set()] [False, True, False, True]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(2), Integer(4)) >>> s1,s2,s3,s4 = C.gens() >>> x = s4*s1*s2*s3*s4 >>> [x.has_left_descent(i) for i in C.index_set()] [True, False, False, True] >>> C = ColoredPermutations(Integer(1), Integer(5)) >>> s1,s2,s3,s4 = C.gens() >>> x = s4*s1*s2*s3*s4 >>> [x.has_left_descent(i) for i in C.index_set()] [True, False, False, True] >>> C = ColoredPermutations(Integer(3), Integer(3)) >>> x = C([[Integer(2),Integer(1),Integer(0)],[Integer(3),Integer(1),Integer(2)]]) >>> [x.has_left_descent(i) for i in C.index_set()] [False, True, False] >>> C = ColoredPermutations(Integer(4), Integer(4)) >>> x = C([[Integer(2),Integer(1),Integer(0),Integer(1)],[Integer(3),Integer(2),Integer(4),Integer(1)]]) >>> [x.has_left_descent(i) for i in C.index_set()] [False, True, False, True]
- length()[source]¶
Return the length of
self
in generating reflections.This is the minimal numbers of generating reflections needed to obtain
self
.EXAMPLES:
sage: C = ColoredPermutations(3, 3) sage: x = C([[2,1,0],[3,1,2]]) sage: x.length() 7 sage: C = ColoredPermutations(4, 4) sage: x = C([[2,1,0,1],[3,2,4,1]]) sage: x.length() 12
>>> from sage.all import * >>> C = ColoredPermutations(Integer(3), Integer(3)) >>> x = C([[Integer(2),Integer(1),Integer(0)],[Integer(3),Integer(1),Integer(2)]]) >>> x.length() 7 >>> C = ColoredPermutations(Integer(4), Integer(4)) >>> x = C([[Integer(2),Integer(1),Integer(0),Integer(1)],[Integer(3),Integer(2),Integer(4),Integer(1)]]) >>> x.length() 12
- one_line_form()[source]¶
Return the one line form of
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: s1,s2,t = C.gens() sage: x = s1*s2*t sage: x [[1, 0, 0], [3, 1, 2]] sage: x.one_line_form() [(1, 3), (0, 1), (0, 2)]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> s1,s2,t = C.gens() >>> x = s1*s2*t >>> x [[1, 0, 0], [3, 1, 2]] >>> x.one_line_form() [(1, 3), (0, 1), (0, 2)]
- permutation()[source]¶
Return the permutation of
self
.This is obtained by forgetting the colors.
EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: s1,s2,t = C.gens() sage: x = s1*s2*t sage: x.permutation() [3, 1, 2]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> s1,s2,t = C.gens() >>> x = s1*s2*t >>> x.permutation() [3, 1, 2]
- reduced_word()[source]¶
Return a word in the simple reflections to obtain
self
.EXAMPLES:
sage: C = ColoredPermutations(3, 3) sage: x = C([[2,1,0],[3,1,2]]) sage: x.reduced_word() [2, 1, 3, 2, 1, 3, 3] sage: C = ColoredPermutations(4, 4) sage: x = C([[2,1,0,1],[3,2,4,1]]) sage: x.reduced_word() [2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 4, 3]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(3), Integer(3)) >>> x = C([[Integer(2),Integer(1),Integer(0)],[Integer(3),Integer(1),Integer(2)]]) >>> x.reduced_word() [2, 1, 3, 2, 1, 3, 3] >>> C = ColoredPermutations(Integer(4), Integer(4)) >>> x = C([[Integer(2),Integer(1),Integer(0),Integer(1)],[Integer(3),Integer(2),Integer(4),Integer(1)]]) >>> x.reduced_word() [2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 4, 3]
- to_matrix()[source]¶
Return a matrix of
self
.The colors are mapped to roots of unity.
EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: s1,s2,t = C.gens() sage: x = s1*s2*t*s2; x.one_line_form() [(1, 2), (0, 1), (0, 3)] sage: M = x.to_matrix(); M # needs sage.rings.number_field [ 0 1 0] [zeta4 0 0] [ 0 0 1]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> s1,s2,t = C.gens() >>> x = s1*s2*t*s2; x.one_line_form() [(1, 2), (0, 1), (0, 3)] >>> M = x.to_matrix(); M # needs sage.rings.number_field [ 0 1 0] [zeta4 0 0] [ 0 0 1]
The matrix multiplication is in the opposite order:
sage: M == s2.to_matrix()*t.to_matrix()*s2.to_matrix()*s1.to_matrix() # needs sage.rings.number_field True
>>> from sage.all import * >>> M == s2.to_matrix()*t.to_matrix()*s2.to_matrix()*s1.to_matrix() # needs sage.rings.number_field True
- class sage.combinat.colored_permutations.ColoredPermutations(m, n)[source]¶
Bases:
ShephardToddFamilyGroup
The group of \(m\)-colored permutations on \(\{1, 2, \ldots, n\}\).
Let \(S_n\) be the symmetric group on \(n\) letters and \(C_m\) be the cyclic group of order \(m\). The \(m\)-colored permutation group on \(n\) letters is given by \(P_n^m = C_m \wr S_n\). This is also the complex reflection group \(G(m, 1, n)\).
We define our multiplication by
\[((s_1, \ldots s_n), \sigma) \cdot ((t_1, \ldots, t_n), \tau) = ((s_1 t_{\sigma(1)}, \ldots, s_n t_{\sigma(n)}), \tau \sigma).\]EXAMPLES:
sage: C = ColoredPermutations(4, 3); C 4-colored permutations of size 3 sage: s1,s2,t = C.gens() sage: (s1, s2, t) ([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]]) sage: s1*s2 [[0, 0, 0], [3, 1, 2]] sage: s1*s2*s1 == s2*s1*s2 True sage: t^4 == C.one() True sage: s2*t*s2 [[0, 1, 0], [1, 2, 3]]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)); C 4-colored permutations of size 3 >>> s1,s2,t = C.gens() >>> (s1, s2, t) ([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]]) >>> s1*s2 [[0, 0, 0], [3, 1, 2]] >>> s1*s2*s1 == s2*s1*s2 True >>> t**Integer(4) == C.one() True >>> s2*t*s2 [[0, 1, 0], [1, 2, 3]]
We can also create a colored permutation by passing an iterable consisting of tuples consisting of
(color, element)
:sage: x = C([(2,1), (3,3), (3,2)]); x [[2, 3, 3], [1, 3, 2]]
>>> from sage.all import * >>> x = C([(Integer(2),Integer(1)), (Integer(3),Integer(3)), (Integer(3),Integer(2))]); x [[2, 3, 3], [1, 3, 2]]
or a list of colors and a permutation:
sage: C([[3,3,1], [1,3,2]]) [[3, 3, 1], [1, 3, 2]] sage: C(([3,3,1], [1,3,2])) [[3, 3, 1], [1, 3, 2]]
>>> from sage.all import * >>> C([[Integer(3),Integer(3),Integer(1)], [Integer(1),Integer(3),Integer(2)]]) [[3, 3, 1], [1, 3, 2]] >>> C(([Integer(3),Integer(3),Integer(1)], [Integer(1),Integer(3),Integer(2)])) [[3, 3, 1], [1, 3, 2]]
There is also the natural lift from permutations:
sage: P = Permutations(3) sage: C(P.an_element()) [[0, 0, 0], [3, 1, 2]]
>>> from sage.all import * >>> P = Permutations(Integer(3)) >>> C(P.an_element()) [[0, 0, 0], [3, 1, 2]]
A colored permutation:
sage: C(C.an_element()) == C.an_element() True
>>> from sage.all import * >>> C(C.an_element()) == C.an_element() True
REFERENCES:
- class sage.combinat.colored_permutations.ShephardToddFamilyGroup(m, p, n)[source]¶
Bases:
UniqueRepresentation
,Parent
The Shephard-Todd family complex reflection group \(G(m, p, n)\) realized as a subgroup of
colored permutations
.A general complex reflection group is a subgroup of \(GL(V)\), where \(V\) is a \(\CC\) vector space, that is generated by reflections, diagonalizable matrices with at most one eigenvalue not equal to \(1\). The group of colored permutations \(G(m, 1, n)\) are the generalized permutation matrices whose entries are \(m\)-th roots of unity. For \(p | m\), the group \(G(m, p, n)\) is the index \(p\) subgroup such that the product of the entries is a \(m/p\)-th root of unity.
By the (Chevalley-)Shephard-Todd classification of irreducible finite complex reflection groups, the groups \(G(m, p, n)\) (with \(G(2, 2, 2)\) being exceptionally reducible since it is the Klein four group) form the only infinite family with an additional 34 exceptional groups \(G_k\), where \(4 \leq k \leq 37\). To avoid ambiguities, we refer to \(G(m, p, n)\) as the Shephard-Todd family complex reflection group.
INPUT:
m
– positive integerp
– positive integer dividingm
n
– positive integer
REFERENCES:
EXAMPLES:
sage: groups.misc.ShephardToddFamily(6, 1, 4) 6-colored permutations of size 4 sage: groups.misc.ShephardToddFamily(6, 2, 4) Complex reflection group G(6, 2, 4) sage: groups.misc.ShephardToddFamily(6, 3, 4) Complex reflection group G(6, 3, 4) sage: groups.misc.ShephardToddFamily(6, 6, 4) Complex reflection group G(6, 6, 4)
>>> from sage.all import * >>> groups.misc.ShephardToddFamily(Integer(6), Integer(1), Integer(4)) 6-colored permutations of size 4 >>> groups.misc.ShephardToddFamily(Integer(6), Integer(2), Integer(4)) Complex reflection group G(6, 2, 4) >>> groups.misc.ShephardToddFamily(Integer(6), Integer(3), Integer(4)) Complex reflection group G(6, 3, 4) >>> groups.misc.ShephardToddFamily(Integer(6), Integer(6), Integer(4)) Complex reflection group G(6, 6, 4)
- Element[source]¶
alias of
ColoredPermutation
- as_permutation_group()[source]¶
Return the permutation group corresponding to
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.as_permutation_group() # needs sage.groups Complex reflection group G(4, 1, 3) as a permutation group
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.as_permutation_group() # needs sage.groups Complex reflection group G(4, 1, 3) as a permutation group
- cardinality()[source]¶
Return the cardinality of
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.cardinality() 384 sage: C.cardinality() == 4**3 * factorial(3) True
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.cardinality() 384 >>> C.cardinality() == Integer(4)**Integer(3) * factorial(Integer(3)) True
- codegrees()[source]¶
Return the codegrees of
self
.Let \(G\) be a complex reflection group. The codegrees \(d_1^* \leq d_2^* \leq \cdots \leq d_{\ell}^*\) of \(G\) can be defined by:
\[\prod_{i=1}^{\ell} (q - d_i^* - 1) = \sum_{g \in G} \det(g) q^{\dim(V^g)},\]where \(V\) is the natural complex vector space that \(G\) acts on and \(\ell\) is the
rank()
.If \(m = 1\), then we are in the special case of the symmetric group and the codegrees are \((n-2, n-3, \ldots 1, 0)\). Otherwise the degrees are \(((n-1)m, (n-2)m, \ldots, m, 0)\).
EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.codegrees() (8, 4, 0) sage: S = ColoredPermutations(1, 3) sage: S.codegrees() (1, 0) sage: G = groups.misc.ShephardToddFamily(6, 2, 3) sage: G.codegrees() (12, 6, 0)
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.codegrees() (8, 4, 0) >>> S = ColoredPermutations(Integer(1), Integer(3)) >>> S.codegrees() (1, 0) >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(2), Integer(3)) >>> G.codegrees() (12, 6, 0)
- coxeter_matrix()[source]¶
Return the Coxeter matrix of
self
.When the group is imprimitive and not a Coxeter group, this returns
None
.EXAMPLES:
sage: C = ColoredPermutations(3, 4) sage: C.coxeter_matrix() # needs sage.modules [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] sage: C = ColoredPermutations(1, 4) sage: C.coxeter_matrix() # needs sage.modules [1 3 2] [3 1 3] [2 3 1] sage: G = groups.misc.ShephardToddFamily(2, 2, 3) sage: G.coxeter_matrix() [1 3 3] [3 1 2] [3 2 1] sage: G = groups.misc.ShephardToddFamily(2, 2, 2) sage: G.coxeter_matrix() [1 2] [2 1] sage: G = groups.misc.ShephardToddFamily(2, 2, 1) sage: G.coxeter_matrix() [1] sage: G = groups.misc.ShephardToddFamily(5, 5, 1) sage: G.coxeter_matrix() [] sage: G = groups.misc.ShephardToddFamily(4, 4, 2) sage: G.coxeter_matrix() [1 4] [4 1] sage: G = groups.misc.ShephardToddFamily(7, 7, 2) sage: G.coxeter_matrix() [1 7] [7 1] sage: G = groups.misc.ShephardToddFamily(6, 3, 1) sage: G.coxeter_matrix() is None True sage: G = groups.misc.ShephardToddFamily(6, 3, 4) sage: G.coxeter_matrix() is None True
>>> from sage.all import * >>> C = ColoredPermutations(Integer(3), Integer(4)) >>> C.coxeter_matrix() # needs sage.modules [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] >>> C = ColoredPermutations(Integer(1), Integer(4)) >>> C.coxeter_matrix() # needs sage.modules [1 3 2] [3 1 3] [2 3 1] >>> G = groups.misc.ShephardToddFamily(Integer(2), Integer(2), Integer(3)) >>> G.coxeter_matrix() [1 3 3] [3 1 2] [3 2 1] >>> G = groups.misc.ShephardToddFamily(Integer(2), Integer(2), Integer(2)) >>> G.coxeter_matrix() [1 2] [2 1] >>> G = groups.misc.ShephardToddFamily(Integer(2), Integer(2), Integer(1)) >>> G.coxeter_matrix() [1] >>> G = groups.misc.ShephardToddFamily(Integer(5), Integer(5), Integer(1)) >>> G.coxeter_matrix() [] >>> G = groups.misc.ShephardToddFamily(Integer(4), Integer(4), Integer(2)) >>> G.coxeter_matrix() [1 4] [4 1] >>> G = groups.misc.ShephardToddFamily(Integer(7), Integer(7), Integer(2)) >>> G.coxeter_matrix() [1 7] [7 1] >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(3), Integer(1)) >>> G.coxeter_matrix() is None True >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(3), Integer(4)) >>> G.coxeter_matrix() is None True
- degrees()[source]¶
Return the degrees of
self
.The degrees of a complex reflection group are the degrees of the fundamental invariants of the ring of polynomial invariants.
If \(m = 1\), then we are in the special case of the symmetric group and the degrees are \((2, 3, \ldots, n, n+1)\). Otherwise the degrees are \((m, 2m, \ldots, nm)\).
EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.degrees() (4, 8, 12) sage: S = ColoredPermutations(1, 3) sage: S.degrees() (2, 3) sage: G = groups.misc.ShephardToddFamily(6, 2, 3) sage: G.degrees() (6, 9, 12)
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.degrees() (4, 8, 12) >>> S = ColoredPermutations(Integer(1), Integer(3)) >>> S.degrees() (2, 3) >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(2), Integer(3)) >>> G.degrees() (6, 9, 12)
We now check that the product of the degrees is equal to the cardinality of
self
:sage: prod(C.degrees()) == C.cardinality() True sage: prod(S.degrees()) == S.cardinality() True sage: prod(G.degrees()) == G.cardinality() True
>>> from sage.all import * >>> prod(C.degrees()) == C.cardinality() True >>> prod(S.degrees()) == S.cardinality() True >>> prod(G.degrees()) == G.cardinality() True
- fixed_point_polynomial(q=None)[source]¶
The fixed point polynomial of
self
.The fixed point polynomial \(f_G\) of a complex reflection group \(G\) is counting the dimensions of fixed points subspaces:
\[f_G(q) = \sum_{w \in W} q^{\dim V^w}.\]Furthermore, let \(d_1, d_2, \ldots, d_{\ell}\) be the degrees of \(G\), where \(\ell\) is the
rank()
. Then the fixed point polynomial is given by\[f_G(q) = \prod_{i=1}^{\ell} (q + d_i - 1).\]INPUT:
q
– (default: the generator ofZZ['q']
) the parameter \(q\)
EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.fixed_point_polynomial() q^3 + 21*q^2 + 131*q + 231 sage: S = ColoredPermutations(1, 3) sage: S.fixed_point_polynomial() q^2 + 3*q + 2
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.fixed_point_polynomial() q^3 + 21*q^2 + 131*q + 231 >>> S = ColoredPermutations(Integer(1), Integer(3)) >>> S.fixed_point_polynomial() q^2 + 3*q + 2
- gens()[source]¶
Return the generators of
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.gens() ([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]]) sage: S = SignedPermutations(4) sage: S.gens() ([2, 1, 3, 4], [1, 3, 2, 4], [1, 2, 4, 3], [1, 2, 3, -4])
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.gens() ([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]]) >>> S = SignedPermutations(Integer(4)) >>> S.gens() ([2, 1, 3, 4], [1, 3, 2, 4], [1, 2, 4, 3], [1, 2, 3, -4])
- index_set()[source]¶
Return the index set of
self
.EXAMPLES:
sage: C = ColoredPermutations(3, 4) sage: C.index_set() (1, 2, 3, 4) sage: C = ColoredPermutations(1, 4) sage: C.index_set() (1, 2, 3) sage: G = groups.misc.ShephardToddFamily(6, 6, 4) sage: G.index_set() (1, 2, 3, 4) sage: G = groups.misc.ShephardToddFamily(6, 2, 4) sage: G.index_set() (1, 2, 3, 4, 5) sage: G = groups.misc.ShephardToddFamily(6, 6, 1) sage: G.index_set() () sage: G = groups.misc.ShephardToddFamily(6, 2, 1) sage: G.index_set() (1,)
>>> from sage.all import * >>> C = ColoredPermutations(Integer(3), Integer(4)) >>> C.index_set() (1, 2, 3, 4) >>> C = ColoredPermutations(Integer(1), Integer(4)) >>> C.index_set() (1, 2, 3) >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(6), Integer(4)) >>> G.index_set() (1, 2, 3, 4) >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(2), Integer(4)) >>> G.index_set() (1, 2, 3, 4, 5) >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(6), Integer(1)) >>> G.index_set() () >>> G = groups.misc.ShephardToddFamily(Integer(6), Integer(2), Integer(1)) >>> G.index_set() (1,)
- is_well_generated()[source]¶
Return if
self
is a well-generated complex reflection group.A complex reflection group \(G\) is well-generated if it is generated by \(\ell\) reflections. Equivalently, \(G\) is well-generated if \(d_i + d_i^* = d_{\ell}\) for all \(1 \leq i \leq \ell\).
EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.is_well_generated() True sage: C = ColoredPermutations(2, 8) sage: C.is_well_generated() True sage: C = ColoredPermutations(1, 4) sage: C.is_well_generated() True
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.is_well_generated() True >>> C = ColoredPermutations(Integer(2), Integer(8)) >>> C.is_well_generated() True >>> C = ColoredPermutations(Integer(1), Integer(4)) >>> C.is_well_generated() True
- matrix_group()[source]¶
Return the matrix group corresponding to
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.matrix_group() # needs sage.modules Matrix group over Cyclotomic Field of order 4 and degree 2 with 3 generators ( [0 1 0] [1 0 0] [ 1 0 0] [1 0 0] [0 0 1] [ 0 1 0] [0 0 1], [0 1 0], [ 0 0 zeta4] )
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.matrix_group() # needs sage.modules Matrix group over Cyclotomic Field of order 4 and degree 2 with 3 generators ( [0 1 0] [1 0 0] [ 1 0 0] [1 0 0] [0 0 1] [ 0 1 0] [0 0 1], [0 1 0], [ 0 0 zeta4] )
- number_of_reflection_hyperplanes()[source]¶
Return the number of reflection hyperplanes of
self
.The number of reflection hyperplanes of a complex reflection group is equal to the sum of the codegrees plus the rank.
EXAMPLES:
sage: C = ColoredPermutations(1, 2) sage: C.number_of_reflection_hyperplanes() 1 sage: C = ColoredPermutations(1, 3) sage: C.number_of_reflection_hyperplanes() 3 sage: C = ColoredPermutations(4, 12) sage: C.number_of_reflection_hyperplanes() 276
>>> from sage.all import * >>> C = ColoredPermutations(Integer(1), Integer(2)) >>> C.number_of_reflection_hyperplanes() 1 >>> C = ColoredPermutations(Integer(1), Integer(3)) >>> C.number_of_reflection_hyperplanes() 3 >>> C = ColoredPermutations(Integer(4), Integer(12)) >>> C.number_of_reflection_hyperplanes() 276
- one()[source]¶
Return the identity element of
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.one() [[0, 0, 0], [1, 2, 3]]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.one() [[0, 0, 0], [1, 2, 3]]
- order()[source]¶
Return the cardinality of
self
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.cardinality() 384 sage: C.cardinality() == 4**3 * factorial(3) True
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.cardinality() 384 >>> C.cardinality() == Integer(4)**Integer(3) * factorial(Integer(3)) True
- random_element()[source]¶
Return an element of
self
at random.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: s = C.random_element(); s # random [[0, 2, 1], [2, 1, 3]] sage: s in C True
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> s = C.random_element(); s # random [[0, 2, 1], [2, 1, 3]] >>> s in C True
- rank()[source]¶
Return the rank of
self
.The rank of a complex reflection group is equal to the dimension of the complex vector space the group acts on.
EXAMPLES:
sage: C = ColoredPermutations(4, 12) sage: C.rank() 12 sage: C = ColoredPermutations(7, 4) sage: C.rank() 4 sage: C = ColoredPermutations(1, 4) sage: C.rank() 3
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(12)) >>> C.rank() 12 >>> C = ColoredPermutations(Integer(7), Integer(4)) >>> C.rank() 4 >>> C = ColoredPermutations(Integer(1), Integer(4)) >>> C.rank() 3
- simple_reflection(i)[source]¶
Return the
i
-th simple reflection ofself
.EXAMPLES:
sage: C = ColoredPermutations(4, 3) sage: C.gens() ([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]]) sage: C.simple_reflection(2) [[0, 0, 0], [1, 3, 2]] sage: C.simple_reflection(3) [[0, 0, 1], [1, 2, 3]] sage: S = SignedPermutations(4) sage: S.simple_reflection(1) [2, 1, 3, 4] sage: S.simple_reflection(4) [1, 2, 3, -4] sage: G = groups.misc.ShephardToddFamily(4, 2, 3) sage: list(G.simple_reflections()) [[[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 1, 3], [1, 3, 2]], [[0, 0, 2], [1, 2, 3]]] sage: G = groups.misc.ShephardToddFamily(8, 4, 1) sage: G.simple_reflections() Finite family {1: [[4], [1]]} sage: G = groups.misc.ShephardToddFamily(8, 8, 1) sage: G.simple_reflections() Finite family {}
>>> from sage.all import * >>> C = ColoredPermutations(Integer(4), Integer(3)) >>> C.gens() ([[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 0, 1], [1, 2, 3]]) >>> C.simple_reflection(Integer(2)) [[0, 0, 0], [1, 3, 2]] >>> C.simple_reflection(Integer(3)) [[0, 0, 1], [1, 2, 3]] >>> S = SignedPermutations(Integer(4)) >>> S.simple_reflection(Integer(1)) [2, 1, 3, 4] >>> S.simple_reflection(Integer(4)) [1, 2, 3, -4] >>> G = groups.misc.ShephardToddFamily(Integer(4), Integer(2), Integer(3)) >>> list(G.simple_reflections()) [[[0, 0, 0], [2, 1, 3]], [[0, 0, 0], [1, 3, 2]], [[0, 1, 3], [1, 3, 2]], [[0, 0, 2], [1, 2, 3]]] >>> G = groups.misc.ShephardToddFamily(Integer(8), Integer(4), Integer(1)) >>> G.simple_reflections() Finite family {1: [[4], [1]]} >>> G = groups.misc.ShephardToddFamily(Integer(8), Integer(8), Integer(1)) >>> G.simple_reflections() Finite family {}
- class sage.combinat.colored_permutations.SignedPermutation(parent, colors, perm)[source]¶
Bases:
ColoredPermutation
A signed permutation.
- cycle_type()[source]¶
Return a pair of partitions of
len(self)
corresponding to the signed cycle type ofself
.A cycle is a tuple \(C = (c_0, \ldots, c_{k-1})\) with \(\pi(c_i) = c_{i+1}\) for \(0 \leq i < k\) and \(\pi(c_{k-1}) = c_0\). If \(C\) is a cycle, \(\overline{C} = (-c_0, \ldots, -c_{k-1})\) is also a cycle. A cycle is negative, if \(C = \overline{C}\) up to cyclic reordering. In this case, \(k\) is necessarily even and the length of \(C\) is \(k/2\). A positive cycle is a pair \(C \overline{C}\), its length is \(k\).
Let \(\alpha\) be the partition whose parts are the lengths of the positive cycles and let \(\beta\) be the partition whose parts are the lengths of the negative cycles. Then \((\alpha, \beta)\) is the cycle type of \(\pi\).
EXAMPLES:
sage: G = SignedPermutations(7) sage: pi = G([2, -1, 4, -6, -5, -3, 7]) sage: pi.cycle_type() ([3, 1], [2, 1]) sage: G = SignedPermutations(5) sage: all(pi.cycle_type().size() == 5 for pi in G) True sage: set(pi.cycle_type() for pi in G) == set(PartitionTuples(2, 5)) True
>>> from sage.all import * >>> G = SignedPermutations(Integer(7)) >>> pi = G([Integer(2), -Integer(1), Integer(4), -Integer(6), -Integer(5), -Integer(3), Integer(7)]) >>> pi.cycle_type() ([3, 1], [2, 1]) >>> G = SignedPermutations(Integer(5)) >>> all(pi.cycle_type().size() == Integer(5) for pi in G) True >>> set(pi.cycle_type() for pi in G) == set(PartitionTuples(Integer(2), Integer(5))) True
- has_left_descent(i)[source]¶
Return
True
ifi
is a left descent ofself
.EXAMPLES:
sage: S = SignedPermutations(4) sage: s1,s2,s3,s4 = S.gens() sage: x = s4*s1*s2*s3*s4 sage: [x.has_left_descent(i) for i in S.index_set()] [True, False, False, True]
>>> from sage.all import * >>> S = SignedPermutations(Integer(4)) >>> s1,s2,s3,s4 = S.gens() >>> x = s4*s1*s2*s3*s4 >>> [x.has_left_descent(i) for i in S.index_set()] [True, False, False, True]
- order()[source]¶
Return the multiplicative order of the signed permutation.
EXAMPLES:
sage: pi = SignedPermutations(7)([2,-1,4,-6,-5,-3,7]) sage: pi.to_cycles(singletons=False) [(1, 2, -1, -2), (3, 4, -6), (-3, -4, 6), (5, -5)] sage: pi.order() 12
>>> from sage.all import * >>> pi = SignedPermutations(Integer(7))([Integer(2),-Integer(1),Integer(4),-Integer(6),-Integer(5),-Integer(3),Integer(7)]) >>> pi.to_cycles(singletons=False) [(1, 2, -1, -2), (3, 4, -6), (-3, -4, 6), (5, -5)] >>> pi.order() 12
- to_cycles(singletons=True, use_min=True, negative_cycles=True)[source]¶
Return the signed permutation
self
as a list of disjoint cycles.The cycles are returned in the order of increasing smallest elements, and each cycle is returned as a tuple which starts with its smallest positive element.
INPUT:
singletons
– boolean (default:True
); whether to include singleton cycles or notuse_min
– boolean (default:True
); ifFalse
, the cycles are returned in the order of increasing largest (not smallest) elements, and each cycle starts with its largest elementnegative_cycles
– boolean (default:True
); ifFalse
, for any two cycles \(C^{\pm} = \{\pm c_1, \ldots, \pm c_k\}\) such that \(C^+ \neq C^-\), this does not include the cycle \(C^-\)
Warning
The arugment
negative_cycles
does not refer to the usual definition of a negative cycle; seecycle_type()
.EXAMPLES:
sage: pi = SignedPermutations(7)([2,-1,4,-6,-5,-3,7]) sage: pi.to_cycles() [(1, 2, -1, -2), (3, 4, -6), (-3, -4, 6), (5, -5), (7,), (-7,)] sage: pi.to_cycles(singletons=False) [(1, 2, -1, -2), (3, 4, -6), (-3, -4, 6), (5, -5)] sage: pi.to_cycles(negative_cycles=False) [(1, 2, -1, -2), (3, 4, -6), (5, -5), (7,)] sage: pi.to_cycles(singletons=False, negative_cycles=False) [(1, 2, -1, -2), (3, 4, -6), (5, -5)] sage: pi.to_cycles(use_min=False) [(7,), (-7,), (6, -3, -4), (-6, 3, 4), (5, -5), (2, -1, -2, 1)] sage: pi.to_cycles(singletons=False, use_min=False) [(6, -3, -4), (-6, 3, 4), (5, -5), (2, -1, -2, 1)]
>>> from sage.all import * >>> pi = SignedPermutations(Integer(7))([Integer(2),-Integer(1),Integer(4),-Integer(6),-Integer(5),-Integer(3),Integer(7)]) >>> pi.to_cycles() [(1, 2, -1, -2), (3, 4, -6), (-3, -4, 6), (5, -5), (7,), (-7,)] >>> pi.to_cycles(singletons=False) [(1, 2, -1, -2), (3, 4, -6), (-3, -4, 6), (5, -5)] >>> pi.to_cycles(negative_cycles=False) [(1, 2, -1, -2), (3, 4, -6), (5, -5), (7,)] >>> pi.to_cycles(singletons=False, negative_cycles=False) [(1, 2, -1, -2), (3, 4, -6), (5, -5)] >>> pi.to_cycles(use_min=False) [(7,), (-7,), (6, -3, -4), (-6, 3, 4), (5, -5), (2, -1, -2, 1)] >>> pi.to_cycles(singletons=False, use_min=False) [(6, -3, -4), (-6, 3, 4), (5, -5), (2, -1, -2, 1)]
- to_matrix()[source]¶
Return a matrix of
self
.EXAMPLES:
sage: S = SignedPermutations(4) sage: s1,s2,s3,s4 = S.gens() sage: x = s4*s1*s2*s3*s4 sage: M = x.to_matrix(); M # needs sage.modules [ 0 1 0 0] [ 0 0 1 0] [ 0 0 0 -1] [-1 0 0 0]
>>> from sage.all import * >>> S = SignedPermutations(Integer(4)) >>> s1,s2,s3,s4 = S.gens() >>> x = s4*s1*s2*s3*s4 >>> M = x.to_matrix(); M # needs sage.modules [ 0 1 0 0] [ 0 0 1 0] [ 0 0 0 -1] [-1 0 0 0]
The matrix multiplication is in the opposite order:
sage: m1,m2,m3,m4 = [g.to_matrix() for g in S.gens()] # needs sage.modules sage: M == m4 * m3 * m2 * m1 * m4 # needs sage.modules True
>>> from sage.all import * >>> m1,m2,m3,m4 = [g.to_matrix() for g in S.gens()] # needs sage.modules >>> M == m4 * m3 * m2 * m1 * m4 # needs sage.modules True
- class sage.combinat.colored_permutations.SignedPermutations(n)[source]¶
Bases:
ColoredPermutations
Group of signed permutations.
The group of signed permutations is also known as the hyperoctahedral group, the Coxeter group of type \(B_n\), and the 2-colored permutation group. Thus it can be constructed as the wreath product \(S_2 \wr S_n\).
EXAMPLES:
sage: S = SignedPermutations(4) sage: s1,s2,s3,s4 = S.group_generators() sage: x = s4*s1*s2*s3*s4; x [-4, 1, 2, -3] sage: x^4 == S.one() True
>>> from sage.all import * >>> S = SignedPermutations(Integer(4)) >>> s1,s2,s3,s4 = S.group_generators() >>> x = s4*s1*s2*s3*s4; x [-4, 1, 2, -3] >>> x**Integer(4) == S.one() True
This is a finite Coxeter group of type \(B_n\):
sage: S.canonical_representation() # needs sage.modules Finite Coxeter group over Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? with Coxeter matrix: [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] sage: S.long_element() [-1, -2, -3, -4] sage: S.long_element().reduced_word() [1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 3, 4]
>>> from sage.all import * >>> S.canonical_representation() # needs sage.modules Finite Coxeter group over Number Field in a with defining polynomial x^2 - 2 with a = 1.414213562373095? with Coxeter matrix: [1 3 2 2] [3 1 3 2] [2 3 1 4] [2 2 4 1] >>> S.long_element() [-1, -2, -3, -4] >>> S.long_element().reduced_word() [1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 4, 3, 2, 4, 3, 4]
We can also go between the 2-colored permutation group:
sage: C = ColoredPermutations(2, 3) sage: S = SignedPermutations(3) sage: S.an_element() [-3, 1, 2] sage: C(S.an_element()) [[1, 0, 0], [3, 1, 2]] sage: S(C(S.an_element())) == S.an_element() True sage: S(C.an_element()) [-3, 1, 2]
>>> from sage.all import * >>> C = ColoredPermutations(Integer(2), Integer(3)) >>> S = SignedPermutations(Integer(3)) >>> S.an_element() [-3, 1, 2] >>> C(S.an_element()) [[1, 0, 0], [3, 1, 2]] >>> S(C(S.an_element())) == S.an_element() True >>> S(C.an_element()) [-3, 1, 2]
There is also the natural lift from permutations:
sage: P = Permutations(3) sage: x = S(P.an_element()); x [3, 1, 2] sage: x.parent() Signed permutations of 3
>>> from sage.all import * >>> P = Permutations(Integer(3)) >>> x = S(P.an_element()); x [3, 1, 2] >>> x.parent() Signed permutations of 3
REFERENCES:
- Element[source]¶
alias of
SignedPermutation
- conjugacy_class_representative(nu)[source]¶
Return a permutation with (signed) cycle type
nu
.EXAMPLES:
sage: G = SignedPermutations(4) sage: for nu in PartitionTuples(2, 4): ....: print(nu, G.conjugacy_class_representative(nu)) ....: assert nu == G.conjugacy_class_representative(nu).cycle_type(), nu ([4], []) [2, 3, 4, 1] ([3, 1], []) [2, 3, 1, 4] ([2, 2], []) [2, 1, 4, 3] ([2, 1, 1], []) [2, 1, 3, 4] ([1, 1, 1, 1], []) [1, 2, 3, 4] ([3], [1]) [2, 3, 1, -4] ([2, 1], [1]) [2, 1, 3, -4] ([1, 1, 1], [1]) [1, 2, 3, -4] ([2], [2]) [2, 1, 4, -3] ([2], [1, 1]) [2, 1, -3, -4] ([1, 1], [2]) [1, 2, 4, -3] ([1, 1], [1, 1]) [1, 2, -3, -4] ([1], [3]) [1, 3, 4, -2] ([1], [2, 1]) [1, 3, -2, -4] ([1], [1, 1, 1]) [1, -2, -3, -4] ([], [4]) [2, 3, 4, -1] ([], [3, 1]) [2, 3, -1, -4] ([], [2, 2]) [2, -1, 4, -3] ([], [2, 1, 1]) [2, -1, -3, -4] ([], [1, 1, 1, 1]) [-1, -2, -3, -4]
>>> from sage.all import * >>> G = SignedPermutations(Integer(4)) >>> for nu in PartitionTuples(Integer(2), Integer(4)): ... print(nu, G.conjugacy_class_representative(nu)) ... assert nu == G.conjugacy_class_representative(nu).cycle_type(), nu ([4], []) [2, 3, 4, 1] ([3, 1], []) [2, 3, 1, 4] ([2, 2], []) [2, 1, 4, 3] ([2, 1, 1], []) [2, 1, 3, 4] ([1, 1, 1, 1], []) [1, 2, 3, 4] ([3], [1]) [2, 3, 1, -4] ([2, 1], [1]) [2, 1, 3, -4] ([1, 1, 1], [1]) [1, 2, 3, -4] ([2], [2]) [2, 1, 4, -3] ([2], [1, 1]) [2, 1, -3, -4] ([1, 1], [2]) [1, 2, 4, -3] ([1, 1], [1, 1]) [1, 2, -3, -4] ([1], [3]) [1, 3, 4, -2] ([1], [2, 1]) [1, 3, -2, -4] ([1], [1, 1, 1]) [1, -2, -3, -4] ([], [4]) [2, 3, 4, -1] ([], [3, 1]) [2, 3, -1, -4] ([], [2, 2]) [2, -1, 4, -3] ([], [2, 1, 1]) [2, -1, -3, -4] ([], [1, 1, 1, 1]) [-1, -2, -3, -4]
- long_element(index_set=None)[source]¶
Return the longest element of
self
, or of the parabolic subgroup corresponding to the givenindex_set
.INPUT:
index_set
– (optional) a subset (as a list or iterable) of the nodes of the indexing set
EXAMPLES:
sage: S = SignedPermutations(4) sage: S.long_element() [-1, -2, -3, -4]
>>> from sage.all import * >>> S = SignedPermutations(Integer(4)) >>> S.long_element() [-1, -2, -3, -4]
- one()[source]¶
Return the identity element of
self
.EXAMPLES:
sage: S = SignedPermutations(4) sage: S.one() [1, 2, 3, 4]
>>> from sage.all import * >>> S = SignedPermutations(Integer(4)) >>> S.one() [1, 2, 3, 4]
- random_element()[source]¶
Return an element drawn uniformly at random.
EXAMPLES:
sage: C = SignedPermutations(7) sage: s = C.random_element(); s # random [7, 6, -4, -5, 2, 3, -1] sage: s in C True
>>> from sage.all import * >>> C = SignedPermutations(Integer(7)) >>> s = C.random_element(); s # random [7, 6, -4, -5, 2, 3, -1] >>> s in C True
- simple_reflection(i)[source]¶
Return the
i
-th simple reflection ofself
.EXAMPLES:
sage: S = SignedPermutations(4) sage: S.simple_reflection(1) [2, 1, 3, 4] sage: S.simple_reflection(4) [1, 2, 3, -4]
>>> from sage.all import * >>> S = SignedPermutations(Integer(4)) >>> S.simple_reflection(Integer(1)) [2, 1, 3, 4] >>> S.simple_reflection(Integer(4)) [1, 2, 3, -4]