Root system data for (untwisted) type F affine#
- class sage.combinat.root_system.type_F_affine.CartanType[source]#
Bases:
CartanType_standard_untwisted_affine
EXAMPLES:
sage: ct = CartanType(['F',4,1]) sage: ct ['F', 4, 1] sage: ct._repr_(compact = True) 'F4~' sage: ct.is_irreducible() True sage: ct.is_finite() False sage: ct.is_affine() True sage: ct.is_untwisted_affine() True sage: ct.is_crystallographic() True sage: ct.is_simply_laced() False sage: ct.classical() ['F', 4] sage: ct.dual() ['F', 4, 1]^* sage: ct.dual().is_untwisted_affine() False
>>> from sage.all import * >>> ct = CartanType(['F',Integer(4),Integer(1)]) >>> ct ['F', 4, 1] >>> ct._repr_(compact = True) 'F4~' >>> ct.is_irreducible() True >>> ct.is_finite() False >>> ct.is_affine() True >>> ct.is_untwisted_affine() True >>> ct.is_crystallographic() True >>> ct.is_simply_laced() False >>> ct.classical() ['F', 4] >>> ct.dual() ['F', 4, 1]^* >>> ct.dual().is_untwisted_affine() False
- ascii_art(label=None, node=None)[source]#
Returns a ascii art representation of the extended Dynkin diagram
EXAMPLES:
sage: print(CartanType(['F',4,1]).ascii_art(label = lambda x: x+2)) O---O---O=>=O---O 2 3 4 5 6
>>> from sage.all import * >>> print(CartanType(['F',Integer(4),Integer(1)]).ascii_art(label = lambda x: x+Integer(2))) O---O---O=>=O---O 2 3 4 5 6
- dynkin_diagram()[source]#
Returns the extended Dynkin diagram for affine type F.
EXAMPLES:
sage: f = CartanType(['F', 4, 1]).dynkin_diagram(); f # needs sage.graphs O---O---O=>=O---O 0 1 2 3 4 F4~ sage: f.edges(sort=True) # needs sage.graphs [(0, 1, 1), (1, 0, 1), (1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1), (3, 4, 1), (4, 3, 1)]
>>> from sage.all import * >>> f = CartanType(['F', Integer(4), Integer(1)]).dynkin_diagram(); f # needs sage.graphs O---O---O=>=O---O 0 1 2 3 4 F4~ >>> f.edges(sort=True) # needs sage.graphs [(0, 1, 1), (1, 0, 1), (1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1), (3, 4, 1), (4, 3, 1)]