Root system data for (untwisted) type G affine#
- class sage.combinat.root_system.type_G_affine.CartanType#
Bases:
CartanType_standard_untwisted_affine
EXAMPLES:
sage: ct = CartanType(['G',2,1]) sage: ct ['G', 2, 1] sage: ct._repr_(compact = True) 'G2~' sage: ct.is_irreducible() True sage: ct.is_finite() False sage: ct.is_affine() True sage: ct.is_untwisted_affine() True sage: ct.is_crystallographic() True sage: ct.is_simply_laced() False sage: ct.classical() ['G', 2] sage: ct.dual() ['G', 2, 1]^* sage: ct.dual().is_untwisted_affine() False
- ascii_art(label=<function CartanType.<lambda> at 0x7fded85e5900>, node=None)#
Returns an ascii art representation of the Dynkin diagram
EXAMPLES:
sage: print(CartanType(['G',2,1]).ascii_art(label = lambda x: x+2)) 3 O=<=O---O 3 4 2
- dynkin_diagram()#
Returns the extended Dynkin diagram for type G.
EXAMPLES:
sage: g = CartanType(['G',2,1]).dynkin_diagram() sage: g 3 O=<=O---O 1 2 0 G2~ sage: g.edges(sort=True) [(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 3)]