Root system data for (untwisted) type G affine

class sage.combinat.root_system.type_G_affine.CartanType

Bases: sage.combinat.root_system.cartan_type.CartanType_standard_untwisted_affine

EXAMPLES:

sage: ct = CartanType(['G',2,1])
sage: ct
['G', 2, 1]
sage: ct._repr_(compact = True)
'G2~'

sage: ct.is_irreducible()
True
sage: ct.is_finite()
False
sage: ct.is_affine()
True
sage: ct.is_untwisted_affine()
True
sage: ct.is_crystallographic()
True
sage: ct.is_simply_laced()
False
sage: ct.classical()
['G', 2]
sage: ct.dual()
['G', 2, 1]^*
sage: ct.dual().is_untwisted_affine()
False
ascii_art(label=<function <lambda> at 0x7fde87fdf230>, node=None)

Returns an ascii art representation of the Dynkin diagram

EXAMPLES:

sage: print(CartanType(['G',2,1]).ascii_art(label = lambda x: x+2))
  3
O=<=O---O
3   4   2
dynkin_diagram()

Returns the extended Dynkin diagram for type G.

EXAMPLES:

sage: g = CartanType(['G',2,1]).dynkin_diagram()
sage: g
  3
O=<=O---O
1   2   0
G2~
sage: sorted(g.edges())
[(0, 2, 1), (1, 2, 1), (2, 0, 1), (2, 1, 3)]