Dynkin diagrams#
AUTHORS:
Travis Scrimshaw (2012-04-22): Nicolas M. Thiery moved Cartan matrix creation to here and I cached results for speed.
Travis Scrimshaw (2013-06-11): Changed inputs of Dynkin diagrams to handle other Dynkin diagrams and graphs. Implemented remaining Cartan type methods.
Christian Stump, Travis Scrimshaw (2013-04-11): Added Cartan matrix as possible input for Dynkin diagrams.
- sage.combinat.root_system.dynkin_diagram.DynkinDiagram(*args, **kwds)[source]#
Return the Dynkin diagram corresponding to the input.
INPUT:
The input can be one of the following:
empty to obtain an empty Dynkin diagram
a Cartan type
a Cartan matrix
a Cartan matrix and an indexing set
One can also input an indexing set by passing a tuple using the optional argument
index_set
.The edge multiplicities are encoded as edge labels. For the corresponding Cartan matrices, this uses the convention in Hong and Kang, Kac, Fulton and Harris, and crystals. This is the opposite convention in Bourbaki and Wikipedia’s Dynkin diagram (Wikipedia article Dynkin_diagram). That is for \(i \neq j\):
i <--k-- j <==> a_ij = -k <==> -scalar(coroot[i], root[j]) = k <==> multiple arrows point from the longer root to the shorter one
For example, in type \(C_2\), we have:
sage: C2 = DynkinDiagram(['C',2]); C2 O=<=O 1 2 C2 sage: C2.cartan_matrix() [ 2 -2] [-1 2]
>>> from sage.all import * >>> C2 = DynkinDiagram(['C',Integer(2)]); C2 O=<=O 1 2 C2 >>> C2.cartan_matrix() [ 2 -2] [-1 2]
However Bourbaki would have the Cartan matrix as:
\[\begin{split}\begin{bmatrix} 2 & -1 \\ -2 & 2 \end{bmatrix}.\end{split}\]EXAMPLES:
sage: DynkinDiagram(['A', 4]) O---O---O---O 1 2 3 4 A4 sage: DynkinDiagram(['A',1],['A',1]) O 1 O 2 A1xA1 sage: R = RootSystem("A2xB2xF4") sage: DynkinDiagram(R) O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 sage: R = RootSystem("A2xB2xF4") sage: CM = R.cartan_matrix(); CM [ 2 -1| 0 0| 0 0 0 0] [-1 2| 0 0| 0 0 0 0] [-----+-----+-----------] [ 0 0| 2 -1| 0 0 0 0] [ 0 0|-2 2| 0 0 0 0] [-----+-----+-----------] [ 0 0| 0 0| 2 -1 0 0] [ 0 0| 0 0|-1 2 -1 0] [ 0 0| 0 0| 0 -2 2 -1] [ 0 0| 0 0| 0 0 -1 2] sage: DD = DynkinDiagram(CM); DD O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 sage: DD.cartan_matrix() [ 2 -1 0 0 0 0 0 0] [-1 2 0 0 0 0 0 0] [ 0 0 2 -1 0 0 0 0] [ 0 0 -2 2 0 0 0 0] [ 0 0 0 0 2 -1 0 0] [ 0 0 0 0 -1 2 -1 0] [ 0 0 0 0 0 -2 2 -1] [ 0 0 0 0 0 0 -1 2]
>>> from sage.all import * >>> DynkinDiagram(['A', Integer(4)]) O---O---O---O 1 2 3 4 A4 >>> DynkinDiagram(['A',Integer(1)],['A',Integer(1)]) O 1 O 2 A1xA1 >>> R = RootSystem("A2xB2xF4") >>> DynkinDiagram(R) O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 >>> R = RootSystem("A2xB2xF4") >>> CM = R.cartan_matrix(); CM [ 2 -1| 0 0| 0 0 0 0] [-1 2| 0 0| 0 0 0 0] [-----+-----+-----------] [ 0 0| 2 -1| 0 0 0 0] [ 0 0|-2 2| 0 0 0 0] [-----+-----+-----------] [ 0 0| 0 0| 2 -1 0 0] [ 0 0| 0 0|-1 2 -1 0] [ 0 0| 0 0| 0 -2 2 -1] [ 0 0| 0 0| 0 0 -1 2] >>> DD = DynkinDiagram(CM); DD O---O 1 2 O=>=O 3 4 O---O=>=O---O 5 6 7 8 A2xB2xF4 >>> DD.cartan_matrix() [ 2 -1 0 0 0 0 0 0] [-1 2 0 0 0 0 0 0] [ 0 0 2 -1 0 0 0 0] [ 0 0 -2 2 0 0 0 0] [ 0 0 0 0 2 -1 0 0] [ 0 0 0 0 -1 2 -1 0] [ 0 0 0 0 0 -2 2 -1] [ 0 0 0 0 0 0 -1 2]
We can also create Dynkin diagrams from arbitrary Cartan matrices:
sage: C = CartanMatrix([[2, -3], [-4, 2]]) sage: DynkinDiagram(C) Dynkin diagram of rank 2 sage: C.index_set() (0, 1) sage: CI = CartanMatrix([[2, -3], [-4, 2]], [3, 5]) sage: DI = DynkinDiagram(CI) sage: DI.index_set() (3, 5) sage: CII = CartanMatrix([[2, -3], [-4, 2]]) sage: DII = DynkinDiagram(CII, ('y', 'x')) sage: DII.index_set() ('x', 'y')
>>> from sage.all import * >>> C = CartanMatrix([[Integer(2), -Integer(3)], [-Integer(4), Integer(2)]]) >>> DynkinDiagram(C) Dynkin diagram of rank 2 >>> C.index_set() (0, 1) >>> CI = CartanMatrix([[Integer(2), -Integer(3)], [-Integer(4), Integer(2)]], [Integer(3), Integer(5)]) >>> DI = DynkinDiagram(CI) >>> DI.index_set() (3, 5) >>> CII = CartanMatrix([[Integer(2), -Integer(3)], [-Integer(4), Integer(2)]]) >>> DII = DynkinDiagram(CII, ('y', 'x')) >>> DII.index_set() ('x', 'y')
See also
CartanType()
for a general discussion on Cartan types and in particular node labeling conventions.
- class sage.combinat.root_system.dynkin_diagram.DynkinDiagram_class(t=None, index_set=None, odd_isotropic_roots=[], **options)[source]#
Bases:
DiGraph
,CartanType_abstract
A Dynkin diagram.
See also
INPUT:
t
– a Cartan type, Cartan matrix, orNone
EXAMPLES:
sage: DynkinDiagram(['A', 3]) O---O---O 1 2 3 A3 sage: C = CartanMatrix([[2, -3], [-4, 2]]) sage: DynkinDiagram(C) Dynkin diagram of rank 2 sage: C.dynkin_diagram().cartan_matrix() == C True
>>> from sage.all import * >>> DynkinDiagram(['A', Integer(3)]) O---O---O 1 2 3 A3 >>> C = CartanMatrix([[Integer(2), -Integer(3)], [-Integer(4), Integer(2)]]) >>> DynkinDiagram(C) Dynkin diagram of rank 2 >>> C.dynkin_diagram().cartan_matrix() == C True
- add_edge(i, j, label=1)[source]#
EXAMPLES:
sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class sage: d = DynkinDiagram_class(CartanType(['A',3])) sage: sorted(d.edges(sort=True)) [] sage: d.add_edge(2, 3) sage: sorted(d.edges(sort=True)) [(2, 3, 1), (3, 2, 1)]
>>> from sage.all import * >>> from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class >>> d = DynkinDiagram_class(CartanType(['A',Integer(3)])) >>> sorted(d.edges(sort=True)) [] >>> d.add_edge(Integer(2), Integer(3)) >>> sorted(d.edges(sort=True)) [(2, 3, 1), (3, 2, 1)]
- static an_instance()[source]#
Returns an example of Dynkin diagram
EXAMPLES:
sage: from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class sage: g = DynkinDiagram_class.an_instance() sage: g Dynkin diagram of rank 3 sage: g.cartan_matrix() [ 2 -1 -1] [-2 2 -1] [-1 -1 2]
>>> from sage.all import * >>> from sage.combinat.root_system.dynkin_diagram import DynkinDiagram_class >>> g = DynkinDiagram_class.an_instance() >>> g Dynkin diagram of rank 3 >>> g.cartan_matrix() [ 2 -1 -1] [-2 2 -1] [-1 -1 2]
- cartan_matrix()[source]#
Returns the Cartan matrix for this Dynkin diagram
EXAMPLES:
sage: DynkinDiagram(['C',3]).cartan_matrix() [ 2 -1 0] [-1 2 -2] [ 0 -1 2]
>>> from sage.all import * >>> DynkinDiagram(['C',Integer(3)]).cartan_matrix() [ 2 -1 0] [-1 2 -2] [ 0 -1 2]
- cartan_type()[source]#
EXAMPLES:
sage: DynkinDiagram("A2","B2","F4").cartan_type() A2xB2xF4
>>> from sage.all import * >>> DynkinDiagram("A2","B2","F4").cartan_type() A2xB2xF4
- column(j)[source]#
Returns the \(j^{th}\) column \((a_{i,j})_i\) of the Cartan matrix corresponding to this Dynkin diagram, as a container (or iterator) of tuples \((i, a_{i,j})\)
EXAMPLES:
sage: g = DynkinDiagram(["B",4]) sage: [ (i,a) for (i,a) in g.column(3) ] [(3, 2), (2, -1), (4, -2)]
>>> from sage.all import * >>> g = DynkinDiagram(["B",Integer(4)]) >>> [ (i,a) for (i,a) in g.column(Integer(3)) ] [(3, 2), (2, -1), (4, -2)]
- coxeter_diagram()[source]#
Construct the Coxeter diagram of
self
.EXAMPLES:
sage: cm = CartanMatrix([[2,-5,0],[-2,2,-1],[0,-1,2]]) sage: D = cm.dynkin_diagram() sage: G = D.coxeter_diagram(); G Graph on 3 vertices sage: G.edges(sort=True) [(0, 1, +Infinity), (1, 2, 3)] sage: ct = CartanType([['A',2,2], ['B',3]]) sage: ct.coxeter_diagram() Graph on 5 vertices sage: ct.dynkin_diagram().coxeter_diagram() == ct.coxeter_diagram() True
>>> from sage.all import * >>> cm = CartanMatrix([[Integer(2),-Integer(5),Integer(0)],[-Integer(2),Integer(2),-Integer(1)],[Integer(0),-Integer(1),Integer(2)]]) >>> D = cm.dynkin_diagram() >>> G = D.coxeter_diagram(); G Graph on 3 vertices >>> G.edges(sort=True) [(0, 1, +Infinity), (1, 2, 3)] >>> ct = CartanType([['A',Integer(2),Integer(2)], ['B',Integer(3)]]) >>> ct.coxeter_diagram() Graph on 5 vertices >>> ct.dynkin_diagram().coxeter_diagram() == ct.coxeter_diagram() True
- dual()[source]#
Returns the dual Dynkin diagram, obtained by reversing all edges.
EXAMPLES:
sage: D = DynkinDiagram(['C',3]) sage: D.edges(sort=True) [(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)] sage: D.dual() O---O=>=O 1 2 3 B3 sage: D.dual().edges(sort=True) [(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)] sage: D.dual() == DynkinDiagram(['B',3]) True
>>> from sage.all import * >>> D = DynkinDiagram(['C',Integer(3)]) >>> D.edges(sort=True) [(1, 2, 1), (2, 1, 1), (2, 3, 1), (3, 2, 2)] >>> D.dual() O---O=>=O 1 2 3 B3 >>> D.dual().edges(sort=True) [(1, 2, 1), (2, 1, 1), (2, 3, 2), (3, 2, 1)] >>> D.dual() == DynkinDiagram(['B',Integer(3)]) True
- dynkin_diagram()[source]#
EXAMPLES:
sage: DynkinDiagram(['C',3]).dynkin_diagram() O---O=<=O 1 2 3 C3
>>> from sage.all import * >>> DynkinDiagram(['C',Integer(3)]).dynkin_diagram() O---O=<=O 1 2 3 C3
- index_set()[source]#
EXAMPLES:
sage: DynkinDiagram(['C',3]).index_set() (1, 2, 3) sage: DynkinDiagram("A2","B2","F4").index_set() (1, 2, 3, 4, 5, 6, 7, 8)
>>> from sage.all import * >>> DynkinDiagram(['C',Integer(3)]).index_set() (1, 2, 3) >>> DynkinDiagram("A2","B2","F4").index_set() (1, 2, 3, 4, 5, 6, 7, 8)
- is_affine()[source]#
Check if
self
corresponds to an affine root system.EXAMPLES:
sage: CartanType(['F',4]).dynkin_diagram().is_affine() False sage: D = DynkinDiagram(CartanMatrix([[2, -4], [-3, 2]])) sage: D.is_affine() False
>>> from sage.all import * >>> CartanType(['F',Integer(4)]).dynkin_diagram().is_affine() False >>> D = DynkinDiagram(CartanMatrix([[Integer(2), -Integer(4)], [-Integer(3), Integer(2)]])) >>> D.is_affine() False
- is_crystallographic()[source]#
Implements
CartanType_abstract.is_crystallographic()
A Dynkin diagram always corresponds to a crystallographic root system.
EXAMPLES:
sage: CartanType(['F',4]).dynkin_diagram().is_crystallographic() True
>>> from sage.all import * >>> CartanType(['F',Integer(4)]).dynkin_diagram().is_crystallographic() True
- is_finite()[source]#
Check if
self
corresponds to a finite root system.EXAMPLES:
sage: CartanType(['F',4]).dynkin_diagram().is_finite() True sage: D = DynkinDiagram(CartanMatrix([[2, -4], [-3, 2]])) sage: D.is_finite() False
>>> from sage.all import * >>> CartanType(['F',Integer(4)]).dynkin_diagram().is_finite() True >>> D = DynkinDiagram(CartanMatrix([[Integer(2), -Integer(4)], [-Integer(3), Integer(2)]])) >>> D.is_finite() False
- is_irreducible()[source]#
Check if
self
corresponds to an irreducible root system.EXAMPLES:
sage: CartanType(['F',4]).dynkin_diagram().is_irreducible() True sage: CM = CartanMatrix([[2,-6],[-4,2]]) sage: CM.dynkin_diagram().is_irreducible() True sage: CartanType("A2xB3").dynkin_diagram().is_irreducible() False sage: CM = CartanMatrix([[2,-6,0],[-4,2,0],[0,0,2]]) sage: CM.dynkin_diagram().is_irreducible() False
>>> from sage.all import * >>> CartanType(['F',Integer(4)]).dynkin_diagram().is_irreducible() True >>> CM = CartanMatrix([[Integer(2),-Integer(6)],[-Integer(4),Integer(2)]]) >>> CM.dynkin_diagram().is_irreducible() True >>> CartanType("A2xB3").dynkin_diagram().is_irreducible() False >>> CM = CartanMatrix([[Integer(2),-Integer(6),Integer(0)],[-Integer(4),Integer(2),Integer(0)],[Integer(0),Integer(0),Integer(2)]]) >>> CM.dynkin_diagram().is_irreducible() False
- odd_isotropic_roots()[source]#
Return the odd isotropic roots of
self
.EXAMPLES:
sage: g = DynkinDiagram(['A',4]) sage: g.odd_isotropic_roots() () sage: g = DynkinDiagram(['A',[4,3]]) sage: g.odd_isotropic_roots() (0,)
>>> from sage.all import * >>> g = DynkinDiagram(['A',Integer(4)]) >>> g.odd_isotropic_roots() () >>> g = DynkinDiagram(['A',[Integer(4),Integer(3)]]) >>> g.odd_isotropic_roots() (0,)
- rank()[source]#
Returns the index set for this Dynkin diagram
EXAMPLES:
sage: DynkinDiagram(['C',3]).rank() 3 sage: DynkinDiagram("A2","B2","F4").rank() 8
>>> from sage.all import * >>> DynkinDiagram(['C',Integer(3)]).rank() 3 >>> DynkinDiagram("A2","B2","F4").rank() 8
- relabel(*args, **kwds)[source]#
Return the relabelled Dynkin diagram of
self
.INPUT: see
relabel()
There is one difference: the default value for
inplace
isFalse
instead ofTrue
.EXAMPLES:
sage: D = DynkinDiagram(['C',3]) sage: D.relabel({1:0, 2:4, 3:1}) O---O=<=O 0 4 1 C3 relabelled by {1: 0, 2: 4, 3: 1} sage: D O---O=<=O 1 2 3 C3 sage: _ = D.relabel({1:0, 2:4, 3:1}, inplace=True) sage: D O---O=<=O 0 4 1 C3 relabelled by {1: 0, 2: 4, 3: 1} sage: D = DynkinDiagram(['A', [1,2]]) sage: Dp = D.relabel({-1:4, 0:-3, 1:3, 2:2}) sage: Dp O---X---O---O 4 -3 3 2 A1|2 relabelled by {-1: 4, 0: -3, 1: 3, 2: 2} sage: Dp.odd_isotropic_roots() (-3,) sage: D = DynkinDiagram(['D', 5]) sage: G, perm = D.relabel(range(5), return_map=True) sage: G O 4 | | O---O---O---O 0 1 2 3 D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4} sage: perm {1: 0, 2: 1, 3: 2, 4: 3, 5: 4} sage: perm = D.relabel(range(5), return_map=True, inplace=True) sage: D O 4 | | O---O---O---O 0 1 2 3 D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4} sage: perm {1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
>>> from sage.all import * >>> D = DynkinDiagram(['C',Integer(3)]) >>> D.relabel({Integer(1):Integer(0), Integer(2):Integer(4), Integer(3):Integer(1)}) O---O=<=O 0 4 1 C3 relabelled by {1: 0, 2: 4, 3: 1} >>> D O---O=<=O 1 2 3 C3 >>> _ = D.relabel({Integer(1):Integer(0), Integer(2):Integer(4), Integer(3):Integer(1)}, inplace=True) >>> D O---O=<=O 0 4 1 C3 relabelled by {1: 0, 2: 4, 3: 1} >>> D = DynkinDiagram(['A', [Integer(1),Integer(2)]]) >>> Dp = D.relabel({-Integer(1):Integer(4), Integer(0):-Integer(3), Integer(1):Integer(3), Integer(2):Integer(2)}) >>> Dp O---X---O---O 4 -3 3 2 A1|2 relabelled by {-1: 4, 0: -3, 1: 3, 2: 2} >>> Dp.odd_isotropic_roots() (-3,) >>> D = DynkinDiagram(['D', Integer(5)]) >>> G, perm = D.relabel(range(Integer(5)), return_map=True) >>> G O 4 | | O---O---O---O 0 1 2 3 D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4} >>> perm {1: 0, 2: 1, 3: 2, 4: 3, 5: 4} >>> perm = D.relabel(range(Integer(5)), return_map=True, inplace=True) >>> D O 4 | | O---O---O---O 0 1 2 3 D5 relabelled by {1: 0, 2: 1, 3: 2, 4: 3, 5: 4} >>> perm {1: 0, 2: 1, 3: 2, 4: 3, 5: 4}
- row(i)[source]#
Returns the \(i^{th}\) row \((a_{i,j})_j\) of the Cartan matrix corresponding to this Dynkin diagram, as a container (or iterator) of tuples \((j, a_{i,j})\)
EXAMPLES:
sage: g = DynkinDiagram(["C",4]) sage: [ (i,a) for (i,a) in g.row(3) ] [(3, 2), (2, -1), (4, -2)]
>>> from sage.all import * >>> g = DynkinDiagram(["C",Integer(4)]) >>> [ (i,a) for (i,a) in g.row(Integer(3)) ] [(3, 2), (2, -1), (4, -2)]
- subtype(index_set)[source]#
Return a subtype of
self
given byindex_set
.A subtype can be considered the Dynkin diagram induced from the Dynkin diagram of
self
byindex_set
.EXAMPLES:
sage: D = DynkinDiagram(['A',6,2]); D O=<=O---O=<=O 0 1 2 3 BC3~ sage: D.subtype([1,2,3]) Dynkin diagram of rank 3
>>> from sage.all import * >>> D = DynkinDiagram(['A',Integer(6),Integer(2)]); D O=<=O---O=<=O 0 1 2 3 BC3~ >>> D.subtype([Integer(1),Integer(2),Integer(3)]) Dynkin diagram of rank 3
- symmetrizer()[source]#
Return the symmetrizer of the corresponding Cartan matrix.
EXAMPLES:
sage: d = DynkinDiagram() sage: d.add_edge(1,2,3) sage: d.add_edge(2,3) sage: d.add_edge(3,4,3) sage: d.symmetrizer() Finite family {1: 9, 2: 3, 3: 3, 4: 1}
>>> from sage.all import * >>> d = DynkinDiagram() >>> d.add_edge(Integer(1),Integer(2),Integer(3)) >>> d.add_edge(Integer(2),Integer(3)) >>> d.add_edge(Integer(3),Integer(4),Integer(3)) >>> d.symmetrizer() Finite family {1: 9, 2: 3, 3: 3, 4: 1}
- sage.combinat.root_system.dynkin_diagram.precheck(t, letter=None, length=None, affine=None, n_ge=None, n=None)[source]#
EXAMPLES:
sage: from sage.combinat.root_system.dynkin_diagram import precheck sage: ct = CartanType(['A',4]) sage: precheck(ct, letter='C') Traceback (most recent call last): ... ValueError: t[0] must be = 'C' sage: precheck(ct, affine=1) Traceback (most recent call last): ... ValueError: t[2] must be = 1 sage: precheck(ct, length=3) Traceback (most recent call last): ... ValueError: len(t) must be = 3 sage: precheck(ct, n=3) Traceback (most recent call last): ... ValueError: t[1] must be = 3 sage: precheck(ct, n_ge=5) Traceback (most recent call last): ... ValueError: t[1] must be >= 5
>>> from sage.all import * >>> from sage.combinat.root_system.dynkin_diagram import precheck >>> ct = CartanType(['A',Integer(4)]) >>> precheck(ct, letter='C') Traceback (most recent call last): ... ValueError: t[0] must be = 'C' >>> precheck(ct, affine=Integer(1)) Traceback (most recent call last): ... ValueError: t[2] must be = 1 >>> precheck(ct, length=Integer(3)) Traceback (most recent call last): ... ValueError: len(t) must be = 3 >>> precheck(ct, n=Integer(3)) Traceback (most recent call last): ... ValueError: t[1] must be = 3 >>> precheck(ct, n_ge=Integer(5)) Traceback (most recent call last): ... ValueError: t[1] must be >= 5