Hecke algebra representations#
- class sage.combinat.root_system.hecke_algebra_representation.CherednikOperatorsEigenvectors(T, T_Y=None, normalized=True)#
Bases:
UniqueRepresentation
,SageObject
A class for the family of eigenvectors of the \(Y\) Cherednik operators for a module over a (Double) Affine Hecke algebra
INPUT:
T
– a family \((T_i)_{i\in I}\) implementing the action of the generators of an affine Hecke algebra onself
. The intertwiner operators are built from these.T_Y
– a family \((T^Y_i)_{i\in I}\) implementing the action of the generators of an affine Hecke algebra onself
. By default, this isT
. But this can be used to get the action of the full Double Affine Hecke Algebra. The \(Y\) operators are built from theT_Y
.
This returns a function \(\mu\mapsto E_\mu\) which uses intertwining operators to calculate recursively eigenvectors \(E_\mu\) for the action of the torus of the affine Hecke algebra with eigenvalue given by \(f\). Namely:
\[E_\mu.Y^{\lambda^\vee} = f(\lambda^\vee, \mu) E_\mu\]Assumptions:
seed(mu)
initializes the recurrence by returning an appropriate eigenvector \(E_\mu\) for \(\mu\) trivial enough. For example, for nonsymmetric Macdonald polynomialsseed(mu)
returns the monomial \(X^\mu\) for a minuscule weight \(\mu\).\(f\) is almost equivariant. Namely, \(f(\lambda^\vee,\mu) = f(\lambda^\vee s_i, twist(\mu,i))\) whenever \(i\) is a descent of \(\mu\).
\(twist(\mu, i)\) maps \(\mu\) closer to the dominant chamber whenever \(i\) is a descent of \(\mu\).
Todo
Add tests for the above assumptions, and also that the classical operators \(T_1, \ldots, T_n\) from \(T\) and \(T_Y\) coincide.
- Y()#
Return the Cherednik operators.
EXAMPLES:
sage: W = WeylGroup(["B",2]) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: E.Y() Lazy family (...)_{i in Coroot lattice of the Root system of type ['B', 2, 1]}
- affine_lift(mu)#
Lift the index
\mu
to a space admitting an action of the affine Weyl group.INPUT:
mu
– an element \(\mu\) of the indexing set
In this space, one should have
first_descent
andapply_simple_reflection
act properly.EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: w = W.an_element(); w 123 sage: E.affine_lift(w) 121
- affine_retract(mu)#
Retract \(\mu\) from a space admitting an action of the affine Weyl group.
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: w = W.an_element(); w 123 sage: E.affine_retract(E.affine_lift(w)) == w True
- cartan_type()#
Return Cartan type of
self
.EXAMPLES:
sage: W = WeylGroup(["B",3]) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: E.cartan_type() ['B', 3, 1] sage: NonSymmetricMacdonaldPolynomials(["B", 2, 1]).cartan_type() ['B', 2, 1]
- domain()#
The module on which the affine Hecke algebra acts.
EXAMPLES:
sage: W = WeylGroup(["B",3]) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: E.domain() Algebra of Weyl Group of type ['B', 3] (as a matrix group acting on the ambient space) over Multivariate Polynomial Ring in q1, q2 over Rational Field
- eigenvalue(mu, l)#
Return the eigenvalue of \(Y_{\lambda^\vee}\) on \(E_\mu\) computed by applying \(Y_{\lambda^\vee}\) on \(E_\mu\).
INPUT:
mu
– the index \(\mu\) of an eigenvector, or a tentative eigenvectorl
– the index \(\lambda^\vee\) of a Cherednik operator inself.Y_index_set()
This default implementation applies explicitly \(Y_\mu\) to \(E_\lambda\).
EXAMPLES:
sage: W = WeylGroup(["B",2]) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: w0 = W.long_element() sage: Y = E.Y() sage: alphacheck = Y.keys().simple_roots() sage: E.eigenvalue(w0, alphacheck[1]) q1/(-q2) sage: E.eigenvalue(w0, alphacheck[2]) q1/(-q2) sage: E.eigenvalue(w0, alphacheck[0]) q2^2/q1^2
The following checks that all \(E_w\) are eigenvectors, with eigenvalue given by Lemma 7.5 of [HST2008] (checked for \(A_2\), \(A_3\)):
sage: Pcheck = Y.keys() sage: Wcheck = Pcheck.weyl_group() sage: P0check = Pcheck.classical() sage: def height(root): ....: return sum(P0check(root).coefficients()) sage: def eigenvalue(w, mu): ....: return (-q2/q1)^height(Wcheck.from_reduced_word(w.reduced_word()).action(mu)) sage: all(E.eigenvalue(w, a) == eigenvalue(w, a) for w in E.keys() for a in Y.keys().simple_roots()) # long time (2.5s) True
- eigenvalues(mu)#
Return the eigenvalues of \(Y_{\alpha_0},\dots,Y_{\alpha_n}\) on \(E_\mu\).
INPUT:
mu
– the index \(\mu\) of an eigenvector or a tentative eigenvector
EXAMPLES:
sage: W = WeylGroup(["B",2]) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: w0 = W.long_element() sage: E.eigenvalues(w0) [q2^2/q1^2, q1/(-q2), q1/(-q2)] sage: w = W.an_element() sage: E.eigenvalues(w) [(-q2)/q1, (-q2^2)/(-q1^2), q1^3/(-q2^3)]
- hecke_parameters(i)#
Return the Hecke parameters for index
i
.EXAMPLES:
sage: W = WeylGroup(["B",3]) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True) sage: E = T.Y_eigenvectors() sage: E.hecke_parameters(1) (q1, q2) sage: E.hecke_parameters(2) (q1, q2) sage: E.hecke_parameters(0) (q1, q2)
- keys()#
The index set for the eigenvectors.
By default, this assumes that the eigenvectors span the full affine Hecke algebra module and that the eigenvectors have the same indexing as the basis of this module.
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: E.keys() Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space)
- recursion(mu)#
Return the indices used in the recursion.
INPUT:
mu
– the index \(\mu\) of an eigenvector
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: w0 = W.long_element() sage: E.recursion(w0) [] sage: w = W.an_element(); w 123 sage: E.recursion(w) [1, 2, 1]
- seed(mu)#
Return the eigenvector for \(\mu\) minuscule.
INPUT:
mu
– an element \(\mu\) of the indexing set
OUTPUT: an element of
T.domain()
This default implementation returns the monomial indexed by \(\mu\).
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: E = KW.demazure_lusztig_eigenvectors(q1, q2) sage: E.seed(W.long_element()) 123121
- twist(mu, i)#
Act by \(s_i\) on \(\mu\).
By default, this calls the method
apply_simple_reflection
.EXAMPLES:
sage: W = WeylGroup(["B",3]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'] sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: T = KW.demazure_lusztig_operators(q1, q2, affine=True) sage: E = T.Y_eigenvectors() sage: w = W.an_element(); w 123 sage: E.twist(w,1) 1231
- class sage.combinat.root_system.hecke_algebra_representation.HeckeAlgebraRepresentation(domain, on_basis, cartan_type, q1, q2, q=1, side='right')#
Bases:
WithEqualityById
,SageObject
A representation of an (affine) Hecke algebra given by the action of the \(T\) generators
Let \(F_i\) be a family of operators implementing an action of the operators \((T_i)_{i\in I}\) of the Hecke algebra on some vector space
domain
, given by their action on the basis ofdomain
. This constructs the family of operators \((F_w)_{w\in W}\) describing the action of all elements of the basis \((T_w)_{w\in W}\) of the Hecke algebra. This is achieved by linearity on the first argument, and applying recursively the \(F_i\) along a reduced word for \(w=s_{i_1}\cdots s_{i_k}\):\[F_w (x) = F_{i_k}\circ\cdots\circ F_{i_1}(x) .\]INPUT:
domain
– a vector spacef
– a functionf(l,i)
taking a basis element \(l\) ofdomain
and an index \(i\), and returning \(F_i\)cartan_type
– The Cartan type of the Hecke algebraq1,q2
– The eigenvalues of the generators \(T\) of the Hecke algebraside
– “left” or “right” (default: “right”) whether this is a left or right representation
EXAMPLES:
sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = WeylGroup(["A",3]).algebra(QQ) sage: H = KW.demazure_lusztig_operators(q1,q2); H A representation of the (q1, q2)-Hecke algebra of type ['A', 3, 1] on Algebra of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) over Rational Field
Among other things, it implements the \(T_w\) operators, their inverses and compositions thereof:
sage: H.Tw((1,2)) Generic endomorphism of Algebra of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) over Rational Field
and the Cherednik operators \(Y^{\lambda^\vee}\):
sage: H.Y() Lazy family (...)_{i in Coroot lattice of the Root system of type ['A', 3, 1]}
REFERENCES:
- Ti_inverse_on_basis(x, i)#
The \(T_i^{-1}\) operators, on basis elements
INPUT:
x
– the index of a basis elementi
– the index of a generator
EXAMPLES:
sage: W = WeylGroup("A3") sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: rho = KW.demazure_lusztig_operators(q1,q2) sage: w = W.an_element() sage: rho.Ti_inverse_on_basis(w, 1) -1/q2*1231 + ((q1+q2)/(q1*q2))*123
- Ti_on_basis(x, i)#
The \(T_i\) operators, on basis elements.
INPUT:
x
– the index of a basis elementi
– the index of a generator
EXAMPLES:
sage: W = WeylGroup("A3") sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: rho = KW.demazure_lusztig_operators(q1,q2) sage: w = W.an_element() sage: rho.Ti_on_basis(w,1) q1*1231
- Tw(word, signs=None, scalar=None)#
Return \(T_w\).
INPUT:
word
– a word \(i_1,\dots,i_k\) for some element \(w\) of the Weyl group. Seestraighten_word()
for how this word can be specified.signs
– a list \(\epsilon_1,\dots,\epsilon_k\) of the same length asword
with \(\epsilon_i =\pm 1\) orNone
for \(1,\dots,1\) (default:None
)scalar
– an element \(c\) of the base ring orNone
for \(1\) (default:None
)
OUTPUT:
a module morphism implementing
\[T_w = T_{i_k} \circ \cdots \circ T_{i_1}\]in left action notation; that is \(T_{i_1}\) is applied first, then \(T_{i_2}\), etc.
More generally, if
scalar
orsigns
is specified, the morphism implements\[c T_{i_k}^{\epsilon_k} \circ \cdots \circ T_{i_1}^{\epsilon_k}.\]EXAMPLES:
sage: W = WeylGroup("A3") sage: W.element_class._repr_=lambda x: ('e' if not x.reduced_word() ....: else "".join(str(i) for i in x.reduced_word())) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: x = KW.an_element(); x 123 + 3*2312 + 2*31 + e sage: T = KW.demazure_lusztig_operators(q1,q2) sage: T12 = T.Tw( (1,2) ) sage: T12(KW.one()) q1^2*12
This is \(T_2 \circ T_1\):
sage: T[2](T[1](KW.one())) q1^2*12 sage: T[1](T[2](KW.one())) q1^2*21 sage: T12(x) == T[2](T[1](x)) True
Now with signs and scalar coefficient we construct \(3 T_2 \circ T_1^{-1}\):
sage: phi = T.Tw((1,2), (-1,1), 3) sage: phi(KW.one()) ((-3*q1)/q2)*12 + ((3*q1+3*q2)/q2)*2 sage: phi(T[1](x)) == 3*T[2](x) True
For debugging purposes, one can recover the input data:
sage: phi.word (1, 2) sage: phi.signs (-1, 1) sage: phi.scalar 3
- Tw_inverse(word)#
Return \(T_w^{-1}\).
This is essentially a shorthand for
Tw()
with all minus signs.Todo
Add an example where \(T_i\ne T_i^{-1}\)
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: W.element_class._repr_ = lambda x: "".join(str(i) for i in x.reduced_word()) sage: KW = W.algebra(QQ) sage: rho = KW.demazure_lusztig_operators(1, -1) sage: x = KW.monomial(W.an_element()); x 123 sage: word = [1,2] sage: rho.Tw(word)(x) 12312 sage: rho.Tw_inverse(word)(x) 12321 sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: rho = KW.demazure_lusztig_operators(q1, q2) sage: x = KW.monomial(W.an_element()); x 123 sage: rho.Tw_inverse(word)(x) 1/q2^2*12321 + ((-q1-q2)/(q1*q2^2))*1231 + ((-q1-q2)/(q1*q2^2))*1232 + ((q1^2+2*q1*q2+q2^2)/(q1^2*q2^2))*123 sage: rho.Tw(word)(_) 123
- Y(base_ring=Integer Ring)#
Return the Cherednik operators \(Y\) for this representation of an affine Hecke algebra.
INPUT:
self
– a representation of an affine Hecke algebrabase_ring
– the base ring of the coroot lattice
This is a family of operators indexed by the coroot lattice for this Cartan type. In practice this is currently indexed instead by the affine coroot lattice, even if this indexing is not one to one, in order to allow for \(Y[\alpha^\vee_0]\).
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: rho = KW.demazure_lusztig_operators(q2, q1) sage: Y = rho.Y(); Y Lazy family (...(i))_{i in Coroot lattice of the Root system of type ['A', 3, 1]}
- Y_eigenvectors()#
Return the family of eigenvectors for the Cherednik operators \(Y\) of this representation of an affine Hecke algebra.
INPUT:
self
– a representation of an affine Hecke algebrabase_ring
– the base ring of the coroot lattice
EXAMPLES:
sage: W = WeylGroup(["B",2]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: rho = KW.demazure_lusztig_operators(q1, q2, affine=True) sage: E = rho.Y_eigenvectors() sage: E.keys() Weyl Group of type ['B', 2] (as a matrix group acting on the ambient space) sage: w0 = W.long_element()
To set the recurrence up properly, one often needs to customize the
CherednikOperatorsEigenvectors.affine_lift()
andCherednikOperatorsEigenvectors.affine_retract()
methods. This would usually be done by subclassingCherednikOperatorsEigenvectors
; here we just override the methods directly.In this particular case, we multiply by \(w_0\) to take into account that \(w_0\) is the seed for the recursion:
sage: E.affine_lift = w0._mul_ sage: E.affine_retract = w0._mul_ sage: E[w0] 2121 sage: E.eigenvalues(E[w0]) [q2^2/q1^2, q1/(-q2), q1/(-q2)]
This step is taken care of automatically if one instead calls the specialization
sage.coxeter_groups.CoxeterGroups.Algebras.demazure_lusztig_eigenvectors()
.Now we can compute all eigenvectors:
sage: [E[w] for w in W] [2121 - 121 - 212 + 12 + 21 - 1 - 2 + , -2121 + 212, (q2/(q1-q2))*2121 + (q2/(-q1+q2))*121 + (q2/(-q1+q2))*212 - 12 + ((-q2)/(-q1+q2))*21 + 2, ((-q2^2)/(-q1^2+q1*q2-q2^2))*2121 - 121 + (q2^2/(-q1^2+q1*q2-q2^2))*212 + 21, ((-q1^2-q2^2)/(q1^2-q1*q2+q2^2))*2121 + ((-q1^2-q2^2)/(-q1^2+q1*q2-q2^2))*121 + ((-q2^2)/(-q1^2+q1*q2-q2^2))*212 + (q2^2/(-q1^2+q1*q2-q2^2))*12 - 21 + 1, 2121, (q2/(-q1+q2))*2121 + ((-q2)/(-q1+q2))*121 - 212 + 12, -2121 + 121]
- Y_lambdacheck(lambdacheck)#
Return the Cherednik operators \(Y^{\lambda^\vee}\) for this representation of an affine Hecke algebra.
INPUT:
lambdacheck
– an element of the coroot lattice for this Cartan type
EXAMPLES:
sage: W = WeylGroup(["B",2]) sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K)
We take \(q_2\) and \(q_1\) as eigenvalues to match with the notations of [HST2008]
sage: rho = KW.demazure_lusztig_operators(q2, q1) sage: L = rho.Y().keys() sage: alpha = L.simple_roots() sage: Y0 = rho.Y_lambdacheck(alpha[0]) sage: Y1 = rho.Y_lambdacheck(alpha[1]) sage: Y2 = rho.Y_lambdacheck(alpha[2]) sage: x = KW.monomial(W.an_element()); x 12 sage: Y1(x) ((-q1^2-2*q1*q2-q2^2)/(-q2^2))*2121 + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1*q2^2))*121 + ((q1^2+q1*q2)/(-q2^2))*212 + ((-q1^2)/(-q2^2))*12 sage: Y2(x) ((-q1^4-q1^3*q2-q1*q2^3-q2^4)/(-q1^3*q2))*2121 + ((q1^3+q1^2*q2+q1*q2^2+q2^3)/(-q1^2*q2))*121 + (q2^3/(-q1^3))*12 sage: Y1(Y2(x)) ((q1*q2+q2^2)/q1^2)*212 + ((-q2)/q1)*12 sage: Y2(Y1(x)) ((q1*q2+q2^2)/q1^2)*212 + ((-q2)/q1)*12
The \(Y\) operators commute:
sage: Y0(Y1(x)) - Y1(Y0(x)) 0 sage: Y2(Y1(x)) - Y1(Y2(x)) 0
In the classical root lattice, \(\alpha_0 + \alpha_1 + \alpha_2 = 0\):
sage: Y0(Y1(Y2(x))) 12
Lemma 7.2 of [HST2008]:
sage: w0 = KW.monomial(W.long_element()) sage: rho.Tw(0)(w0) q2 sage: rho.Tw_inverse(1)(w0) 1/q2*212 sage: rho.Tw_inverse(2)(w0) 1/q2*121
Lemma 7.5 of [HST2008]:
sage: Y0(w0) q1^2/q2^2*2121 sage: Y1(w0) (q2/(-q1))*2121 sage: Y2(w0) (q2/(-q1))*2121
Todo
Add more tests
Add tests in type BC affine where the null coroot \(\delta^\vee\) can have non trivial coefficient in term of \(\alpha_0\)
See also
[HST2008] for the formula in terms of \(q_1, q_2\)
- cartan_type()#
Return the Cartan type of
self
.EXAMPLES:
sage: from sage.combinat.root_system.hecke_algebra_representation import HeckeAlgebraRepresentation sage: KW = SymmetricGroup(3).algebra(QQ) sage: action = lambda x,i: KW.monomial(x.apply_simple_reflection(i, side="right")) sage: H = HeckeAlgebraRepresentation(KW, action, CartanType(["A",2]), 1, -1) sage: H.cartan_type() ['A', 2] sage: H = WeylGroup(["A",3]).algebra(QQ).demazure_lusztig_operators(-1,1) sage: H.cartan_type() ['A', 3, 1]
- domain()#
Return the domain of
self
.EXAMPLES:
sage: H = WeylGroup(["A",3]).algebra(QQ).demazure_lusztig_operators(-1,1) sage: H.domain() Algebra of Weyl Group of type ['A', 3] (as a matrix group acting on the ambient space) over Rational Field
- on_basis(x, word, signs=None, scalar=None)#
Action of product of \(T_i\) and \(T_i^{-1}\) on
x
.INPUT:
x
– the index of a basis elementword
– word of indices of generatorssigns
– (default: None) sequence of signs of same length asword
; determines which operators are supposed to be taken as inverses.scalar
– (default: None) scalar to multiply the answer by
EXAMPLES:
sage: from sage.combinat.root_system.hecke_algebra_representation import HeckeAlgebraRepresentation sage: W = SymmetricGroup(3) sage: domain = W.algebra(QQ) sage: action = lambda x,i: domain.monomial(x.apply_simple_reflection(i, side="right")) sage: rho = HeckeAlgebraRepresentation(domain, action, CartanType(["A",2]), 1, -1) sage: rho.on_basis(W.one(), (1,2,1)) (1,3) sage: word = (1,2) sage: u = W.from_reduced_word(word) sage: for w in W: assert rho.on_basis(w, word) == domain.monomial(w*u)
The next example tests the signs:
sage: W = WeylGroup("A3") sage: W.element_class._repr_=lambda x: "".join(str(i) for i in x.reduced_word()) sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = W.algebra(K) sage: rho = KW.demazure_lusztig_operators(q1,q2) sage: w = W.an_element(); w 123 sage: rho.on_basis(w, (1,), signs=(-1,)) -1/q2*1231 + ((q1+q2)/(q1*q2))*123 sage: rho.on_basis(w, (1,), signs=( 1,)) q1*1231 sage: rho.on_basis(w, (1,1), signs=(1,-1)) 123 sage: rho.on_basis(w, (1,1), signs=(-1,1)) 123
- parameters(i)#
Return \(q_1,q_2\) such that \((T_i-q_1)(T_i-q_2) = 0\).
EXAMPLES:
sage: K = QQ['q1,q2'].fraction_field() sage: q1, q2 = K.gens() sage: KW = WeylGroup(["A",3]).algebra(QQ) sage: H = KW.demazure_lusztig_operators(q1,q2) sage: H.parameters(1) (q1, q2) sage: H = KW.demazure_lusztig_operators(1,-1) sage: H.parameters(1) (1, -1)
Todo
At this point, this method is constant. It’s meant as a starting point for implementing parameters depending on the node \(i\) of the Dynkin diagram.
- straighten_word(word)#
Return a tuple of indices of generators after some straightening.
INPUT:
word
– a list/tuple of indices of generators, the index of a generator, or an object with a reduced word method
OUTPUT: a tuple of indices of generators
EXAMPLES:
sage: W = WeylGroup(["A",3]) sage: H = W.algebra(QQ).demazure_lusztig_operators(-1,1) sage: H.straighten_word(1) (1,) sage: H.straighten_word((2,1)) (2, 1) sage: H.straighten_word([2,1]) (2, 1) sage: H.straighten_word(W.an_element()) (1, 2, 3)