Rigged Configurations of \(\mathcal{B}(\infty)\)¶
AUTHORS:
Travis Scrimshaw (2013-04-16): Initial version
- class sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfNonSimplyLacedRC(vct)[source]¶
Bases:
InfinityCrystalOfRiggedConfigurations
Rigged configurations for \(\mathcal{B}(\infty)\) in non-simply-laced types.
- class Element(parent, rigged_partitions=[], **options)[source]¶
Bases:
RCNonSimplyLacedElement
A rigged configuration in \(\mathcal{B}(\infty)\) in non-simply-laced types.
- weight()[source]¶
Return the weight of
self
.EXAMPLES:
sage: vct = CartanType(['C', 3]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: elt = RC(partition_list=[[1],[1,1],[1]], rigging_list=[[0],[-1,-1],[0]]) sage: elt.weight() (-1, -1, 0) sage: vct = CartanType(['F', 4, 1]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: mg = RC.highest_weight_vector() sage: elt = mg.f_string([1,0,3,4,2,2]); ascii_art(elt) -1[ ]-1 0[ ]1 -2[ ][ ]-2 0[ ]1 -1[ ]-1 sage: wt = elt.weight(); wt -Lambda[0] + Lambda[1] - 2*Lambda[2] + 3*Lambda[3] - Lambda[4] - delta sage: al = RC.weight_lattice_realization().simple_roots() sage: wt == -(al[0] + al[1] + 2*al[2] + al[3] + al[4]) True
>>> from sage.all import * >>> vct = CartanType(['C', Integer(3)]).as_folding() >>> RC = crystals.infinity.RiggedConfigurations(vct) >>> elt = RC(partition_list=[[Integer(1)],[Integer(1),Integer(1)],[Integer(1)]], rigging_list=[[Integer(0)],[-Integer(1),-Integer(1)],[Integer(0)]]) >>> elt.weight() (-1, -1, 0) >>> vct = CartanType(['F', Integer(4), Integer(1)]).as_folding() >>> RC = crystals.infinity.RiggedConfigurations(vct) >>> mg = RC.highest_weight_vector() >>> elt = mg.f_string([Integer(1),Integer(0),Integer(3),Integer(4),Integer(2),Integer(2)]); ascii_art(elt) -1[ ]-1 0[ ]1 -2[ ][ ]-2 0[ ]1 -1[ ]-1 >>> wt = elt.weight(); wt -Lambda[0] + Lambda[1] - 2*Lambda[2] + 3*Lambda[3] - Lambda[4] - delta >>> al = RC.weight_lattice_realization().simple_roots() >>> wt == -(al[Integer(0)] + al[Integer(1)] + Integer(2)*al[Integer(2)] + al[Integer(3)] + al[Integer(4)]) True
- from_virtual(vrc)[source]¶
Convert
vrc
in the virtual crystal into a rigged configuration of the original Cartan type.INPUT:
vrc
– a virtual rigged configuration
EXAMPLES:
sage: vct = CartanType(['C', 2]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: elt = RC(partition_list=[[3],[2]], rigging_list=[[-2],[0]]) sage: vrc_elt = RC.to_virtual(elt) sage: ret = RC.from_virtual(vrc_elt); ret -3[ ][ ][ ]-2 -1[ ][ ]0 sage: ret == elt True
>>> from sage.all import * >>> vct = CartanType(['C', Integer(2)]).as_folding() >>> RC = crystals.infinity.RiggedConfigurations(vct) >>> elt = RC(partition_list=[[Integer(3)],[Integer(2)]], rigging_list=[[-Integer(2)],[Integer(0)]]) >>> vrc_elt = RC.to_virtual(elt) >>> ret = RC.from_virtual(vrc_elt); ret <BLANKLINE> -3[ ][ ][ ]-2 <BLANKLINE> -1[ ][ ]0 <BLANKLINE> >>> ret == elt True
- to_virtual(rc)[source]¶
Convert
rc
into a rigged configuration in the virtual crystal.INPUT:
rc
– a rigged configuration element
EXAMPLES:
sage: vct = CartanType(['C', 2]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: mg = RC.highest_weight_vector() sage: elt = mg.f_string([1,2,2,1,1]); elt -3[ ][ ][ ]-2 -1[ ][ ]0 sage: velt = RC.to_virtual(elt); velt -3[ ][ ][ ]-2 -2[ ][ ][ ][ ]0 -3[ ][ ][ ]-2 sage: velt.parent() The infinity crystal of rigged configurations of type ['A', 3]
>>> from sage.all import * >>> vct = CartanType(['C', Integer(2)]).as_folding() >>> RC = crystals.infinity.RiggedConfigurations(vct) >>> mg = RC.highest_weight_vector() >>> elt = mg.f_string([Integer(1),Integer(2),Integer(2),Integer(1),Integer(1)]); elt <BLANKLINE> -3[ ][ ][ ]-2 <BLANKLINE> -1[ ][ ]0 <BLANKLINE> >>> velt = RC.to_virtual(elt); velt <BLANKLINE> -3[ ][ ][ ]-2 <BLANKLINE> -2[ ][ ][ ][ ]0 <BLANKLINE> -3[ ][ ][ ]-2 <BLANKLINE> >>> velt.parent() The infinity crystal of rigged configurations of type ['A', 3]
- virtual()[source]¶
Return the corresponding virtual crystal.
EXAMPLES:
sage: vct = CartanType(['C', 3]).as_folding() sage: RC = crystals.infinity.RiggedConfigurations(vct) sage: RC The infinity crystal of rigged configurations of type ['C', 3] sage: RC.virtual The infinity crystal of rigged configurations of type ['A', 5]
>>> from sage.all import * >>> vct = CartanType(['C', Integer(3)]).as_folding() >>> RC = crystals.infinity.RiggedConfigurations(vct) >>> RC The infinity crystal of rigged configurations of type ['C', 3] >>> RC.virtual The infinity crystal of rigged configurations of type ['A', 5]
- class sage.combinat.rigged_configurations.rc_infinity.InfinityCrystalOfRiggedConfigurations(cartan_type)[source]¶
Bases:
UniqueRepresentation
,Parent
Rigged configuration model for \(\mathcal{B}(\infty)\).
The crystal is generated by the empty rigged configuration with the same crystal structure given by the
highest weight model
except we remove the condition that the resulting rigged configuration needs to be valid when applying \(f_a\).INPUT:
cartan_type
– a Cartan type
EXAMPLES:
For simplicity, we display all of the rigged configurations horizontally:
sage: RiggedConfigurations.options(display='horizontal')
>>> from sage.all import * >>> RiggedConfigurations.options(display='horizontal')
We begin with a simply-laced finite type:
sage: RC = crystals.infinity.RiggedConfigurations(['A', 3]); RC The infinity crystal of rigged configurations of type ['A', 3] sage: RC.options(display='horizontal') sage: mg = RC.highest_weight_vector(); mg (/) (/) (/) sage: elt = mg.f_string([2,1,3,2]); elt 0[ ]0 -2[ ]-1 0[ ]0 -2[ ]-1 sage: elt.e(1) sage: elt.e(3) sage: mg.f_string([2,1,3,2]).e(2) -1[ ]-1 0[ ]1 -1[ ]-1 sage: mg.f_string([2,3,2,1,3,2]) 0[ ]0 -3[ ][ ]-1 -1[ ][ ]-1 -2[ ]-1
>>> from sage.all import * >>> RC = crystals.infinity.RiggedConfigurations(['A', Integer(3)]); RC The infinity crystal of rigged configurations of type ['A', 3] >>> RC.options(display='horizontal') >>> mg = RC.highest_weight_vector(); mg (/) (/) (/) >>> elt = mg.f_string([Integer(2),Integer(1),Integer(3),Integer(2)]); elt 0[ ]0 -2[ ]-1 0[ ]0 -2[ ]-1 >>> elt.e(Integer(1)) >>> elt.e(Integer(3)) >>> mg.f_string([Integer(2),Integer(1),Integer(3),Integer(2)]).e(Integer(2)) -1[ ]-1 0[ ]1 -1[ ]-1 >>> mg.f_string([Integer(2),Integer(3),Integer(2),Integer(1),Integer(3),Integer(2)]) 0[ ]0 -3[ ][ ]-1 -1[ ][ ]-1 -2[ ]-1
Next we consider a non-simply-laced finite type:
sage: RC = crystals.infinity.RiggedConfigurations(['C', 3]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([2,1,3,2]) 0[ ]0 -1[ ]0 0[ ]0 -1[ ]-1 sage: mg.f_string([2,3,2,1,3,2]) 0[ ]-1 -1[ ][ ]-1 -1[ ][ ]0 -1[ ]0
>>> from sage.all import * >>> RC = crystals.infinity.RiggedConfigurations(['C', Integer(3)]) >>> mg = RC.highest_weight_vector() >>> mg.f_string([Integer(2),Integer(1),Integer(3),Integer(2)]) 0[ ]0 -1[ ]0 0[ ]0 -1[ ]-1 >>> mg.f_string([Integer(2),Integer(3),Integer(2),Integer(1),Integer(3),Integer(2)]) 0[ ]-1 -1[ ][ ]-1 -1[ ][ ]0 -1[ ]0
We can construct rigged configurations using a diagram folding of a simply-laced type. This yields an equivalent but distinct crystal:
sage: vct = CartanType(['C', 3]).as_folding() sage: VRC = crystals.infinity.RiggedConfigurations(vct) sage: mg = VRC.highest_weight_vector() sage: mg.f_string([2,1,3,2]) 0[ ]0 -2[ ]-1 0[ ]0 -2[ ]-1 sage: mg.f_string([2,3,2,1,3,2]) -1[ ]-1 -2[ ][ ][ ]-1 -1[ ][ ]0 sage: G = RC.subcrystal(max_depth=5).digraph() sage: VG = VRC.subcrystal(max_depth=5).digraph() sage: G.is_isomorphic(VG, edge_labels=True) True
>>> from sage.all import * >>> vct = CartanType(['C', Integer(3)]).as_folding() >>> VRC = crystals.infinity.RiggedConfigurations(vct) >>> mg = VRC.highest_weight_vector() >>> mg.f_string([Integer(2),Integer(1),Integer(3),Integer(2)]) 0[ ]0 -2[ ]-1 0[ ]0 -2[ ]-1 >>> mg.f_string([Integer(2),Integer(3),Integer(2),Integer(1),Integer(3),Integer(2)]) -1[ ]-1 -2[ ][ ][ ]-1 -1[ ][ ]0 >>> G = RC.subcrystal(max_depth=Integer(5)).digraph() >>> VG = VRC.subcrystal(max_depth=Integer(5)).digraph() >>> G.is_isomorphic(VG, edge_labels=True) True
We can also construct \(B(\infty)\) using rigged configurations in affine types:
sage: RC = crystals.infinity.RiggedConfigurations(['A', 3, 1]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([0,1,2,3,0,1,3]) -1[ ]0 -1[ ]-1 1[ ]1 -1[ ][ ]-1 -1[ ]0 -1[ ]-1 sage: RC = crystals.infinity.RiggedConfigurations(['C', 3, 1]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([1,2,3,0,1,2,3,3,0]) -2[ ][ ]-1 0[ ]1 0[ ]0 -4[ ][ ][ ]-2 0[ ]0 0[ ]-1 sage: RC = crystals.infinity.RiggedConfigurations(['A', 6, 2]) sage: mg = RC.highest_weight_vector() sage: mg.f_string([1,2,3,0,1,2,3,3,0]) 0[ ]-1 0[ ]1 0[ ]0 -4[ ][ ][ ]-2 0[ ]-1 0[ ]1 0[ ]-1
>>> from sage.all import * >>> RC = crystals.infinity.RiggedConfigurations(['A', Integer(3), Integer(1)]) >>> mg = RC.highest_weight_vector() >>> mg.f_string([Integer(0),Integer(1),Integer(2),Integer(3),Integer(0),Integer(1),Integer(3)]) -1[ ]0 -1[ ]-1 1[ ]1 -1[ ][ ]-1 -1[ ]0 -1[ ]-1 >>> RC = crystals.infinity.RiggedConfigurations(['C', Integer(3), Integer(1)]) >>> mg = RC.highest_weight_vector() >>> mg.f_string([Integer(1),Integer(2),Integer(3),Integer(0),Integer(1),Integer(2),Integer(3),Integer(3),Integer(0)]) -2[ ][ ]-1 0[ ]1 0[ ]0 -4[ ][ ][ ]-2 0[ ]0 0[ ]-1 >>> RC = crystals.infinity.RiggedConfigurations(['A', Integer(6), Integer(2)]) >>> mg = RC.highest_weight_vector() >>> mg.f_string([Integer(1),Integer(2),Integer(3),Integer(0),Integer(1),Integer(2),Integer(3),Integer(3),Integer(0)]) 0[ ]-1 0[ ]1 0[ ]0 -4[ ][ ][ ]-2 0[ ]-1 0[ ]1 0[ ]-1
We reset the global options:
sage: RiggedConfigurations.options._reset()
>>> from sage.all import * >>> RiggedConfigurations.options._reset()
- class Element(parent, rigged_partitions=[], **options)[source]¶
Bases:
RiggedConfigurationElement
A rigged configuration in \(\mathcal{B}(\infty)\) in simply-laced types.
- weight()[source]¶
Return the weight of
self
.EXAMPLES:
sage: RC = crystals.infinity.RiggedConfigurations(['A', 3, 1]) sage: elt = RC(partition_list=[[1,1]]*4, rigging_list=[[1,1], [0,0], [0,0], [-1,-1]]) sage: elt.weight() -2*delta
>>> from sage.all import * >>> RC = crystals.infinity.RiggedConfigurations(['A', Integer(3), Integer(1)]) >>> elt = RC(partition_list=[[Integer(1),Integer(1)]]*Integer(4), rigging_list=[[Integer(1),Integer(1)], [Integer(0),Integer(0)], [Integer(0),Integer(0)], [-Integer(1),-Integer(1)]]) >>> elt.weight() -2*delta
- options = Current options for RiggedConfigurations - convention: English - display: vertical - element_ascii_art: True - half_width_boxes_type_B: True[source]¶
- weight_lattice_realization()[source]¶
Return the weight lattice realization used to express the weights of elements in
self
.EXAMPLES:
sage: RC = crystals.infinity.RiggedConfigurations(['A', 2, 1]) sage: RC.weight_lattice_realization() Extended weight lattice of the Root system of type ['A', 2, 1]
>>> from sage.all import * >>> RC = crystals.infinity.RiggedConfigurations(['A', Integer(2), Integer(1)]) >>> RC.weight_lattice_realization() Extended weight lattice of the Root system of type ['A', 2, 1]