# $$k$$-regular sequences#

An introduction and formal definition of $$k$$-regular sequences can be found, for example, on the Wikipedia article k-regular_sequence or in [AS2003].

sage: import logging
sage: logging.basicConfig()

>>> from sage.all import *
>>> import logging
>>> logging.basicConfig()


## Examples#

### Binary sum of digits#

The binary sum of digits $$S(n)$$ of a nonnegative integer $$n$$ satisfies $$S(2n) = S(n)$$ and $$S(2n+1) = S(n) + 1$$. We model this by the following:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: S = Seq2((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [1, 1]])),
....:          left=vector([0, 1]), right=vector([1, 0]))
sage: S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
sage: all(S[n] == sum(n.digits(2)) for n in srange(10))
True

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> S = Seq2((Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(1), Integer(0)], [Integer(1), Integer(1)]])),
...          left=vector([Integer(0), Integer(1)]), right=vector([Integer(1), Integer(0)]))
>>> S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
>>> all(S[n] == sum(n.digits(Integer(2))) for n in srange(Integer(10)))
True


### Number of odd entries in Pascal’s triangle#

Let us consider the number of odd entries in the first $$n$$ rows of Pascals’s triangle:

sage: @cached_function
....: def u(n):
....:     if n <= 1:
....:         return n
....:     return 2 * u(n // 2) + u((n+1) // 2)
sage: tuple(u(n) for n in srange(10))
(0, 1, 3, 5, 9, 11, 15, 19, 27, 29)

>>> from sage.all import *
>>> @cached_function
... def u(n):
...     if n <= Integer(1):
...         return n
...     return Integer(2) * u(n // Integer(2)) + u((n+Integer(1)) // Integer(2))
>>> tuple(u(n) for n in srange(Integer(10)))
(0, 1, 3, 5, 9, 11, 15, 19, 27, 29)


There is a $$2$$-regular sequence describing the numbers above as well:

sage: U = Seq2((Matrix([[3, 0], [2, 1]]), Matrix([[2, 1], [0, 3]])),
....:          left=vector([1, 0]), right=vector([0, 1]))
sage: all(U[n] == u(n) for n in srange(30))
True

>>> from sage.all import *
>>> U = Seq2((Matrix([[Integer(3), Integer(0)], [Integer(2), Integer(1)]]), Matrix([[Integer(2), Integer(1)], [Integer(0), Integer(3)]])),
...          left=vector([Integer(1), Integer(0)]), right=vector([Integer(0), Integer(1)]))
>>> all(U[n] == u(n) for n in srange(Integer(30)))
True


## Various#

AUTHORS:

• Daniel Krenn (2016, 2021)

• Gabriel F. Lipnik (2021)

ACKNOWLEDGEMENT:

• Daniel Krenn is supported by the Austrian Science Fund (FWF): P 24644-N26.

• Gabriel F. Lipnik is supported by the Austrian Science Fund (FWF): W 1230.

## Classes and Methods#

exception sage.combinat.regular_sequence.DegeneratedSequenceError[source]#

Bases: RuntimeError

Exception raised if a degenerated sequence (see is_degenerated()) is detected.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: Seq2((Matrix([2]), Matrix([3])), vector([1]), vector([1]))
Traceback (most recent call last):
...
DegeneratedSequenceError: degenerated sequence: mu[0]*right != right.
Using such a sequence might lead to wrong results.
You can use 'allow_degenerated_sequence=True' followed
by a call of method .regenerated() for correcting this.

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> Seq2((Matrix([Integer(2)]), Matrix([Integer(3)])), vector([Integer(1)]), vector([Integer(1)]))
Traceback (most recent call last):
...
DegeneratedSequenceError: degenerated sequence: mu[0]*right != right.
Using such a sequence might lead to wrong results.
You can use 'allow_degenerated_sequence=True' followed
by a call of method .regenerated() for correcting this.

class sage.combinat.regular_sequence.RecurrenceParser(k, coefficient_ring)[source]#

Bases: object

A parser for recurrence relations that allow the construction of a $$k$$-linear representation for the sequence satisfying these recurrence relations.

This is used by RegularSequenceRing.from_recurrence() to construct a RegularSequence.

ind(M, m, ll, uu)[source]#

Determine the index operator corresponding to the recursive sequence as defined in [HKL2022].

INPUT:

• M, m – parameters of the recursive sequences, see [HKL2022], Definition 3.1

• ll, uu – parameters of the resulting linear representation, see [HKL2022], Theorem A

OUTPUT:

A dictionary which maps both row numbers to subsequence parameters and vice versa, i.e.,

• ind[i] – a pair (j, d) representing the sequence $$x(k^j n + d)$$ in the $$i$$-th component (0-based) of the resulting linear representation,

• ind[(j, d)] – the (0-based) row number of the sequence $$x(k^j n + d)$$ in the linear representation.

EXAMPLES:

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.ind(3, 1, -3, 3)
{(0, 0): 0, (1, -1): 3, (1, -2): 2, (1, -3): 1,
(1, 0): 4, (1, 1): 5, (1, 2): 6, (1, 3): 7, (2, -1): 10,
(2, -2): 9, (2, -3): 8, (2, 0): 11, (2, 1): 12, (2, 2): 13,
(2, 3): 14, (2, 4): 15, (2, 5): 16, 0: (0, 0), 1: (1, -3),
10: (2, -1), 11: (2, 0), 12: (2, 1), 13: (2, 2), 14: (2, 3),
15: (2, 4), 16: (2, 5), 2: (1, -2), 3: (1, -1), 4: (1, 0),
5: (1, 1), 6: (1, 2), 7: (1, 3), 8: (2, -3), 9: (2, -2)}

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> RP.ind(Integer(3), Integer(1), -Integer(3), Integer(3))
{(0, 0): 0, (1, -1): 3, (1, -2): 2, (1, -3): 1,
(1, 0): 4, (1, 1): 5, (1, 2): 6, (1, 3): 7, (2, -1): 10,
(2, -2): 9, (2, -3): 8, (2, 0): 11, (2, 1): 12, (2, 2): 13,
(2, 3): 14, (2, 4): 15, (2, 5): 16, 0: (0, 0), 1: (1, -3),
10: (2, -1), 11: (2, 0), 12: (2, 1), 13: (2, 2), 14: (2, 3),
15: (2, 4), 16: (2, 5), 2: (1, -2), 3: (1, -1), 4: (1, 0),
5: (1, 1), 6: (1, 2), 7: (1, 3), 8: (2, -3), 9: (2, -2)}

left(recurrence_rules)[source]#

Construct the vector left of the linear representation of recursive sequences.

INPUT:

• recurrence_rules – a namedtuple generated by parameters(); it only needs to contain a field dim (a positive integer)

OUTPUT: a vector

EXAMPLES:

sage: from collections import namedtuple
sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RRD = namedtuple('recurrence_rules_dim',
....:                  ['dim', 'inhomogeneities'])
sage: recurrence_rules = RRD(dim=5, inhomogeneities={})
sage: RP.left(recurrence_rules)
(1, 0, 0, 0, 0)

>>> from sage.all import *
>>> from collections import namedtuple
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> RRD = namedtuple('recurrence_rules_dim',
...                  ['dim', 'inhomogeneities'])
>>> recurrence_rules = RRD(dim=Integer(5), inhomogeneities={})
>>> RP.left(recurrence_rules)
(1, 0, 0, 0, 0)

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: RRD = namedtuple('recurrence_rules_dim',
....:                  ['M', 'm', 'll', 'uu', 'dim', 'inhomogeneities'])
sage: recurrence_rules = RRD(M=3, m=2, ll=0, uu=9, dim=5,
sage: RP.left(recurrence_rules)
(1, 0, 0, 0, 0, 0, 0, 0)

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> RRD = namedtuple('recurrence_rules_dim',
...                  ['M', 'm', 'll', 'uu', 'dim', 'inhomogeneities'])
>>> recurrence_rules = RRD(M=Integer(3), m=Integer(2), ll=Integer(0), uu=Integer(9), dim=Integer(5),
>>> RP.left(recurrence_rules)
(1, 0, 0, 0, 0, 0, 0, 0)

matrix(recurrence_rules, rem, correct_offset=True)[source]#

Construct the matrix for remainder rem of the linear representation of the sequence represented by recurrence_rules.

INPUT:

• recurrence_rules – a namedtuple generated by parameters()

• rem – an integer between 0 and k - 1

• correct_offset – (default: True) a boolean. If True, then the resulting linear representation has no offset. See [HKL2022] for more information.

OUTPUT: a matrix

EXAMPLES:

The following example illustrates how the coefficients in the right-hand sides of the recurrence relations correspond to the entries of the matrices.

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: M, m, coeffs, initial_values = RP.parse_recurrence([
....:     f(8*n) == -1*f(2*n - 1) + 1*f(2*n + 1),
....:     f(8*n + 1) == -11*f(2*n - 1) + 10*f(2*n) + 11*f(2*n + 1),
....:     f(8*n + 2) == -21*f(2*n - 1) + 20*f(2*n) + 21*f(2*n + 1),
....:     f(8*n + 3) == -31*f(2*n - 1) + 30*f(2*n) + 31*f(2*n + 1),
....:     f(8*n + 4) == -41*f(2*n - 1) + 40*f(2*n) + 41*f(2*n + 1),
....:     f(8*n + 5) == -51*f(2*n - 1) + 50*f(2*n) + 51*f(2*n + 1),
....:     f(8*n + 6) == -61*f(2*n - 1) + 60*f(2*n) + 61*f(2*n + 1),
....:     f(8*n + 7) == -71*f(2*n - 1) + 70*f(2*n) + 71*f(2*n + 1),
....:     f(0) == 0, f(1) == 1, f(2) == 2, f(3) == 3, f(4) == 4,
....:     f(5) == 5, f(6) == 6, f(7) == 7], f, n)
sage: rules = RP.parameters(
....:     M, m, coeffs, initial_values, 0)
sage: RP.matrix(rules, 0, False)
[  0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0]
[  0 -51  50  51   0   0   0   0   0   0   0   0   0   0   0   0   0]
[  0 -61  60  61   0   0   0   0   0   0   0   0   0   0   0   0   0]
[  0 -71  70  71   0   0   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0  -1   0   1   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -11  10  11   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -21  20  21   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -31  30  31   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -41  40  41   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -51  50  51   0   0   0   0   0   0   0   0   0   0   0]
sage: RP.matrix(rules, 1, False)
[  0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1]
[  0   0   0 -11  10  11   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -21  20  21   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -31  30  31   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -41  40  41   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -51  50  51   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -61  60  61   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -71  70  71   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0  -1   0   1   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0 -11  10  11   0   0   0   0   0   0   0   0   0]

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> var('n')
n
>>> function('f')
f
>>> M, m, coeffs, initial_values = RP.parse_recurrence([
...     f(Integer(8)*n) == -Integer(1)*f(Integer(2)*n - Integer(1)) + Integer(1)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(1)) == -Integer(11)*f(Integer(2)*n - Integer(1)) + Integer(10)*f(Integer(2)*n) + Integer(11)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(2)) == -Integer(21)*f(Integer(2)*n - Integer(1)) + Integer(20)*f(Integer(2)*n) + Integer(21)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(3)) == -Integer(31)*f(Integer(2)*n - Integer(1)) + Integer(30)*f(Integer(2)*n) + Integer(31)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(4)) == -Integer(41)*f(Integer(2)*n - Integer(1)) + Integer(40)*f(Integer(2)*n) + Integer(41)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(5)) == -Integer(51)*f(Integer(2)*n - Integer(1)) + Integer(50)*f(Integer(2)*n) + Integer(51)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(6)) == -Integer(61)*f(Integer(2)*n - Integer(1)) + Integer(60)*f(Integer(2)*n) + Integer(61)*f(Integer(2)*n + Integer(1)),
...     f(Integer(8)*n + Integer(7)) == -Integer(71)*f(Integer(2)*n - Integer(1)) + Integer(70)*f(Integer(2)*n) + Integer(71)*f(Integer(2)*n + Integer(1)),
...     f(Integer(0)) == Integer(0), f(Integer(1)) == Integer(1), f(Integer(2)) == Integer(2), f(Integer(3)) == Integer(3), f(Integer(4)) == Integer(4),
...     f(Integer(5)) == Integer(5), f(Integer(6)) == Integer(6), f(Integer(7)) == Integer(7)], f, n)
>>> rules = RP.parameters(
...     M, m, coeffs, initial_values, Integer(0))
>>> RP.matrix(rules, Integer(0), False)
[  0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0]
[  0 -51  50  51   0   0   0   0   0   0   0   0   0   0   0   0   0]
[  0 -61  60  61   0   0   0   0   0   0   0   0   0   0   0   0   0]
[  0 -71  70  71   0   0   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0  -1   0   1   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -11  10  11   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -21  20  21   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -31  30  31   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -41  40  41   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -51  50  51   0   0   0   0   0   0   0   0   0   0   0]
>>> RP.matrix(rules, Integer(1), False)
[  0   0   0   0   0   1   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   0]
[  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1]
[  0   0   0 -11  10  11   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -21  20  21   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -31  30  31   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -41  40  41   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -51  50  51   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -61  60  61   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0 -71  70  71   0   0   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0  -1   0   1   0   0   0   0   0   0   0   0   0]
[  0   0   0   0   0 -11  10  11   0   0   0   0   0   0   0   0   0]


Stern–Brocot Sequence:

sage: SB_rules = RP.parameters(
....:     1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1},
....:     {0: 0, 1: 1, 2: 1}, 0)
sage: RP.matrix(SB_rules, 0)
[1 0 0]
[1 1 0]
[0 1 0]
sage: RP.matrix(SB_rules, 1)
[1 1 0]
[0 1 0]
[0 1 1]

>>> from sage.all import *
>>> SB_rules = RP.parameters(
...     Integer(1), Integer(0), {(Integer(0), Integer(0)): Integer(1), (Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(1)): Integer(1)},
...     {Integer(0): Integer(0), Integer(1): Integer(1), Integer(2): Integer(1)}, Integer(0))
>>> RP.matrix(SB_rules, Integer(0))
[1 0 0]
[1 1 0]
[0 1 0]
>>> RP.matrix(SB_rules, Integer(1))
[1 1 0]
[0 1 0]
[0 1 1]


Number of Unbordered Factors in the Thue–Morse Sequence:

sage: M, m, coeffs, initial_values = RP.parse_recurrence([
....:     f(8*n) == 2*f(4*n),
....:     f(8*n + 1) == f(4*n + 1),
....:     f(8*n + 2) == f(4*n + 1) + f(4*n + 3),
....:     f(8*n + 3) == -f(4*n + 1) + f(4*n + 2),
....:     f(8*n + 4) == 2*f(4*n + 2),
....:     f(8*n + 5) == f(4*n + 3),
....:     f(8*n + 6) == -f(4*n + 1) + f(4*n + 2) + f(4*n + 3),
....:     f(8*n + 7) == 2*f(4*n + 1) + f(4*n + 3),
....:     f(0) == 1, f(1) == 2, f(2) == 2, f(3) == 4, f(4) == 2,
....:     f(5) == 4, f(6) == 6, f(7) == 0, f(8) == 4, f(9) == 4,
....:     f(10) == 4, f(11) == 4, f(12) == 12, f(13) == 0, f(14) == 4,
....:     f(15) == 4, f(16) == 8, f(17) == 4, f(18) == 8, f(19) == 0,
....:     f(20) == 8, f(21) == 4, f(22) == 4, f(23) == 8], f, n)
sage: UB_rules = RP.parameters(
....:     M, m, coeffs, initial_values, 3)
sage: RP.matrix(UB_rules, 0)
[ 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  2  0  0  0  0  0  0  0  0  0 -1  0  0]
[ 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  1  0  1  0  0  0  0  0  0 -4  0  0]
[ 0  0  0  0 -1  1  0  0  0  0  0  0  0  4  2  0]
[ 0  0  0  0  0  2  0  0  0  0  0  0  0 -2  0  0]
[ 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0 -1  1  1  0  0  0  0  0  0  2  2  0]
[ 0  0  0  0  2  0  1  0  0  0  0  0  0 -8 -4 -4]
[ 0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0]
sage: RP.matrix(UB_rules, 1)
[ 0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  2  0  0  0  0  0  0  0 -2  0  0]
[ 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0 -1  1  1  0  0  0  0  0  0  2  2  0]
[ 0  0  0  0  2  0  1  0  0  0  0  0  0 -8 -4 -4]
[ 0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0  1  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0 -1  1  0  0  0  2  0  0]
[ 0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

>>> from sage.all import *
>>> M, m, coeffs, initial_values = RP.parse_recurrence([
...     f(Integer(8)*n) == Integer(2)*f(Integer(4)*n),
...     f(Integer(8)*n + Integer(1)) == f(Integer(4)*n + Integer(1)),
...     f(Integer(8)*n + Integer(2)) == f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(3)),
...     f(Integer(8)*n + Integer(3)) == -f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(2)),
...     f(Integer(8)*n + Integer(4)) == Integer(2)*f(Integer(4)*n + Integer(2)),
...     f(Integer(8)*n + Integer(5)) == f(Integer(4)*n + Integer(3)),
...     f(Integer(8)*n + Integer(6)) == -f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(2)) + f(Integer(4)*n + Integer(3)),
...     f(Integer(8)*n + Integer(7)) == Integer(2)*f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(3)),
...     f(Integer(0)) == Integer(1), f(Integer(1)) == Integer(2), f(Integer(2)) == Integer(2), f(Integer(3)) == Integer(4), f(Integer(4)) == Integer(2),
...     f(Integer(5)) == Integer(4), f(Integer(6)) == Integer(6), f(Integer(7)) == Integer(0), f(Integer(8)) == Integer(4), f(Integer(9)) == Integer(4),
...     f(Integer(10)) == Integer(4), f(Integer(11)) == Integer(4), f(Integer(12)) == Integer(12), f(Integer(13)) == Integer(0), f(Integer(14)) == Integer(4),
...     f(Integer(15)) == Integer(4), f(Integer(16)) == Integer(8), f(Integer(17)) == Integer(4), f(Integer(18)) == Integer(8), f(Integer(19)) == Integer(0),
...     f(Integer(20)) == Integer(8), f(Integer(21)) == Integer(4), f(Integer(22)) == Integer(4), f(Integer(23)) == Integer(8)], f, n)
>>> UB_rules = RP.parameters(
...     M, m, coeffs, initial_values, Integer(3))
>>> RP.matrix(UB_rules, Integer(0))
[ 0  1  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  1  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  2  0  0  0  0  0  0  0  0  0 -1  0  0]
[ 0  0  0  0  1  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  1  0  1  0  0  0  0  0  0 -4  0  0]
[ 0  0  0  0 -1  1  0  0  0  0  0  0  0  4  2  0]
[ 0  0  0  0  0  2  0  0  0  0  0  0  0 -2  0  0]
[ 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0 -1  1  1  0  0  0  0  0  0  2  2  0]
[ 0  0  0  0  2  0  1  0  0  0  0  0  0 -8 -4 -4]
[ 0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  1  0]
>>> RP.matrix(UB_rules, Integer(1))
[ 0  0  1  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  1  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  2  0  0  0  0  0  0  0 -2  0  0]
[ 0  0  0  0  0  0  1  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0 -1  1  1  0  0  0  0  0  0  2  2  0]
[ 0  0  0  0  2  0  1  0  0  0  0  0  0 -8 -4 -4]
[ 0  0  0  0  0  0  0  2  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  1  0  1  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0 -1  1  0  0  0  2  0  0]
[ 0  0  0  0  0  0  0  0  0  2  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  1  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  1  0  0]
[ 0  0  0  0  0  0  0  0  0  0  0  0  0  0  0  0]

parameters(M, m, coeffs, initial_values, offset=0, inhomogeneities={})[source]#

Determine parameters from recurrence relations as admissible in RegularSequenceRing.from_recurrence().

INPUT:

All parameters are explained in the high-level method RegularSequenceRing.from_recurrence().

OUTPUT: a namedtuple recurrence_rules consisting of

• M, m, l, u, offset – parameters of the recursive sequences, see [HKL2022], Definition 3.1

• ll, uu, n1, dim – parameters and dimension of the resulting linear representation, see [HKL2022], Theorem A

• coeffs – a dictionary mapping (r, j) to the coefficients $$c_{r, j}$$ as given in [HKL2022], Equation (3.1). If coeffs[(r, j)] is not given for some r and j, then it is assumed to be zero.

• initial_values – a dictionary mapping integers n to the n-th value of the sequence

• inhomogeneities – a dictionary mapping integers r to the inhomogeneity $$g_r$$ as given in [HKL2022], Corollary D.

EXAMPLES:

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.parameters(2, 1,
....: {(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
....: (1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12,
....: (3, 0): 10, (3, 1): 11}, {0: 1, 1: 2, 2: 1, 3: 4}, 0, {0: 1})
recurrence_rules(M=2, m=1, l=-2, u=1, ll=-6, uu=3, dim=14,
coeffs={(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
(1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12,
(3, 0): 10, (3, 1): 11}, initial_values={0: 1, 1: 2, 2: 1, 3: 4,
4: 13, 5: 30, 6: 48, 7: 66, 8: 77, 9: 208, 10: 340, 11: 472,
12: 220, 13: 600, -6: 0, -5: 0, -4: 0, -3: 0, -2: 0, -1: 0},
offset=1, n1=3, inhomogeneities={0: 2-regular sequence 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, ...})

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> RP.parameters(Integer(2), Integer(1),
... {(Integer(0), -Integer(2)): Integer(3), (Integer(0), Integer(0)): Integer(1), (Integer(0), Integer(1)): Integer(2), (Integer(1), -Integer(2)): Integer(6), (Integer(1), Integer(0)): Integer(4),
... (Integer(1), Integer(1)): Integer(5), (Integer(2), -Integer(2)): Integer(9), (Integer(2), Integer(0)): Integer(7), (Integer(2), Integer(1)): Integer(8), (Integer(3), -Integer(2)): Integer(12),
... (Integer(3), Integer(0)): Integer(10), (Integer(3), Integer(1)): Integer(11)}, {Integer(0): Integer(1), Integer(1): Integer(2), Integer(2): Integer(1), Integer(3): Integer(4)}, Integer(0), {Integer(0): Integer(1)})
recurrence_rules(M=2, m=1, l=-2, u=1, ll=-6, uu=3, dim=14,
coeffs={(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
(1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12,
(3, 0): 10, (3, 1): 11}, initial_values={0: 1, 1: 2, 2: 1, 3: 4,
4: 13, 5: 30, 6: 48, 7: 66, 8: 77, 9: 208, 10: 340, 11: 472,
12: 220, 13: 600, -6: 0, -5: 0, -4: 0, -3: 0, -2: 0, -1: 0},
offset=1, n1=3, inhomogeneities={0: 2-regular sequence 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, ...})

parse_direct_arguments(M, m, coeffs, initial_values)[source]#

Check whether the direct arguments as admissible in RegularSequenceRing.from_recurrence() are valid.

INPUT:

All parameters are explained in the high-level method RegularSequenceRing.from_recurrence().

OUTPUT: a tuple consisting of the input parameters

EXAMPLES:

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.parse_direct_arguments(2, 1,
....:     {(0, -2): 3, (0, 0): 1, (0, 1): 2,
....:      (1, -2): 6, (1, 0): 4, (1, 1): 5,
....:      (2, -2): 9, (2, 0): 7, (2, 1): 8,
....:      (3, -2): 12, (3, 0): 10, (3, 1): 11},
....:     {0: 1, 1: 2, 2: 1})
(2, 1, {(0, -2): 3, (0, 0): 1, (0, 1): 2,
(1, -2): 6, (1, 0): 4, (1, 1): 5,
(2, -2): 9, (2, 0): 7, (2, 1): 8,
(3, -2): 12, (3, 0): 10, (3, 1): 11},
{0: 1, 1: 2, 2: 1})

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> RP.parse_direct_arguments(Integer(2), Integer(1),
...     {(Integer(0), -Integer(2)): Integer(3), (Integer(0), Integer(0)): Integer(1), (Integer(0), Integer(1)): Integer(2),
...      (Integer(1), -Integer(2)): Integer(6), (Integer(1), Integer(0)): Integer(4), (Integer(1), Integer(1)): Integer(5),
...      (Integer(2), -Integer(2)): Integer(9), (Integer(2), Integer(0)): Integer(7), (Integer(2), Integer(1)): Integer(8),
...      (Integer(3), -Integer(2)): Integer(12), (Integer(3), Integer(0)): Integer(10), (Integer(3), Integer(1)): Integer(11)},
...     {Integer(0): Integer(1), Integer(1): Integer(2), Integer(2): Integer(1)})
(2, 1, {(0, -2): 3, (0, 0): 1, (0, 1): 2,
(1, -2): 6, (1, 0): 4, (1, 1): 5,
(2, -2): 9, (2, 0): 7, (2, 1): 8,
(3, -2): 12, (3, 0): 10, (3, 1): 11},
{0: 1, 1: 2, 2: 1})


Stern–Brocot Sequence:

sage: RP.parse_direct_arguments(1, 0,
....:     {(0, 0): 1, (1, 0): 1, (1, 1): 1},
....:     {0: 0, 1: 1})
(1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1}, {0: 0, 1: 1})

>>> from sage.all import *
>>> RP.parse_direct_arguments(Integer(1), Integer(0),
...     {(Integer(0), Integer(0)): Integer(1), (Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(1)): Integer(1)},
...     {Integer(0): Integer(0), Integer(1): Integer(1)})
(1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1}, {0: 0, 1: 1})

parse_recurrence(equations, function, var)[source]#

Parse recurrence relations as admissible in RegularSequenceRing.from_recurrence().

INPUT:

All parameters are explained in the high-level method RegularSequenceRing.from_recurrence().

OUTPUT: a tuple consisting of

EXAMPLES:

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: RP.parse_recurrence([
....:     f(4*n) == f(2*n) + 2*f(2*n + 1) + 3*f(2*n - 2),
....:     f(4*n + 1) == 4*f(2*n) + 5*f(2*n + 1) + 6*f(2*n - 2),
....:     f(4*n + 2) == 7*f(2*n) + 8*f(2*n + 1) + 9*f(2*n - 2),
....:     f(4*n + 3) == 10*f(2*n) + 11*f(2*n + 1) + 12*f(2*n - 2),
....:     f(0) == 1, f(1) == 2, f(2) == 1], f, n)
(2, 1, {(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
(1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12, (3, 0): 10,
(3, 1): 11}, {0: 1, 1: 2, 2: 1})

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> var('n')
n
>>> function('f')
f
>>> RP.parse_recurrence([
...     f(Integer(4)*n) == f(Integer(2)*n) + Integer(2)*f(Integer(2)*n + Integer(1)) + Integer(3)*f(Integer(2)*n - Integer(2)),
...     f(Integer(4)*n + Integer(1)) == Integer(4)*f(Integer(2)*n) + Integer(5)*f(Integer(2)*n + Integer(1)) + Integer(6)*f(Integer(2)*n - Integer(2)),
...     f(Integer(4)*n + Integer(2)) == Integer(7)*f(Integer(2)*n) + Integer(8)*f(Integer(2)*n + Integer(1)) + Integer(9)*f(Integer(2)*n - Integer(2)),
...     f(Integer(4)*n + Integer(3)) == Integer(10)*f(Integer(2)*n) + Integer(11)*f(Integer(2)*n + Integer(1)) + Integer(12)*f(Integer(2)*n - Integer(2)),
...     f(Integer(0)) == Integer(1), f(Integer(1)) == Integer(2), f(Integer(2)) == Integer(1)], f, n)
(2, 1, {(0, -2): 3, (0, 0): 1, (0, 1): 2, (1, -2): 6, (1, 0): 4,
(1, 1): 5, (2, -2): 9, (2, 0): 7, (2, 1): 8, (3, -2): 12, (3, 0): 10,
(3, 1): 11}, {0: 1, 1: 2, 2: 1})


Stern–Brocot Sequence:

sage: RP.parse_recurrence([
....:    f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1),
....:    f(0) == 0, f(1) == 1], f, n)
(1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1}, {0: 0, 1: 1})

>>> from sage.all import *
>>> RP.parse_recurrence([
...    f(Integer(2)*n) == f(n), f(Integer(2)*n + Integer(1)) == f(n) + f(n + Integer(1)),
...    f(Integer(0)) == Integer(0), f(Integer(1)) == Integer(1)], f, n)
(1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1}, {0: 0, 1: 1})

right(recurrence_rules)[source]#

Construct the vector right of the linear representation of the sequence induced by recurrence_rules.

INPUT:

OUTPUT: a vector

shifted_inhomogeneities(recurrence_rules)[source]#

Return a dictionary of all needed shifted inhomogeneities as described in the proof of Corollary D in [HKL2022].

INPUT:

OUTPUT:

A dictionary mapping $$r$$ to the regular sequence $$\sum_i g_r(n + i)$$ for $$g_r$$ as given in [HKL2022], Corollary D, and $$i$$ between $$\lfloor\ell'/k^{M}\rfloor$$ and $$\lfloor (k^{M-1} - k^{m} + u')/k^{M}\rfloor + 1$$; see [HKL2022], proof of Corollary D. The first blocks of the corresponding vector-valued sequence (obtained from its linear representation) correspond to the sequences $$g_r(n + i)$$ where $$i$$ is as in the sum above; the remaining blocks consist of other shifts which are required for the regular sequence.

EXAMPLES:

sage: from collections import namedtuple
sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: S = Seq2((Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [1, 1]])),
....:          left=vector([0, 1]), right=vector([1, 0]))
sage: S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
sage: RR = namedtuple('recurrence_rules',
....:                  ['M', 'm', 'll', 'uu', 'inhomogeneities'])
sage: recurrence_rules = RR(M=3, m=0, ll=-14, uu=14,
....:                       inhomogeneities={0: S, 1: S})
sage: SI = RP.shifted_inhomogeneities(recurrence_rules)
sage: SI
{0: 2-regular sequence 4, 5, 7, 9, 11, 11, 11, 12, 13, 13, ...,
1: 2-regular sequence 4, 5, 7, 9, 11, 11, 11, 12, 13, 13, ...}

>>> from sage.all import *
>>> from collections import namedtuple
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> S = Seq2((Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(1), Integer(0)], [Integer(1), Integer(1)]])),
...          left=vector([Integer(0), Integer(1)]), right=vector([Integer(1), Integer(0)]))
>>> S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
>>> RR = namedtuple('recurrence_rules',
...                  ['M', 'm', 'll', 'uu', 'inhomogeneities'])
>>> recurrence_rules = RR(M=Integer(3), m=Integer(0), ll=-Integer(14), uu=Integer(14),
...                       inhomogeneities={Integer(0): S, Integer(1): S})
>>> SI = RP.shifted_inhomogeneities(recurrence_rules)
>>> SI
{0: 2-regular sequence 4, 5, 7, 9, 11, 11, 11, 12, 13, 13, ...,
1: 2-regular sequence 4, 5, 7, 9, 11, 11, 11, 12, 13, 13, ...}


The first blocks of the corresponding vector-valued sequence correspond to the corresponding shifts of the inhomogeneity. In this particular case, there are no other blocks:

sage: lower = -2
sage: upper = 3
sage: SI[0].dimension() == S.dimension() * (upper - lower + 1)
True
sage: all(
....:     Seq2(
....:         SI[0].mu,
....:         vector((i - lower)*[0, 0] + list(S.left) + (upper - i)*[0, 0]),
....:         SI[0].right)
....:     == S.subsequence(1, i)
....:     for i in range(lower, upper+1))
True

>>> from sage.all import *
>>> lower = -Integer(2)
>>> upper = Integer(3)
>>> SI[Integer(0)].dimension() == S.dimension() * (upper - lower + Integer(1))
True
>>> all(
...     Seq2(
...         SI[Integer(0)].mu,
...         vector((i - lower)*[Integer(0), Integer(0)] + list(S.left) + (upper - i)*[Integer(0), Integer(0)]),
...         SI[Integer(0)].right)
...     == S.subsequence(Integer(1), i)
...     for i in range(lower, upper+Integer(1)))
True

v_eval_n(recurrence_rules, n)[source]#

Return the vector $$v(n)$$ as given in [HKL2022], Theorem A.

INPUT:

OUTPUT: a vector

EXAMPLES:

Stern–Brocot Sequence:

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: SB_rules = RP.parameters(
....:     1, 0, {(0, 0): 1, (1, 0): 1, (1, 1): 1},
....:     {0: 0, 1: 1, 2: 1}, 0)
sage: RP.v_eval_n(SB_rules, 0)
(0, 1, 1)

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> SB_rules = RP.parameters(
...     Integer(1), Integer(0), {(Integer(0), Integer(0)): Integer(1), (Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(1)): Integer(1)},
...     {Integer(0): Integer(0), Integer(1): Integer(1), Integer(2): Integer(1)}, Integer(0))
>>> RP.v_eval_n(SB_rules, Integer(0))
(0, 1, 1)

values(M, m, l, u, ll, coeffs, initial_values, last_value_needed, offset, inhomogeneities)[source]#

Determine enough values of the corresponding recursive sequence by applying the recurrence relations given in RegularSequenceRing.from_recurrence() to the values given in initial_values.

INPUT:

• M, m, l, u, offset – parameters of the recursive sequences, see [HKL2022], Definition 3.1

• ll – parameter of the resulting linear representation, see [HKL2022], Theorem A

• coeffs – a dictionary where coeffs[(r, j)] is the coefficient $$c_{r,j}$$ as given in RegularSequenceRing.from_recurrence(). If coeffs[(r, j)] is not given for some r and j, then it is assumed to be zero.

• initial_values – a dictionary mapping integers n to the n-th value of the sequence

• last_value_needed – last initial value which is needed to determine the linear representation

• inhomogeneities – a dictionary mapping integers r to the inhomogeneity $$g_r$$ as given in [HKL2022], Corollary D.

OUTPUT:

A dictionary mapping integers n to the n-th value of the sequence for all n up to last_value_needed.

EXAMPLES:

Stern–Brocot Sequence:

sage: from sage.combinat.regular_sequence import RecurrenceParser
sage: RP = RecurrenceParser(2, ZZ)
sage: RP.values(M=1, m=0, l=0, u=1, ll=0,
....:     coeffs={(0, 0): 1, (1, 0): 1, (1, 1): 1},
....:     initial_values={0: 0, 1: 1, 2: 1}, last_value_needed=20,
....:     offset=0, inhomogeneities={})
{0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 3, 6: 2, 7: 3, 8: 1, 9: 4, 10: 3,
11: 5, 12: 2, 13: 5, 14: 3, 15: 4, 16: 1, 17: 5, 18: 4, 19: 7, 20: 3}

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import RecurrenceParser
>>> RP = RecurrenceParser(Integer(2), ZZ)
>>> RP.values(M=Integer(1), m=Integer(0), l=Integer(0), u=Integer(1), ll=Integer(0),
...     coeffs={(Integer(0), Integer(0)): Integer(1), (Integer(1), Integer(0)): Integer(1), (Integer(1), Integer(1)): Integer(1)},
...     initial_values={Integer(0): Integer(0), Integer(1): Integer(1), Integer(2): Integer(1)}, last_value_needed=Integer(20),
...     offset=Integer(0), inhomogeneities={})
{0: 0, 1: 1, 2: 1, 3: 2, 4: 1, 5: 3, 6: 2, 7: 3, 8: 1, 9: 4, 10: 3,
11: 5, 12: 2, 13: 5, 14: 3, 15: 4, 16: 1, 17: 5, 18: 4, 19: 7, 20: 3}

class sage.combinat.regular_sequence.RegularSequence(parent, mu, left=None, right=None)[source]#

A $$k$$-regular sequence.

INPUT:

• parent – an instance of RegularSequenceRing

• mu – a family of square matrices, all of which have the same dimension. The indices of this family are $$0,...,k-1$$. mu may be a list or tuple of cardinality $$k$$ as well. See also mu().

• left – (default: None) a vector. When evaluating the sequence, this vector is multiplied from the left to the matrix product. If None, then this multiplication is skipped.

• right – (default: None) a vector. When evaluating the sequence, this vector is multiplied from the right to the matrix product. If None, then this multiplication is skipped.

When created via the parent RegularSequenceRing, then the following option is available.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: S = Seq2((Matrix([[3, 0], [6, 1]]), Matrix([[0, 1], [-6, 5]])),
....:          vector([1, 0]), vector([0, 1])); S
2-regular sequence 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> S = Seq2((Matrix([[Integer(3), Integer(0)], [Integer(6), Integer(1)]]), Matrix([[Integer(0), Integer(1)], [-Integer(6), Integer(5)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)])); S
2-regular sequence 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, ...


We can access the coefficients of a sequence by

sage: S[5]
11

>>> from sage.all import *
>>> S[Integer(5)]
11


or iterating over the first, say $$10$$, by

sage: from itertools import islice
sage: list(islice(S, 10))
[0, 1, 3, 5, 9, 11, 15, 19, 27, 29]

>>> from sage.all import *
>>> from itertools import islice
>>> list(islice(S, Integer(10)))
[0, 1, 3, 5, 9, 11, 15, 19, 27, 29]

backward_differences(**kwds)[source]#

Return the sequence of backward differences of this $$k$$-regular sequence.

INPUT:

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

Note

The coefficient to the index $$-1$$ is $$0$$.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....:          vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: C.backward_differences()
2-regular sequence 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(2), Integer(1)]]), Matrix([[Integer(0), Integer(1)], [-Integer(2), Integer(3)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)]))
>>> C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
>>> C.backward_differences()
2-regular sequence 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....:          vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: E.backward_differences()
2-regular sequence 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...

>>> from sage.all import *
>>> E = Seq2((Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(1)]]), Matrix([[Integer(0), Integer(0)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(1), Integer(1)]))
>>> E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
>>> E.backward_differences()
2-regular sequence 1, -1, 1, -1, 1, -1, 1, -1, 1, -1, ...

coefficient_of_n(n, **kwds)[source]#

Return the $$n$$-th entry of this sequence.

INPUT:

• n – a nonnegative integer

OUTPUT: an element of the universe of the sequence

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: S = Seq2((Matrix([[1, 0], [0, 1]]), Matrix([[0, -1], [1, 2]])),
....:          left=vector([0, 1]), right=vector([1, 0]))
sage: S[7]
3

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> S = Seq2((Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(0), -Integer(1)], [Integer(1), Integer(2)]])),
...          left=vector([Integer(0), Integer(1)]), right=vector([Integer(1), Integer(0)]))
>>> S[Integer(7)]
3


This is equivalent to:

sage: S.coefficient_of_n(7)
3

>>> from sage.all import *
>>> S.coefficient_of_n(Integer(7))
3

convolution(*args, **kwds)[source]#

Return the product of this $$k$$-regular sequence with other, where the multiplication is convolution of power series.

The operator $$*$$ is mapped to convolution().

INPUT:

• other – a RegularSequence

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

ALGORITHM:

See pdf attached to github pull request #35894 which contains a draft describing the details of the used algorithm.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....:          vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> E = Seq2((Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(1)]]), Matrix([[Integer(0), Integer(0)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(1), Integer(1)]))
>>> E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...


We can build the convolution (in the sense of power-series) of $$E$$ by itself via:

sage: E.convolution(E)
2-regular sequence 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...

>>> from sage.all import *
>>> E.convolution(E)
2-regular sequence 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...


This is the same as using multiplication operator:

sage: E * E
2-regular sequence 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...

>>> from sage.all import *
>>> E * E
2-regular sequence 1, 0, 2, 0, 3, 0, 4, 0, 5, 0, ...


Building partial_sums() can also be seen as a convolution:

sage: o = Seq2.one_hadamard()
sage: E * o
2-regular sequence 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...
sage: E * o == E.partial_sums(include_n=True)
True

>>> from sage.all import *
>>> E * o
2-regular sequence 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...
>>> E * o == E.partial_sums(include_n=True)
True

forward_differences(**kwds)[source]#

Return the sequence of forward differences of this $$k$$-regular sequence.

INPUT:

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....:          vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: C.forward_differences()
2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(2), Integer(1)]]), Matrix([[Integer(0), Integer(1)], [-Integer(2), Integer(3)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)]))
>>> C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
>>> C.forward_differences()
2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....:          vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: E.forward_differences()
2-regular sequence -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, ...

>>> from sage.all import *
>>> E = Seq2((Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(1)]]), Matrix([[Integer(0), Integer(0)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(1), Integer(1)]))
>>> E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
>>> E.forward_differences()
2-regular sequence -1, 1, -1, 1, -1, 1, -1, 1, -1, 1, ...

is_degenerated()[source]#

Return whether this $$k$$-regular sequence is degenerated, i.e., whether this $$k$$-regular sequence does not satisfiy $$\mu[0] \mathit{right} = \mathit{right}$$.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: Seq2((Matrix([2]), Matrix([3])), vector([1]), vector([1]))  # indirect doctest
Traceback (most recent call last):
...
DegeneratedSequenceError: degenerated sequence: mu[0]*right != right.
Using such a sequence might lead to wrong results.
You can use 'allow_degenerated_sequence=True' followed
by a call of method .regenerated() for correcting this.
sage: S = Seq2((Matrix([2]), Matrix([3])), vector([1]), vector([1]),
....:          allow_degenerated_sequence=True)
sage: S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
sage: S.is_degenerated()
True

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> Seq2((Matrix([Integer(2)]), Matrix([Integer(3)])), vector([Integer(1)]), vector([Integer(1)]))  # indirect doctest
Traceback (most recent call last):
...
DegeneratedSequenceError: degenerated sequence: mu[0]*right != right.
Using such a sequence might lead to wrong results.
You can use 'allow_degenerated_sequence=True' followed
by a call of method .regenerated() for correcting this.
>>> S = Seq2((Matrix([Integer(2)]), Matrix([Integer(3)])), vector([Integer(1)]), vector([Integer(1)]),
...          allow_degenerated_sequence=True)
>>> S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
>>> S.is_degenerated()
True

sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....:          vector([1, 0]), vector([0, 1]))
sage: C.is_degenerated()
False

>>> from sage.all import *
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(2), Integer(1)]]), Matrix([[Integer(0), Integer(1)], [-Integer(2), Integer(3)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)]))
>>> C.is_degenerated()
False

partial_sums(*args, **kwds)[source]#

Return the sequence of partial sums of this $$k$$-regular sequence. That is, the $$n$$-th entry of the result is the sum of the first $$n$$ entries in the original sequence.

INPUT:

• include_n – (default: False) a boolean. If set, then the $$n$$-th entry of the result is the sum of the entries up to index $$n$$ (included).

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)

sage: E = Seq2((Matrix([[0, 1], [0, 1]]), Matrix([[0, 0], [0, 1]])),
....:          vector([1, 0]), vector([1, 1]))
sage: E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: E.partial_sums()
2-regular sequence 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, ...
sage: E.partial_sums(include_n=True)
2-regular sequence 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)

>>> E = Seq2((Matrix([[Integer(0), Integer(1)], [Integer(0), Integer(1)]]), Matrix([[Integer(0), Integer(0)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(1), Integer(1)]))
>>> E
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
>>> E.partial_sums()
2-regular sequence 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, ...
>>> E.partial_sums(include_n=True)
2-regular sequence 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, ...

sage: C = Seq2((Matrix([[2, 0], [2, 1]]), Matrix([[0, 1], [-2, 3]])),
....:          vector([1, 0]), vector([0, 1]))
sage: C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: C.partial_sums()
2-regular sequence 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
sage: C.partial_sums(include_n=True)
2-regular sequence 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...

>>> from sage.all import *
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(2), Integer(1)]]), Matrix([[Integer(0), Integer(1)], [-Integer(2), Integer(3)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)]))
>>> C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
>>> C.partial_sums()
2-regular sequence 0, 0, 1, 3, 6, 10, 15, 21, 28, 36, ...
>>> C.partial_sums(include_n=True)
2-regular sequence 0, 1, 3, 6, 10, 15, 21, 28, 36, 45, ...


The following linear representation of $$S$$ is chosen badly (is degenerated, see is_degenerated()), as $$\mu(0)$$ applied on $$\mathit{right}$$ does not equal $$\mathit{right}$$:

sage: S = Seq2((Matrix([2]), Matrix([3])), vector([1]), vector([1]),
....:          allow_degenerated_sequence=True)
sage: S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...

>>> from sage.all import *
>>> S = Seq2((Matrix([Integer(2)]), Matrix([Integer(3)])), vector([Integer(1)]), vector([Integer(1)]),
...          allow_degenerated_sequence=True)
>>> S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...


Therefore, building partial sums produces a wrong result:

sage: H = S.partial_sums(include_n=True, minimize=False)
sage: H
2-regular sequence 1, 5, 16, 25, 62, 80, 98, 125, 274, 310, ...
sage: H = S.partial_sums(minimize=False)
sage: H
2-regular sequence 0, 2, 10, 16, 50, 62, 80, 98, 250, 274, ...

>>> from sage.all import *
>>> H = S.partial_sums(include_n=True, minimize=False)
>>> H
2-regular sequence 1, 5, 16, 25, 62, 80, 98, 125, 274, 310, ...
>>> H = S.partial_sums(minimize=False)
>>> H
2-regular sequence 0, 2, 10, 16, 50, 62, 80, 98, 250, 274, ...


We can guess() the correct representation:

sage: from itertools import islice
sage: L = []; ps = 0
sage: for s in islice(S, 110):
....:     ps += s
....:     L.append(ps)
sage: G = Seq2.guess(lambda n: L[n])
sage: G
2-regular sequence 1, 4, 10, 19, 31, 49, 67, 94, 118, 154, ...
sage: G.linear_representation()
((1, 0, 0, 0),
Finite family {0: [  0   1   0   0]
[  0   0   0   1]
[ -5   5   1   0]
[ 10 -17   0   8],
1: [  0   0   1   0]
[ -5   3   3   0]
[ -5   0   6   0]
[-30  21  10   0]},
(1, 1, 4, 1))
sage: G.minimized().dimension() == G.dimension()
True

>>> from sage.all import *
>>> from itertools import islice
>>> L = []; ps = Integer(0)
>>> for s in islice(S, Integer(110)):
...     ps += s
...     L.append(ps)
>>> G = Seq2.guess(lambda n: L[n])
>>> G
2-regular sequence 1, 4, 10, 19, 31, 49, 67, 94, 118, 154, ...
>>> G.linear_representation()
((1, 0, 0, 0),
Finite family {0: [  0   1   0   0]
[  0   0   0   1]
[ -5   5   1   0]
[ 10 -17   0   8],
1: [  0   0   1   0]
[ -5   3   3   0]
[ -5   0   6   0]
[-30  21  10   0]},
(1, 1, 4, 1))
>>> G.minimized().dimension() == G.dimension()
True


Or we regenerate the sequence $$S$$ first:

sage: S.regenerated().partial_sums(include_n=True, minimize=False)
2-regular sequence 1, 4, 10, 19, 31, 49, 67, 94, 118, 154, ...
sage: S.regenerated().partial_sums(minimize=False)
2-regular sequence 0, 1, 4, 10, 19, 31, 49, 67, 94, 118, ...

>>> from sage.all import *
>>> S.regenerated().partial_sums(include_n=True, minimize=False)
2-regular sequence 1, 4, 10, 19, 31, 49, 67, 94, 118, 154, ...
>>> S.regenerated().partial_sums(minimize=False)
2-regular sequence 0, 1, 4, 10, 19, 31, 49, 67, 94, 118, ...

regenerated(*args, **kwds)[source]#

Return a $$k$$-regular sequence that satisfies $$\mu[0] \mathit{right} = \mathit{right}$$ with the same values as this sequence.

INPUT:

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

ALGORITHM:

Theorem B of [HKL2022] with $$n_0 = 1$$.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)


The following linear representation of $$S$$ is chosen badly (is degenerated, see is_degenerated()), as $$\mu(0)$$ applied on $$\mathit{right}$$ does not equal $$\mathit{right}$$:

sage: S = Seq2((Matrix([2]), Matrix([3])), vector([1]), vector([1]),
....:          allow_degenerated_sequence=True)
sage: S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
sage: S.is_degenerated()
True

>>> from sage.all import *
>>> S = Seq2((Matrix([Integer(2)]), Matrix([Integer(3)])), vector([Integer(1)]), vector([Integer(1)]),
...          allow_degenerated_sequence=True)
>>> S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
>>> S.is_degenerated()
True


However, we can regenerate the sequence $$S$$:

sage: H = S.regenerated()
sage: H
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
sage: H.linear_representation()
((1, 0),
Finite family {0: [ 0  1]
[-2  3],
1: [3 0]
[6 0]},
(1, 1))
sage: H.is_degenerated()
False

>>> from sage.all import *
>>> H = S.regenerated()
>>> H
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
>>> H.linear_representation()
((1, 0),
Finite family {0: [ 0  1]
[-2  3],
1: [3 0]
[6 0]},
(1, 1))
>>> H.is_degenerated()
False

shift_left(b=1, **kwds)[source]#

Return the sequence obtained by shifting this $$k$$-regular sequence $$b$$ steps to the left.

INPUT:

• b – an integer

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

Note

If $$b$$ is negative (i.e., actually a right-shift), then the coefficients when accessing negative indices are $$0$$.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [0, 1]]), Matrix([[2, 1], [0, 1]])),
....:          vector([1, 0]), vector([0, 1])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

sage: C.shift_left()
2-regular sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
sage: C.shift_left(3)
2-regular sequence 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
sage: C.shift_left(-2)
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(2), Integer(1)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

>>> C.shift_left()
2-regular sequence 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
>>> C.shift_left(Integer(3))
2-regular sequence 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
>>> C.shift_left(-Integer(2))
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, ...

shift_right(b=1, **kwds)[source]#

Return the sequence obtained by shifting this $$k$$-regular sequence $$b$$ steps to the right.

INPUT:

• b – an integer

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

Note

If $$b$$ is positive (i.e., indeed a right-shift), then the coefficients when accessing negative indices are $$0$$.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: C = Seq2((Matrix([[2, 0], [0, 1]]), Matrix([[2, 1], [0, 1]])),
....:          vector([1, 0]), vector([0, 1])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

sage: C.shift_right()
2-regular sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
sage: C.shift_right(3)
2-regular sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, ...
sage: C.shift_right(-2)
2-regular sequence 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(2), Integer(1)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

>>> C.shift_right()
2-regular sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
>>> C.shift_right(Integer(3))
2-regular sequence 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, ...
>>> C.shift_right(-Integer(2))
2-regular sequence 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...

subsequence(*args, **kwds)[source]#

Return the subsequence with indices $$an+b$$ of this $$k$$-regular sequence.

INPUT:

• a – a nonnegative integer

• b – an integer

Alternatively, this is allowed to be a dictionary $$b_j \mapsto c_j$$. If so and applied on $$f(n)$$, the result will be the sum of all $$c_j \cdot f(an+b_j)$$.

• minimize – (default: None) a boolean or None. If True, then minimized() is called after the operation, if False, then not. If this argument is None, then the default specified by the parent’s minimize_results is used.

OUTPUT:

Note

If $$b$$ is negative (i.e., right-shift), then the coefficients when accessing negative indices are $$0$$.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)


We consider the sequence $$C$$ with $$C(n) = n$$ and the following linear representation corresponding to the vector $$(n, 1)$$:

sage: C = Seq2((Matrix([[2, 0], [0, 1]]), Matrix([[2, 1], [0, 1]])),
....:          vector([1, 0]), vector([0, 1])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...

>>> from sage.all import *
>>> C = Seq2((Matrix([[Integer(2), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(2), Integer(1)], [Integer(0), Integer(1)]])),
...          vector([Integer(1), Integer(0)]), vector([Integer(0), Integer(1)])); C
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...


We now extract various subsequences of $$C$$:

sage: C.subsequence(2, 0)
2-regular sequence 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ...

sage: S31 = C.subsequence(3, 1); S31
2-regular sequence 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, ...
sage: S31.linear_representation()
((1, 0),
Finite family {0: [ 0  1]
[-2  3],
1: [ 6 -2]
[10 -3]},
(1, 1))

sage: C.subsequence(3, 2)
2-regular sequence 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, ...

>>> from sage.all import *
>>> C.subsequence(Integer(2), Integer(0))
2-regular sequence 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, ...

>>> S31 = C.subsequence(Integer(3), Integer(1)); S31
2-regular sequence 1, 4, 7, 10, 13, 16, 19, 22, 25, 28, ...
>>> S31.linear_representation()
((1, 0),
Finite family {0: [ 0  1]
[-2  3],
1: [ 6 -2]
[10 -3]},
(1, 1))

>>> C.subsequence(Integer(3), Integer(2))
2-regular sequence 2, 5, 8, 11, 14, 17, 20, 23, 26, 29, ...

sage: Srs = C.subsequence(1, -1); Srs
2-regular sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
sage: Srs.linear_representation()
((1, 0, 0),
Finite family {0: [ 0  1  0]
[-2  3  0]
[-4  4  1],
1: [ -2   2   0]
[  0   0   1]
[ 12 -12   5]},
(0, 0, 1))

>>> from sage.all import *
>>> Srs = C.subsequence(Integer(1), -Integer(1)); Srs
2-regular sequence 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, ...
>>> Srs.linear_representation()
((1, 0, 0),
Finite family {0: [ 0  1  0]
[-2  3  0]
[-4  4  1],
1: [ -2   2   0]
[  0   0   1]
[ 12 -12   5]},
(0, 0, 1))


We can build backward_differences() manually by passing a dictionary for the parameter b:

sage: Sbd = C.subsequence(1, {0: 1, -1: -1}); Sbd
2-regular sequence 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

>>> from sage.all import *
>>> Sbd = C.subsequence(Integer(1), {Integer(0): Integer(1), -Integer(1): -Integer(1)}); Sbd
2-regular sequence 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

transposed(allow_degenerated_sequence=False)[source]#

Return the transposed sequence.

INPUT:

• allow_degenerated_sequence – (default: False) a boolean. If set, then there will be no check if the transposed sequence is a degenerated sequence (see is_degenerated()). Otherwise the transposed sequence is checked and a DegeneratedSequenceError is raised if such a sequence is detected.

OUTPUT:

Each of the matrices in mu is transposed. Additionally the vectors left and right are switched.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: U = Seq2((Matrix([[3, 2], [0, 1]]), Matrix([[2, 0], [1, 3]])),
....:          left=vector([0, 1]), right=vector([1, 0]),
....:          allow_degenerated_sequence=True)
sage: U.is_degenerated()
True
sage: Ut = U.transposed()
sage: Ut.linear_representation()
((1, 0),
Finite family {0: [3 0]
[2 1],
1: [2 1]
[0 3]},
(0, 1))
sage: Ut.is_degenerated()
False

sage: Ut.transposed()
Traceback (most recent call last):
...
DegeneratedSequenceError: degenerated sequence: mu[0]*right != right.
Using such a sequence might lead to wrong results.
You can use 'allow_degenerated_sequence=True' followed
by a call of method .regenerated() for correcting this.
sage: Utt = Ut.transposed(allow_degenerated_sequence=True)
sage: Utt.is_degenerated()
True

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> U = Seq2((Matrix([[Integer(3), Integer(2)], [Integer(0), Integer(1)]]), Matrix([[Integer(2), Integer(0)], [Integer(1), Integer(3)]])),
...          left=vector([Integer(0), Integer(1)]), right=vector([Integer(1), Integer(0)]),
...          allow_degenerated_sequence=True)
>>> U.is_degenerated()
True
>>> Ut = U.transposed()
>>> Ut.linear_representation()
((1, 0),
Finite family {0: [3 0]
[2 1],
1: [2 1]
[0 3]},
(0, 1))
>>> Ut.is_degenerated()
False

>>> Ut.transposed()
Traceback (most recent call last):
...
DegeneratedSequenceError: degenerated sequence: mu[0]*right != right.
Using such a sequence might lead to wrong results.
You can use 'allow_degenerated_sequence=True' followed
by a call of method .regenerated() for correcting this.
>>> Utt = Ut.transposed(allow_degenerated_sequence=True)
>>> Utt.is_degenerated()
True

class sage.combinat.regular_sequence.RegularSequenceRing(k, *args, **kwds)[source]#

The space of $$k$$-regular Sequences over the given coefficient_ring.

INPUT:

• k – an integer at least $$2$$ specifying the base

• coefficient_ring – a (semi-)ring

• category – (default: None) the category of this space

EXAMPLES:

sage: RegularSequenceRing(2, ZZ)
Space of 2-regular sequences over Integer Ring
sage: RegularSequenceRing(3, ZZ)
Space of 3-regular sequences over Integer Ring

>>> from sage.all import *
>>> RegularSequenceRing(Integer(2), ZZ)
Space of 2-regular sequences over Integer Ring
>>> RegularSequenceRing(Integer(3), ZZ)
Space of 3-regular sequences over Integer Ring


Element[source]#

alias of RegularSequence

from_recurrence(*args, **kwds)[source]#

Construct the unique $$k$$-regular sequence which fulfills the given recurrence relations and initial values. The recurrence relations have to have the specific shape of $$k$$-recursive sequences as described in [HKL2022], and are either given as symbolic equations, e.g.,

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: Seq2.from_recurrence([
....:     f(2*n) == 2*f(n), f(2*n + 1) == 3*f(n) + 4*f(n - 1),
....:     f(0) == 0, f(1) == 1], f, n)
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 10, 6, 17, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> var('n')
n
>>> function('f')
f
>>> Seq2.from_recurrence([
...     f(Integer(2)*n) == Integer(2)*f(n), f(Integer(2)*n + Integer(1)) == Integer(3)*f(n) + Integer(4)*f(n - Integer(1)),
...     f(Integer(0)) == Integer(0), f(Integer(1)) == Integer(1)], f, n)
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 10, 6, 17, ...


or via the parameters of the $$k$$-recursive sequence as described in the input block below:

sage: Seq2.from_recurrence(M=1, m=0,
....:     coeffs={(0, 0): 2, (1, 0): 3, (1, -1): 4},
....:     initial_values={0: 0, 1: 1})
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 10, 6, 17, ...

>>> from sage.all import *
>>> Seq2.from_recurrence(M=Integer(1), m=Integer(0),
...     coeffs={(Integer(0), Integer(0)): Integer(2), (Integer(1), Integer(0)): Integer(3), (Integer(1), -Integer(1)): Integer(4)},
...     initial_values={Integer(0): Integer(0), Integer(1): Integer(1)})
2-regular sequence 0, 0, 0, 1, 2, 3, 4, 10, 6, 17, ...


INPUT:

Positional arguments:

If the recurrence relations are represented by symbolic equations, then the following arguments are required:

• equations – A list of equations where the elements have either the form

• $$f(k^M n + r) = c_{r,l} f(k^m n + l) + c_{r,l + 1} f(k^m n + l + 1) + ... + c_{r,u} f(k^m n + u)$$ for some integers $$0 \leq r < k^M$$, $$M > m \geq 0$$ and $$l \leq u$$, and some coefficients $$c_{r,j}$$ from the (semi)ring coefficients of the corresponding RegularSequenceRing, valid for all integers $$n \geq \text{offset}$$ for some integer $$\text{offset} \geq \max(-l/k^m, 0)$$ (default: 0), and there is an equation of this form (with the same parameters $$M$$ and $$m$$) for all $$r$$

or the form

• f(k) == t for some integer k and some t from the (semi)ring coefficient_ring.

The recurrence relations above uniquely determine a $$k$$-regular sequence; see [HKL2022] for further information.

• function – symbolic function f occurring in the equations

• var – symbolic variable (n in the above description of equations)

The following second representation of the recurrence relations is particularly useful for cases where coefficient_ring is not compatible with sage.symbolic.ring.SymbolicRing. Then the following arguments are required:

• M – parameter of the recursive sequences, see [HKL2022], Definition 3.1, as well as in the description of equations above

• m – parameter of the recursive sequences, see [HKL2022], Definition 3.1, as well as in the description of equations above

• coeffs – a dictionary where coeffs[(r, j)] is the coefficient $$c_{r,j}$$ as given in the description of equations above. If coeffs[(r, j)] is not given for some r and j, then it is assumed to be zero.

• initial_values – a dictionary mapping integers n to the n-th value of the sequence

Optional keyword-only argument:

• offset – (default: 0) an integer. See explanation of equations above.

• inhomogeneities – (default: {}) a dictionary mapping integers r to the inhomogeneity $$g_r$$ as given in [HKL2022], Corollary D. All inhomogeneities have to be regular sequences from self or elements of coefficient_ring.

OUTPUT: a RegularSequence

EXAMPLES:

Stern–Brocot Sequence:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: var('n')
n
sage: function('f')
f
sage: SB = Seq2.from_recurrence([
....:     f(2*n) == f(n), f(2*n + 1) == f(n) + f(n + 1),
....:     f(0) == 0, f(1) == 1], f, n)
sage: SB
2-regular sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> var('n')
n
>>> function('f')
f
>>> SB = Seq2.from_recurrence([
...     f(Integer(2)*n) == f(n), f(Integer(2)*n + Integer(1)) == f(n) + f(n + Integer(1)),
...     f(Integer(0)) == Integer(0), f(Integer(1)) == Integer(1)], f, n)
>>> SB
2-regular sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, ...


Number of Odd Entries in Pascal’s Triangle:

sage: Seq2.from_recurrence([
....:     f(2*n) == 3*f(n), f(2*n + 1) == 2*f(n) + f(n + 1),
....:     f(0) == 0, f(1) == 1], f, n)
2-regular sequence 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, ...

>>> from sage.all import *
>>> Seq2.from_recurrence([
...     f(Integer(2)*n) == Integer(3)*f(n), f(Integer(2)*n + Integer(1)) == Integer(2)*f(n) + f(n + Integer(1)),
...     f(Integer(0)) == Integer(0), f(Integer(1)) == Integer(1)], f, n)
2-regular sequence 0, 1, 3, 5, 9, 11, 15, 19, 27, 29, ...


Number of Unbordered Factors in the Thue–Morse Sequence:

sage: UB = Seq2.from_recurrence([
....:     f(8*n) == 2*f(4*n),
....:     f(8*n + 1) == f(4*n + 1),
....:     f(8*n + 2) == f(4*n + 1) + f(4*n + 3),
....:     f(8*n + 3) == -f(4*n + 1) + f(4*n + 2),
....:     f(8*n + 4) == 2*f(4*n + 2),
....:     f(8*n + 5) == f(4*n + 3),
....:     f(8*n + 6) == -f(4*n + 1) + f(4*n + 2) + f(4*n + 3),
....:     f(8*n + 7) == 2*f(4*n + 1) + f(4*n + 3),
....:     f(0) == 1, f(1) == 2, f(2) == 2, f(3) == 4, f(4) == 2,
....:     f(5) == 4, f(6) == 6, f(7) == 0, f(8) == 4, f(9) == 4,
....:     f(10) == 4, f(11) == 4, f(12) == 12, f(13) == 0, f(14) == 4,
....:     f(15) == 4, f(16) == 8, f(17) == 4, f(18) == 8, f(19) == 0,
....:     f(20) == 8, f(21) == 4, f(22) == 4, f(23) == 8], f, n, offset=3)
sage: UB
2-regular sequence 1, 2, 2, 4, 2, 4, 6, 0, 4, 4, ...

>>> from sage.all import *
>>> UB = Seq2.from_recurrence([
...     f(Integer(8)*n) == Integer(2)*f(Integer(4)*n),
...     f(Integer(8)*n + Integer(1)) == f(Integer(4)*n + Integer(1)),
...     f(Integer(8)*n + Integer(2)) == f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(3)),
...     f(Integer(8)*n + Integer(3)) == -f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(2)),
...     f(Integer(8)*n + Integer(4)) == Integer(2)*f(Integer(4)*n + Integer(2)),
...     f(Integer(8)*n + Integer(5)) == f(Integer(4)*n + Integer(3)),
...     f(Integer(8)*n + Integer(6)) == -f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(2)) + f(Integer(4)*n + Integer(3)),
...     f(Integer(8)*n + Integer(7)) == Integer(2)*f(Integer(4)*n + Integer(1)) + f(Integer(4)*n + Integer(3)),
...     f(Integer(0)) == Integer(1), f(Integer(1)) == Integer(2), f(Integer(2)) == Integer(2), f(Integer(3)) == Integer(4), f(Integer(4)) == Integer(2),
...     f(Integer(5)) == Integer(4), f(Integer(6)) == Integer(6), f(Integer(7)) == Integer(0), f(Integer(8)) == Integer(4), f(Integer(9)) == Integer(4),
...     f(Integer(10)) == Integer(4), f(Integer(11)) == Integer(4), f(Integer(12)) == Integer(12), f(Integer(13)) == Integer(0), f(Integer(14)) == Integer(4),
...     f(Integer(15)) == Integer(4), f(Integer(16)) == Integer(8), f(Integer(17)) == Integer(4), f(Integer(18)) == Integer(8), f(Integer(19)) == Integer(0),
...     f(Integer(20)) == Integer(8), f(Integer(21)) == Integer(4), f(Integer(22)) == Integer(4), f(Integer(23)) == Integer(8)], f, n, offset=Integer(3))
>>> UB
2-regular sequence 1, 2, 2, 4, 2, 4, 6, 0, 4, 4, ...


Binary sum of digits $$S(n)$$, characterized by the recurrence relations $$S(4n) = S(2n)$$, $$S(4n + 1) = S(2n + 1)$$, $$S(4n + 2) = S(2n + 1)$$ and $$S(4n + 3) = -S(2n) + 2S(2n + 1)$$:

sage: S = Seq2.from_recurrence([
....:     f(4*n) == f(2*n),
....:     f(4*n + 1) == f(2*n + 1),
....:     f(4*n + 2) == f(2*n + 1),
....:     f(4*n + 3) == -f(2*n) + 2*f(2*n + 1),
....:     f(0) == 0, f(1) == 1], f, n)
sage: S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...

>>> from sage.all import *
>>> S = Seq2.from_recurrence([
...     f(Integer(4)*n) == f(Integer(2)*n),
...     f(Integer(4)*n + Integer(1)) == f(Integer(2)*n + Integer(1)),
...     f(Integer(4)*n + Integer(2)) == f(Integer(2)*n + Integer(1)),
...     f(Integer(4)*n + Integer(3)) == -f(Integer(2)*n) + Integer(2)*f(Integer(2)*n + Integer(1)),
...     f(Integer(0)) == Integer(0), f(Integer(1)) == Integer(1)], f, n)
>>> S
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...


In order to check if this sequence is indeed the binary sum of digits, we construct it directly via its linear representation and compare it with S:

sage: S2 = Seq2(
....:     (Matrix([[1, 0], [0, 1]]), Matrix([[1, 0], [1, 1]])),
....:     left=vector([0, 1]), right=vector([1, 0]))
sage: (S - S2).is_trivial_zero()
True

>>> from sage.all import *
>>> S2 = Seq2(
...     (Matrix([[Integer(1), Integer(0)], [Integer(0), Integer(1)]]), Matrix([[Integer(1), Integer(0)], [Integer(1), Integer(1)]])),
...     left=vector([Integer(0), Integer(1)]), right=vector([Integer(1), Integer(0)]))
>>> (S - S2).is_trivial_zero()
True


Alternatively, we can also use the simpler but inhomogeneous recurrence relations $$S(2n) = S(n)$$ and $$S(2n+1) = S(n) + 1$$ via direct parameters:

sage: S3 = Seq2.from_recurrence(M=1, m=0,
....:     coeffs={(0, 0): 1, (1, 0): 1},
....:     initial_values={0: 0, 1: 1},
....:     inhomogeneities={1: 1})
sage: S3
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
sage: (S3 - S2).is_trivial_zero()
True

>>> from sage.all import *
>>> S3 = Seq2.from_recurrence(M=Integer(1), m=Integer(0),
...     coeffs={(Integer(0), Integer(0)): Integer(1), (Integer(1), Integer(0)): Integer(1)},
...     initial_values={Integer(0): Integer(0), Integer(1): Integer(1)},
...     inhomogeneities={Integer(1): Integer(1)})
>>> S3
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
>>> (S3 - S2).is_trivial_zero()
True


Number of Non-Zero Elements in the Generalized Pascal’s Triangle (see [LRS2017]):

sage: Seq2 = RegularSequenceRing(2, QQ)
sage: P = Seq2.from_recurrence([
....:     f(4*n) == 5/3*f(2*n) - 1/3*f(2*n + 1),
....:     f(4*n + 1) == 4/3*f(2*n) + 1/3*f(2*n + 1),
....:     f(4*n + 2) == 1/3*f(2*n) + 4/3*f(2*n + 1),
....:     f(4*n + 3) == -1/3*f(2*n) + 5/3*f(2*n + 1),
....:     f(0) == 1, f(1) == 2], f, n)
sage: P
2-regular sequence 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, ...

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), QQ)
>>> P = Seq2.from_recurrence([
...     f(Integer(4)*n) == Integer(5)/Integer(3)*f(Integer(2)*n) - Integer(1)/Integer(3)*f(Integer(2)*n + Integer(1)),
...     f(Integer(4)*n + Integer(1)) == Integer(4)/Integer(3)*f(Integer(2)*n) + Integer(1)/Integer(3)*f(Integer(2)*n + Integer(1)),
...     f(Integer(4)*n + Integer(2)) == Integer(1)/Integer(3)*f(Integer(2)*n) + Integer(4)/Integer(3)*f(Integer(2)*n + Integer(1)),
...     f(Integer(4)*n + Integer(3)) == -Integer(1)/Integer(3)*f(Integer(2)*n) + Integer(5)/Integer(3)*f(Integer(2)*n + Integer(1)),
...     f(Integer(0)) == Integer(1), f(Integer(1)) == Integer(2)], f, n)
>>> P
2-regular sequence 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, ...


Finally, the same sequence can also be obtained via direct parameters without symbolic equations:

sage: Seq2.from_recurrence(M=2, m=1,
....:     coeffs={(0, 0): 5/3, (0, 1): -1/3,
....:             (1, 0): 4/3, (1, 1): 1/3,
....:             (2, 0): 1/3, (2, 1): 4/3,
....:             (3, 0): -1/3, (3, 1): 5/3},
....:     initial_values={0: 1, 1: 2})
2-regular sequence 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, ...

>>> from sage.all import *
>>> Seq2.from_recurrence(M=Integer(2), m=Integer(1),
...     coeffs={(Integer(0), Integer(0)): Integer(5)/Integer(3), (Integer(0), Integer(1)): -Integer(1)/Integer(3),
...             (Integer(1), Integer(0)): Integer(4)/Integer(3), (Integer(1), Integer(1)): Integer(1)/Integer(3),
...             (Integer(2), Integer(0)): Integer(1)/Integer(3), (Integer(2), Integer(1)): Integer(4)/Integer(3),
...             (Integer(3), Integer(0)): -Integer(1)/Integer(3), (Integer(3), Integer(1)): Integer(5)/Integer(3)},
...     initial_values={Integer(0): Integer(1), Integer(1): Integer(2)})
2-regular sequence 1, 2, 3, 3, 4, 5, 5, 4, 5, 7, ...

guess(f, n_verify=100, max_exponent=10, sequence=None)[source]#

Guess a $$k$$-regular sequence whose first terms coincide with $$(f(n))_{n\geq0}$$.

INPUT:

• f – a function (callable) which determines the sequence. It takes nonnegative integers as an input

• n_verify – (default: 100) a positive integer. The resulting $$k$$-regular sequence coincides with $$f$$ on the first n_verify terms.

• max_exponent – (default: 10) a positive integer specifying the maximum exponent of $$k$$ which is tried when guessing the sequence, i.e., relations between $$f(k^t n+r)$$ are used for $$0\le t\le \mathtt{max\_exponent}$$ and $$0\le r < k^j$$

• sequence – (default: None) a $$k$$-regular sequence used for bootstrapping the guessing by adding information of the linear representation of sequence to the guessed representation

OUTPUT:

ALGORITHM:

For the purposes of this description, the right vector valued sequence associated with a regular sequence consists of the corresponding matrix product multiplied by the right vector, but without the left vector of the regular sequence.

The algorithm maintains a right vector valued sequence consisting of the right vector valued sequence of the argument sequence (replaced by an empty tuple if sequence is None) plus several components of the shape $$m \mapsto f(k^t\cdot m +r)$$ for suitable t and r.

Implicitly, the algorithm also maintains a $$d \times n_\mathrm{verify}$$ matrix A (where d is the dimension of the right vector valued sequence) whose columns are the current right vector valued sequence evaluated at the non-negative integers less than $$n_\mathrm{verify}$$ and ensures that this matrix has full row rank.

EXAMPLES:

Binary sum of digits:

sage: @cached_function
....: def s(n):
....:     if n == 0:
....:         return 0
....:     return s(n//2) + ZZ(is_odd(n))
sage: all(s(n) == sum(n.digits(2)) for n in srange(10))
True
sage: [s(n) for n in srange(10)]
[0, 1, 1, 2, 1, 2, 2, 3, 1, 2]

>>> from sage.all import *
>>> @cached_function
... def s(n):
...     if n == Integer(0):
...         return Integer(0)
...     return s(n//Integer(2)) + ZZ(is_odd(n))
>>> all(s(n) == sum(n.digits(Integer(2))) for n in srange(Integer(10)))
True
>>> [s(n) for n in srange(Integer(10))]
[0, 1, 1, 2, 1, 2, 2, 3, 1, 2]


Let us guess a $$2$$-linear representation for $$s(n)$$:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: import logging
sage: logging.getLogger().setLevel(logging.INFO)
sage: S1 = Seq2.guess(s); S1
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+1}
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
sage: S1.linear_representation()
((1, 0),
Finite family {0: [1 0]
[0 1],
1: [ 0  1]
[-1  2]},
(0, 1))

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> import logging
>>> logging.getLogger().setLevel(logging.INFO)
>>> S1 = Seq2.guess(s); S1
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+1}
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
>>> S1.linear_representation()
((1, 0),
Finite family {0: [1 0]
[0 1],
1: [ 0  1]
[-1  2]},
(0, 1))


The INFO messages mean that the right vector valued sequence is the sequence $$(s(n), s(2n+1))^\top$$.

We guess again, but this time, we use a constant sequence for bootstrapping the guessing process:

sage: C = Seq2.one_hadamard(); C
2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
sage: S2 = Seq2.guess(s, sequence=C); S2
INFO:...:including 2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
INFO:...:including f_{1*m+0}
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
sage: S2.linear_representation()
((0, 1),
Finite family {0: [1 0]
[0 1],
1: [1 0]
[1 1]},
(1, 0))
sage: S1 == S2
True

>>> from sage.all import *
2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
>>> S2 = Seq2.guess(s, sequence=C); S2
INFO:...:including 2-regular sequence 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
INFO:...:including f_{1*m+0}
2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...
>>> S2.linear_representation()
((0, 1),
Finite family {0: [1 0]
[0 1],
1: [1 0]
[1 1]},
(1, 0))
>>> S1 == S2
True


The sequence of all natural numbers:

sage: S = Seq2.guess(lambda n: n); S
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+1}
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
sage: S.linear_representation()
((1, 0),
Finite family {0: [2 0]
[2 1],
1: [ 0  1]
[-2  3]},
(0, 1))

>>> from sage.all import *
>>> S = Seq2.guess(lambda n: n); S
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+1}
2-regular sequence 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...
>>> S.linear_representation()
((1, 0),
Finite family {0: [2 0]
[2 1],
1: [ 0  1]
[-2  3]},
(0, 1))


The indicator function of the even integers:

sage: S = Seq2.guess(lambda n: ZZ(is_even(n))); S
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+0}
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
sage: S.linear_representation()
((1, 0),
Finite family {0: [0 1]
[0 1],
1: [0 0]
[0 1]},
(1, 1))

>>> from sage.all import *
>>> S = Seq2.guess(lambda n: ZZ(is_even(n))); S
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+0}
2-regular sequence 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, ...
>>> S.linear_representation()
((1, 0),
Finite family {0: [0 1]
[0 1],
1: [0 0]
[0 1]},
(1, 1))


The indicator function of the odd integers:

sage: S = Seq2.guess(lambda n: ZZ(is_odd(n))); S
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+1}
2-regular sequence 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
sage: S.linear_representation()
((1, 0),
Finite family {0: [0 0]
[0 1],
1: [0 1]
[0 1]},
(0, 1))
sage: logging.getLogger().setLevel(logging.WARN)

>>> from sage.all import *
>>> S = Seq2.guess(lambda n: ZZ(is_odd(n))); S
INFO:...:including f_{1*m+0}
INFO:...:including f_{2*m+1}
2-regular sequence 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, ...
>>> S.linear_representation()
((1, 0),
Finite family {0: [0 0]
[0 1],
1: [0 1]
[0 1]},
(0, 1))
>>> logging.getLogger().setLevel(logging.WARN)


The following linear representation of $$S$$ is chosen badly (is degenerated, see is_degenerated()), as $$\mu(0)$$ applied on $$\mathit{right}$$ does not equal $$\mathit{right}$$:

sage: S = Seq2((Matrix([2]), Matrix([3])), vector([1]), vector([1]),
....:          allow_degenerated_sequence=True)
sage: S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
sage: S.is_degenerated()
True

>>> from sage.all import *
>>> S = Seq2((Matrix([Integer(2)]), Matrix([Integer(3)])), vector([Integer(1)]), vector([Integer(1)]),
...          allow_degenerated_sequence=True)
>>> S
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
>>> S.is_degenerated()
True


However, we can guess() a $$2$$-regular sequence of dimension $$2$$:

sage: G = Seq2.guess(lambda n: S[n])
sage: G
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
sage: G.linear_representation()
((1, 0),
Finite family {0: [ 0  1]
[-2  3],
1: [3 0]
[6 0]},
(1, 1))

sage: G == S.regenerated()
True

>>> from sage.all import *
>>> G = Seq2.guess(lambda n: S[n])
>>> G
2-regular sequence 1, 3, 6, 9, 12, 18, 18, 27, 24, 36, ...
>>> G.linear_representation()
((1, 0),
Finite family {0: [ 0  1]
[-2  3],
1: [3 0]
[6 0]},
(1, 1))

>>> G == S.regenerated()
True

one()[source]#

Return the one element of this RegularSequenceRing, i.e. the unique neutral element for $$*$$ and also the embedding of the one of the coefficient ring into this RegularSequenceRing.

EXAMPLES:

sage: Seq2 = RegularSequenceRing(2, ZZ)
sage: O = Seq2.one(); O
2-regular sequence 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
sage: O.linear_representation()
((1), Finite family {0: [1], 1: [0]}, (1))

>>> from sage.all import *
>>> Seq2 = RegularSequenceRing(Integer(2), ZZ)
>>> O = Seq2.one(); O
2-regular sequence 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
>>> O.linear_representation()
((1), Finite family {0: [1], 1: [0]}, (1))

some_elements()[source]#

Return some elements of this $$k$$-regular sequence.

See TestSuite for a typical use case.

OUTPUT:

An iterator

EXAMPLES:

sage: tuple(RegularSequenceRing(2, ZZ).some_elements())
(2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...,
2-regular sequence 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, ...,
2-regular sequence 1, 1, 0, 1, -1, 0, 0, 1, -2, -1, ...,
2-regular sequence 2, -1, 0, 0, 0, -1, 0, 0, 0, 0, ...,
2-regular sequence 1, 1, 0, 1, 5, 0, 0, 1, -33, 5, ...,
2-regular sequence -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...,
2-regular sequence -59, -20, 0, -20, 0, 0, 0, -20, 0, 0, ...,
...
2-regular sequence 2210, 170, 0, 0, 0, 0, 0, 0, 0, 0, ...)

>>> from sage.all import *
>>> tuple(RegularSequenceRing(Integer(2), ZZ).some_elements())
(2-regular sequence 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, ...,
2-regular sequence 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, ...,
2-regular sequence 1, 1, 0, 1, -1, 0, 0, 1, -2, -1, ...,
2-regular sequence 2, -1, 0, 0, 0, -1, 0, 0, 0, 0, ...,
2-regular sequence 1, 1, 0, 1, 5, 0, 0, 1, -33, 5, ...,
2-regular sequence -5, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...,
2-regular sequence -59, -20, 0, -20, 0, 0, 0, -20, 0, 0, ...,
...
2-regular sequence 2210, 170, 0, 0, 0, 0, 0, 0, 0, 0, ...)


Pad T to the right by using zero to have at least the given length.

INPUT:

• T – A tuple, list or other iterable

• length – a nonnegative integer

• zero – (default: 0) the elements to pad with

OUTPUT:

An object of the same type as T

EXAMPLES:

sage: from sage.combinat.regular_sequence import pad_right
(1, 2, 3, 0, 0, 0, 0, 0, 0, 0)
(1, 2, 3)
sage: pad_right([(1, 2), (3, 4)], 4, (0, 0))
[(1, 2), (3, 4), (0, 0), (0, 0)]

>>> from sage.all import *
(1, 2, 3, 0, 0, 0, 0, 0, 0, 0)
(1, 2, 3)
>>> pad_right([(Integer(1), Integer(2)), (Integer(3), Integer(4))], Integer(4), (Integer(0), Integer(0)))
[(1, 2), (3, 4), (0, 0), (0, 0)]

sage.combinat.regular_sequence.value(D, k)[source]#

Return the value of the expansion with digits $$D$$ in base $$k$$, i.e.

$\sum_{0\leq j < \operatorname{len}D} D[j] k^j.$

INPUT:

• D – a tuple or other iterable

• k – the base

OUTPUT:

An element in the common parent of the base $$k$$ and of the entries of $$D$$

EXAMPLES:

sage: from sage.combinat.regular_sequence import value
sage: value(42.digits(7), 7)
42

>>> from sage.all import *
>>> from sage.combinat.regular_sequence import value
>>> value(Integer(42).digits(Integer(7)), Integer(7))
42