# $$q$$-Bernoulli Numbers and Polynomials#

sage.combinat.q_bernoulli.q_bernoulli(p=None)#

Compute Carlitz’s $$q$$-analogue of the Bernoulli numbers.

For every nonnegative integer $$m$$, the $$q$$-Bernoulli number $$\beta_m$$ is a rational function of the indeterminate $$q$$ whose value at $$q=1$$ is the usual Bernoulli number $$B_m$$.

INPUT:

• $$m$$ – a nonnegative integer

• $$p$$ (default: None) – an optional value for $$q$$

OUTPUT:

A rational function of the indeterminate $$q$$ (if $$p$$ is None)

Otherwise, the rational function is evaluated at $$p$$.

EXAMPLES:

sage: from sage.combinat.q_bernoulli import q_bernoulli
sage: q_bernoulli(0)
1
sage: q_bernoulli(1)
-1/(q + 1)
sage: q_bernoulli(2)
q/(q^3 + 2*q^2 + 2*q + 1)
sage: all(q_bernoulli(i)(q=1) == bernoulli(i) for i in range(12))
True


One can evaluate the rational function by giving a second argument:

sage: x = PolynomialRing(GF(2),'x').gen()
sage: q_bernoulli(5,x)
x/(x^6 + x^5 + x + 1)


The function does not accept negative arguments:

sage: q_bernoulli(-1)
Traceback (most recent call last):
...
ValueError: the argument must be a nonnegative integer


REFERENCES:

[Ca1948]

Leonard Carlitz, “q-Bernoulli numbers and polynomials”. Duke Math J. 15, 987-1000 (1948), doi:10.1215/S0012-7094-48-01588-9

[Ca1954]

Leonard Carlitz, “q-Bernoulli and Eulerian numbers”. Trans Am Soc. 76, 332-350 (1954), doi:10.1090/S0002-9947-1954-0060538-2

sage.combinat.q_bernoulli.q_bernoulli_polynomial()#

Compute Carlitz’s $$q$$-analogue of the Bernoulli polynomials.

For every nonnegative integer $$m$$, the $$q$$-Bernoulli polynomial is a polynomial in one variable $$x$$ with coefficients in $$\QQ(q)$$ whose value at $$q=1$$ is the usual Bernoulli polynomial $$B_m(x)$$.

The original $$q$$-Bernoulli polynomials introduced by Carlitz were polynomials in $$q^y$$ with coefficients in $$\QQ(q)$$. This function returns these polynomials but expressed in the variable $$x=(q^y-1)/(q-1)$$. This allows to let $$q=1$$ to recover the classical Bernoulli polynomials.

INPUT:

• $$m$$ – a nonnegative integer

OUTPUT:

A polynomial in one variable $$x$$.

EXAMPLES:

sage: from sage.combinat.q_bernoulli import q_bernoulli_polynomial, q_bernoulli
sage: q_bernoulli_polynomial(0)
1
sage: q_bernoulli_polynomial(1)
(2/(q + 1))*x - 1/(q + 1)
sage: x = q_bernoulli_polynomial(1).parent().gen()
sage: all(q_bernoulli_polynomial(i)(q=1)==bernoulli_polynomial(x,i) for i in range(12))
True
sage: all(q_bernoulli_polynomial(i)(x=0)==q_bernoulli(i) for i in range(12))
True


The function does not accept negative arguments:

sage: q_bernoulli_polynomial(-1)
Traceback (most recent call last):
...
ValueError: the argument must be a nonnegative integer


REFERENCES: [Ca1948], [Ca1954]