Root lattices and root spaces#
- class sage.combinat.root_system.root_space.RootSpace(root_system, base_ring)#
Bases:
CombinatorialFreeModule
The root space of a root system over a given base ring
INPUT:
root_system
- a root systembase_ring
: a ring \(R\)
The root space (or lattice if
base_ring
is \(\ZZ\)) of a root system is the formal free module \(\bigoplus_i R \alpha_i\) generated by the simple roots \((\alpha_i)_{i\in I}\) of the root system.This class is also used for coroot spaces (or lattices).
See also
Todo: standardize the variable used for the root space in the examples (P?)
- Element#
alias of
RootSpaceElement
- simple_root()#
Return the basis element indexed by
i
.INPUT:
i
– an element of the index set
EXAMPLES:
sage: F = CombinatorialFreeModule(QQ, ['a', 'b', 'c']) sage: F.monomial('a') B['a']
F.monomial
is in fact (almost) a map:sage: F.monomial Term map from {'a', 'b', 'c'} to Free module generated by {'a', 'b', 'c'} over Rational Field
- to_ambient_space_morphism()#
The morphism from
self
to its associated ambient space.EXAMPLES:
sage: CartanType(['A',2]).root_system().root_lattice().to_ambient_space_morphism() Generic morphism: From: Root lattice of the Root system of type ['A', 2] To: Ambient space of the Root system of type ['A', 2]
- to_coroot_space_morphism()#
Returns the
nu
map to the coroot space over the same base ring, using the symmetrizer of the Cartan matrixIt does not map the root lattice to the coroot lattice, but has the property that any root is mapped to some scalar multiple of its associated coroot.
EXAMPLES:
sage: R = RootSystem(['A',3]).root_space() sage: alpha = R.simple_roots() sage: f = R.to_coroot_space_morphism() sage: f(alpha[1]) alphacheck[1] sage: f(alpha[1]+alpha[2]) alphacheck[1] + alphacheck[2] sage: R = RootSystem(['A',3]).root_lattice() sage: alpha = R.simple_roots() sage: f = R.to_coroot_space_morphism() sage: f(alpha[1]) alphacheck[1] sage: f(alpha[1]+alpha[2]) alphacheck[1] + alphacheck[2] sage: S = RootSystem(['G',2]).root_space() sage: alpha = S.simple_roots() sage: f = S.to_coroot_space_morphism() sage: f(alpha[1]) alphacheck[1] sage: f(alpha[1]+alpha[2]) alphacheck[1] + 3*alphacheck[2]
- class sage.combinat.root_system.root_space.RootSpaceElement#
Bases:
IndexedFreeModuleElement
- associated_coroot()#
Returns the coroot associated to this root
OUTPUT:
An element of the coroot space over the same base ring; in particular the result is in the coroot lattice whenever
self
is in the root lattice.EXAMPLES:
sage: L = RootSystem(["B", 3]).root_space() sage: alpha = L.simple_roots() sage: alpha[1].associated_coroot() alphacheck[1] sage: alpha[1].associated_coroot().parent() Coroot space over the Rational Field of the Root system of type ['B', 3] sage: L.highest_root() alpha[1] + 2*alpha[2] + 2*alpha[3] sage: L.highest_root().associated_coroot() alphacheck[1] + 2*alphacheck[2] + alphacheck[3] sage: alpha = RootSystem(["B", 3]).root_lattice().simple_roots() sage: alpha[1].associated_coroot() alphacheck[1] sage: alpha[1].associated_coroot().parent() Coroot lattice of the Root system of type ['B', 3]
- is_positive_root()#
Checks whether an element in the root space lies in the nonnegative cone spanned by the simple roots.
EXAMPLES:
sage: R=RootSystem(['A',3,1]).root_space() sage: B=R.basis() sage: w=B[0]+B[3] sage: w.is_positive_root() True sage: w=B[1]-B[2] sage: w.is_positive_root() False
- max_coroot_le()#
Returns the highest positive coroot whose associated root is less than or equal to
self
.INPUT:
self
– an element of the nonnegative integer span of simple roots.
Returns None for the zero element.
Really
self
is an element of a coroot lattice and this method returns the highest root whose associated coroot is <=self
.Warning
This implementation only handles finite Cartan types
EXAMPLES:
sage: root_lattice = RootSystem(['C',2]).root_lattice() sage: root_lattice.from_vector(vector([1,1])).max_coroot_le() alphacheck[1] + 2*alphacheck[2] sage: root_lattice.from_vector(vector([2,1])).max_coroot_le() alphacheck[1] + 2*alphacheck[2] sage: root_lattice = RootSystem(['B',2]).root_lattice() sage: root_lattice.from_vector(vector([1,1])).max_coroot_le() 2*alphacheck[1] + alphacheck[2] sage: root_lattice.from_vector(vector([1,2])).max_coroot_le() 2*alphacheck[1] + alphacheck[2] sage: root_lattice.zero().max_coroot_le() is None True sage: root_lattice.from_vector(vector([-1,0])).max_coroot_le() Traceback (most recent call last): ... ValueError: -alpha[1] is not in the positive cone of roots sage: root_lattice = RootSystem(['A',2,1]).root_lattice() sage: root_lattice.simple_root(1).max_coroot_le() Traceback (most recent call last): ... NotImplementedError: Only implemented for finite Cartan type
- max_quantum_element()#
Returns a reduced word for the longest element of the Weyl group whose shortest path in the quantum Bruhat graph to the identity, has sum of quantum coroots at most
self
.INPUT:
self
– an element of the nonnegative integer span of simple roots.
Really
self
is an element of a coroot lattice.Warning
This implementation only handles finite Cartan types
EXAMPLES:
sage: Qvee = RootSystem(['C',2]).coroot_lattice() sage: Qvee.from_vector(vector([1,2])).max_quantum_element() [2, 1, 2, 1] sage: Qvee.from_vector(vector([1,1])).max_quantum_element() [1, 2, 1] sage: Qvee.from_vector(vector([0,2])).max_quantum_element() [2]
- quantum_root()#
Returns True if
self
is a quantum root and False otherwise.INPUT:
self
– an element of the nonnegative integer span of simple roots.
A root \(\alpha\) is a quantum root if \(\ell(s_\alpha) = \langle 2 \rho, \alpha^\vee \rangle - 1\) where \(\ell\) is the length function, \(s_\alpha\) is the reflection across the hyperplane orthogonal to \(\alpha\), and \(2\rho\) is the sum of positive roots.
Warning
This implementation only handles finite Cartan types and assumes that
self
is a root.Todo
Rename to is_quantum_root
EXAMPLES:
sage: Q = RootSystem(['C',2]).root_lattice() sage: positive_roots = Q.positive_roots() sage: for x in sorted(positive_roots): ....: print("{} {}".format(x, x.quantum_root())) alpha[1] True alpha[1] + alpha[2] False 2*alpha[1] + alpha[2] True alpha[2] True
- scalar(lambdacheck)#
The scalar product between the root lattice and the coroot lattice.
EXAMPLES:
sage: L = RootSystem(['B',4]).root_lattice() sage: alpha = L.simple_roots() sage: alphacheck = L.simple_coroots() sage: alpha[1].scalar(alphacheck[1]) 2 sage: alpha[1].scalar(alphacheck[2]) -1
The scalar products between the roots and coroots are given by the Cartan matrix:
sage: matrix([ [ alpha[i].scalar(alphacheck[j]) ....: for i in L.index_set() ] ....: for j in L.index_set() ]) [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -1] [ 0 0 -2 2] sage: L.cartan_type().cartan_matrix() [ 2 -1 0 0] [-1 2 -1 0] [ 0 -1 2 -1] [ 0 0 -2 2]
- to_ambient()#
Map
self
to the ambient space.EXAMPLES:
sage: alpha = CartanType(['B',2]).root_system().root_lattice().an_element(); alpha 2*alpha[1] + 2*alpha[2] sage: alpha.to_ambient() (2, 0) sage: alphavee = CartanType(['B',2]).root_system().coroot_lattice().an_element(); alphavee 2*alphacheck[1] + 2*alphacheck[2] sage: alphavee.to_ambient() (2, 2)