Permutation species#
- class sage.combinat.species.permutation_species.PermutationSpecies(min=None, max=None, weight=None)[source]#
Bases:
GenericCombinatorialSpecies
,UniqueRepresentation
Returns the species of permutations.
EXAMPLES:
sage: P = species.PermutationSpecies() sage: P.generating_series()[0:5] [1, 1, 1, 1, 1] sage: P.isotype_generating_series()[0:5] [1, 1, 2, 3, 5] sage: P = species.PermutationSpecies() sage: c = P.generating_series()[0:3] sage: P._check() True sage: P == loads(dumps(P)) True
>>> from sage.all import * >>> P = species.PermutationSpecies() >>> P.generating_series()[Integer(0):Integer(5)] [1, 1, 1, 1, 1] >>> P.isotype_generating_series()[Integer(0):Integer(5)] [1, 1, 2, 3, 5] >>> P = species.PermutationSpecies() >>> c = P.generating_series()[Integer(0):Integer(3)] >>> P._check() True >>> P == loads(dumps(P)) True
- class sage.combinat.species.permutation_species.PermutationSpeciesStructure(parent, labels, list)[source]#
Bases:
GenericSpeciesStructure
- automorphism_group()[source]#
Returns the group of permutations whose action on this structure leave it fixed.
EXAMPLES:
sage: set_random_seed(0) sage: p = PermutationGroupElement((2,3,4)) sage: P = species.PermutationSpecies() sage: a = P.structures(["a", "b", "c", "d"])[2]; a ['a', 'c', 'b', 'd'] sage: a.automorphism_group() Permutation Group with generators [(2,3), (1,4)]
>>> from sage.all import * >>> set_random_seed(Integer(0)) >>> p = PermutationGroupElement((Integer(2),Integer(3),Integer(4))) >>> P = species.PermutationSpecies() >>> a = P.structures(["a", "b", "c", "d"])[Integer(2)]; a ['a', 'c', 'b', 'd'] >>> a.automorphism_group() Permutation Group with generators [(2,3), (1,4)]
sage: [a.transport(perm) for perm in a.automorphism_group()] [['a', 'c', 'b', 'd'], ['a', 'c', 'b', 'd'], ['a', 'c', 'b', 'd'], ['a', 'c', 'b', 'd']]
>>> from sage.all import * >>> [a.transport(perm) for perm in a.automorphism_group()] [['a', 'c', 'b', 'd'], ['a', 'c', 'b', 'd'], ['a', 'c', 'b', 'd'], ['a', 'c', 'b', 'd']]
- canonical_label()[source]#
EXAMPLES:
sage: P = species.PermutationSpecies() sage: S = P.structures(["a", "b", "c"]) sage: [s.canonical_label() for s in S] [['a', 'b', 'c'], ['b', 'a', 'c'], ['b', 'a', 'c'], ['b', 'c', 'a'], ['b', 'c', 'a'], ['b', 'a', 'c']]
>>> from sage.all import * >>> P = species.PermutationSpecies() >>> S = P.structures(["a", "b", "c"]) >>> [s.canonical_label() for s in S] [['a', 'b', 'c'], ['b', 'a', 'c'], ['b', 'a', 'c'], ['b', 'c', 'a'], ['b', 'c', 'a'], ['b', 'a', 'c']]
- permutation_group_element()[source]#
Returns self as a permutation group element.
EXAMPLES:
sage: p = PermutationGroupElement((2,3,4)) sage: P = species.PermutationSpecies() sage: a = P.structures(["a", "b", "c", "d"])[2]; a ['a', 'c', 'b', 'd'] sage: a.permutation_group_element() (2,3)
>>> from sage.all import * >>> p = PermutationGroupElement((Integer(2),Integer(3),Integer(4))) >>> P = species.PermutationSpecies() >>> a = P.structures(["a", "b", "c", "d"])[Integer(2)]; a ['a', 'c', 'b', 'd'] >>> a.permutation_group_element() (2,3)
- transport(perm)[source]#
Returns the transport of this structure along the permutation perm.
EXAMPLES:
sage: p = PermutationGroupElement((2,3,4)) sage: P = species.PermutationSpecies() sage: a = P.structures(["a", "b", "c", "d"])[2]; a ['a', 'c', 'b', 'd'] sage: a.transport(p) ['a', 'd', 'c', 'b']
>>> from sage.all import * >>> p = PermutationGroupElement((Integer(2),Integer(3),Integer(4))) >>> P = species.PermutationSpecies() >>> a = P.structures(["a", "b", "c", "d"])[Integer(2)]; a ['a', 'c', 'b', 'd'] >>> a.transport(p) ['a', 'd', 'c', 'b']
- sage.combinat.species.permutation_species.PermutationSpecies_class[source]#
alias of
PermutationSpecies