# Plane Partitions#

AUTHORS:

• Jang Soo Kim (2016): Initial implementation

• Kevin Dilks (2021): Added symmetry classes

class sage.combinat.plane_partition.PlanePartition(parent, pp, check=True)[source]#

Bases: ClonableArray

A plane partition.

A plane partition is a stack of cubes in the positive orthant.

INPUT:

• PP – a list of lists which represents a tableau

• box_size – (optional) a list [A, B, C] of 3 positive integers, where A, B, C are the lengths of the box in the $$x$$-axis, $$y$$-axis, $$z$$-axis, respectively; if this is not given, it is determined by the smallest box bounding PP

OUTPUT:

The plane partition whose tableau representation is PP.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP
Plane partition [[4, 3, 3, 1], [2, 1, 1], [1, 1]]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP
Plane partition [[4, 3, 3, 1], [2, 1, 1], [1, 1]]

bounding_box()[source]#

Return the smallest box $$(a, b, c)$$ that self is contained in.

EXAMPLES:

sage: PP = PlanePartition([[5,2,1,1], [2,2], [2]])
sage: PP.bounding_box()
(3, 4, 5)

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(5),Integer(2),Integer(1),Integer(1)], [Integer(2),Integer(2)], [Integer(2)]])
>>> PP.bounding_box()
(3, 4, 5)

cells()[source]#

Return the list of cells inside self.

Each cell is a tuple.

EXAMPLES:

sage: PP = PlanePartition([[3,1],[2]])
sage: PP.cells()
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (1, 0, 0), (1, 0, 1)]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(3),Integer(1)],[Integer(2)]])
>>> PP.cells()
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (1, 0, 0), (1, 0, 1)]

check()[source]#

Check to see that self is a valid plane partition.

EXAMPLES:

sage: a = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: a.check()
sage: b = PlanePartition([[1,2],[1]])
Traceback (most recent call last):
...
ValueError: not weakly decreasing along rows
sage: c = PlanePartition([[1,1],[2]])
Traceback (most recent call last):
...
ValueError: not weakly decreasing along columns
sage: d = PlanePartition([[2,-1],[-2]])
Traceback (most recent call last):
...
ValueError: entries not all nonnegative
sage: e = PlanePartition([[3/2,1],[.5]])
Traceback (most recent call last):
...
ValueError: entries not all integers

>>> from sage.all import *
>>> a = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> a.check()
>>> b = PlanePartition([[Integer(1),Integer(2)],[Integer(1)]])
Traceback (most recent call last):
...
ValueError: not weakly decreasing along rows
>>> c = PlanePartition([[Integer(1),Integer(1)],[Integer(2)]])
Traceback (most recent call last):
...
ValueError: not weakly decreasing along columns
>>> d = PlanePartition([[Integer(2),-Integer(1)],[-Integer(2)]])
Traceback (most recent call last):
...
ValueError: entries not all nonnegative
>>> e = PlanePartition([[Integer(3)/Integer(2),Integer(1)],[RealNumber('.5')]])
Traceback (most recent call last):
...
ValueError: entries not all integers

complement(tableau_only=False)[source]#

Return the complement of self.

If the parent of self consists only of partitions inside a given box, then the complement is taken in this box. Otherwise, the complement is taken in the smallest box containing the plane partition. The empty plane partition with no box specified is its own complement.

If tableau_only is set to True, then only the tableau consisting of the projection of boxes size onto the $$xy$$-plane is returned instead of a PlanePartition. This output will not have empty trailing rows or trailing zeros removed.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.complement()
Plane partition [[4, 4, 3, 3], [4, 3, 3, 2], [3, 1, 1]]
sage: PP.complement(True)
[[4, 4, 3, 3], [4, 3, 3, 2], [3, 1, 1, 0]]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.complement()
Plane partition [[4, 4, 3, 3], [4, 3, 3, 2], [3, 1, 1]]
>>> PP.complement(True)
[[4, 4, 3, 3], [4, 3, 3, 2], [3, 1, 1, 0]]

contains(PP)[source]#

Return True if PP is a plane partition that fits inside self.

Specifically, self contains PP if, for all $$i$$, $$j$$, the height of PP at $$ij$$ is less than or equal to the height of self at $$ij$$.

EXAMPLES:

sage: P1 = PlanePartition([[5,4,3], [3,2,2], [1]])
sage: P2 = PlanePartition([[3,2], [1,1], [0,0], [0,0]])
sage: P3 = PlanePartition([[5,5,5], [2,1,0]])
sage: P1.contains(P2)
True
sage: P2.contains(P1)
False
sage: P1.contains(P3)
False
sage: P3.contains(P2)
True

>>> from sage.all import *
>>> P1 = PlanePartition([[Integer(5),Integer(4),Integer(3)], [Integer(3),Integer(2),Integer(2)], [Integer(1)]])
>>> P2 = PlanePartition([[Integer(3),Integer(2)], [Integer(1),Integer(1)], [Integer(0),Integer(0)], [Integer(0),Integer(0)]])
>>> P3 = PlanePartition([[Integer(5),Integer(5),Integer(5)], [Integer(2),Integer(1),Integer(0)]])
>>> P1.contains(P2)
True
>>> P2.contains(P1)
False
>>> P1.contains(P3)
False
>>> P3.contains(P2)
True

cyclically_rotate(preserve_parent=False)[source]#

Return the cyclic rotation of self.

By default, if the parent of self consists of plane partitions inside an $$a \times b \times c$$ box, the result will have a parent consisting of partitions inside a $$c \times a \times b$$ box, unless the optional parameter preserve_parent is set to True. Enabling this setting may give an element that is not an element of its parent.

EXAMPLES:

sage: PlanePartition([[3,2,1],[2,2],[2]]).cyclically_rotate()
Plane partition [[3, 3, 1], [2, 2], [1]]
sage: PP = PlanePartition([[4,1],[1],[1]])
sage: PP.cyclically_rotate()
Plane partition [[3, 1, 1, 1], [1]]
sage: PP == PP.cyclically_rotate().cyclically_rotate().cyclically_rotate()
True

sage: # needs sage.graphs sage.modules
sage: PP = PlanePartitions([4,3,2]).random_element()
sage: PP.cyclically_rotate().parent()
Plane partitions inside a 2 x 4 x 3 box
sage: PP = PlanePartitions([3,4,2])([[2,2,2,2],[2,2,2,2],[2,2,2,2]])
sage: PP_rotated = PP.cyclically_rotate(preserve_parent=True)
sage: PP_rotated in PP_rotated.parent()
False

>>> from sage.all import *
>>> PlanePartition([[Integer(3),Integer(2),Integer(1)],[Integer(2),Integer(2)],[Integer(2)]]).cyclically_rotate()
Plane partition [[3, 3, 1], [2, 2], [1]]
>>> PP = PlanePartition([[Integer(4),Integer(1)],[Integer(1)],[Integer(1)]])
>>> PP.cyclically_rotate()
Plane partition [[3, 1, 1, 1], [1]]
>>> PP == PP.cyclically_rotate().cyclically_rotate().cyclically_rotate()
True

>>> # needs sage.graphs sage.modules
>>> PP = PlanePartitions([Integer(4),Integer(3),Integer(2)]).random_element()
>>> PP.cyclically_rotate().parent()
Plane partitions inside a 2 x 4 x 3 box
>>> PP = PlanePartitions([Integer(3),Integer(4),Integer(2)])([[Integer(2),Integer(2),Integer(2),Integer(2)],[Integer(2),Integer(2),Integer(2),Integer(2)],[Integer(2),Integer(2),Integer(2),Integer(2)]])
>>> PP_rotated = PP.cyclically_rotate(preserve_parent=True)
>>> PP_rotated in PP_rotated.parent()
False

is_CSPP()[source]#

Return whether self is a cyclically symmetric plane partition.

A plane partition is cyclically symmetric if its $$x$$, $$y$$, and $$z$$ tableaux are all equal.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_CSPP()
False
sage: PP = PlanePartition([[3,2,2],[3,1,0],[1,1,0]])
sage: PP.is_CSPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_CSPP()
False
>>> PP = PlanePartition([[Integer(3),Integer(2),Integer(2)],[Integer(3),Integer(1),Integer(0)],[Integer(1),Integer(1),Integer(0)]])
>>> PP.is_CSPP()
True

is_CSSCPP()[source]#

Return whether self is a cyclically symmetric and self-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_CSSCPP()
False
sage: PP = PlanePartition([[4,4,4,1],[3,3,2,1],[3,2,1,1],[3,0,0,0]])
sage: PP.is_CSSCPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_CSSCPP()
False
>>> PP = PlanePartition([[Integer(4),Integer(4),Integer(4),Integer(1)],[Integer(3),Integer(3),Integer(2),Integer(1)],[Integer(3),Integer(2),Integer(1),Integer(1)],[Integer(3),Integer(0),Integer(0),Integer(0)]])
>>> PP.is_CSSCPP()
True

is_CSTCPP()[source]#

Return whether self is a cyclically symmetric and transpose-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_CSTCPP()
False
sage: PP = PlanePartition([[4,4,3,2],[4,3,2,1],[3,2,1,0],[2,1,0,0]])
sage: PP.is_CSTCPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_CSTCPP()
False
>>> PP = PlanePartition([[Integer(4),Integer(4),Integer(3),Integer(2)],[Integer(4),Integer(3),Integer(2),Integer(1)],[Integer(3),Integer(2),Integer(1),Integer(0)],[Integer(2),Integer(1),Integer(0),Integer(0)]])
>>> PP.is_CSTCPP()
True

is_SCPP()[source]#

Return whether self is a self-complementary plane partition.

Note that the complement of a plane partition (and thus the property of being self-complementary) is dependent on the choice of a box that it is contained in. If no parent/bounding box is specified, the box is taken to be the smallest box that contains the plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_SCPP()
False
sage: PP = PlanePartition([[4,4,4,4],[4,4,2,0],[4,2,0,0],[0,0,0,0]])
sage: PP.is_SCPP()
False
sage: PP = PlanePartitions([4,4,4])([[4,4,4,4],[4,4,2,0],[4,2,0,0],[0,0,0,0]])
sage: PP.is_SCPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_SCPP()
False
>>> PP = PlanePartition([[Integer(4),Integer(4),Integer(4),Integer(4)],[Integer(4),Integer(4),Integer(2),Integer(0)],[Integer(4),Integer(2),Integer(0),Integer(0)],[Integer(0),Integer(0),Integer(0),Integer(0)]])
>>> PP.is_SCPP()
False
>>> PP = PlanePartitions([Integer(4),Integer(4),Integer(4)])([[Integer(4),Integer(4),Integer(4),Integer(4)],[Integer(4),Integer(4),Integer(2),Integer(0)],[Integer(4),Integer(2),Integer(0),Integer(0)],[Integer(0),Integer(0),Integer(0),Integer(0)]])
>>> PP.is_SCPP()
True

is_SPP()[source]#

Return whether self is a symmetric plane partition.

A plane partition is symmetric if the corresponding tableau is symmetric about the diagonal.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_SPP()
False
sage: PP = PlanePartition([[3,3,2],[3,3,2],[2,2,2]])
sage: PP.is_SPP()
True
sage: PP = PlanePartition([[3,2,1],[2,0,0]])
sage: PP.is_SPP()
False
sage: PP = PlanePartition([[3,2,0],[2,0,0]])
sage: PP.is_SPP()
True
sage: PP = PlanePartition([[3,2],[2,0],[1,0]])
sage: PP.is_SPP()
False
sage: PP = PlanePartition([[3,2],[2,0],[0,0]])
sage: PP.is_SPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_SPP()
False
>>> PP = PlanePartition([[Integer(3),Integer(3),Integer(2)],[Integer(3),Integer(3),Integer(2)],[Integer(2),Integer(2),Integer(2)]])
>>> PP.is_SPP()
True
>>> PP = PlanePartition([[Integer(3),Integer(2),Integer(1)],[Integer(2),Integer(0),Integer(0)]])
>>> PP.is_SPP()
False
>>> PP = PlanePartition([[Integer(3),Integer(2),Integer(0)],[Integer(2),Integer(0),Integer(0)]])
>>> PP.is_SPP()
True
>>> PP = PlanePartition([[Integer(3),Integer(2)],[Integer(2),Integer(0)],[Integer(1),Integer(0)]])
>>> PP.is_SPP()
False
>>> PP = PlanePartition([[Integer(3),Integer(2)],[Integer(2),Integer(0)],[Integer(0),Integer(0)]])
>>> PP.is_SPP()
True

is_SSCPP()[source]#

Return whether self is a symmetric, self-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_SSCPP()
False
sage: PP = PlanePartition([[4,3,3,2],[3,2,2,1],[3,2,2,1],[2,1,1,0]])
sage: PP.is_SSCPP()
True
sage: PP = PlanePartition([[2,1],[1,0]])
sage: PP.is_SSCPP()
True
sage: PP = PlanePartition([[4,3,2],[3,2,1],[2,1,0]])
sage: PP.is_SSCPP()
True
sage: PP = PlanePartition([[4,2,2,2],[2,2,2,2],[2,2,2,2],[2,2,2,0]])
sage: PP.is_SSCPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_SSCPP()
False
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(2)],[Integer(3),Integer(2),Integer(2),Integer(1)],[Integer(3),Integer(2),Integer(2),Integer(1)],[Integer(2),Integer(1),Integer(1),Integer(0)]])
>>> PP.is_SSCPP()
True
>>> PP = PlanePartition([[Integer(2),Integer(1)],[Integer(1),Integer(0)]])
>>> PP.is_SSCPP()
True
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(2)],[Integer(3),Integer(2),Integer(1)],[Integer(2),Integer(1),Integer(0)]])
>>> PP.is_SSCPP()
True
>>> PP = PlanePartition([[Integer(4),Integer(2),Integer(2),Integer(2)],[Integer(2),Integer(2),Integer(2),Integer(2)],[Integer(2),Integer(2),Integer(2),Integer(2)],[Integer(2),Integer(2),Integer(2),Integer(0)]])
>>> PP.is_SSCPP()
True

is_TCPP()[source]#

Return whether self is a transpose-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_TCPP()
False
sage: PP = PlanePartition([[4,4,3,2],[4,4,2,1],[4,2,0,0],[2,0,0,0]])
sage: PP.is_TCPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_TCPP()
False
>>> PP = PlanePartition([[Integer(4),Integer(4),Integer(3),Integer(2)],[Integer(4),Integer(4),Integer(2),Integer(1)],[Integer(4),Integer(2),Integer(0),Integer(0)],[Integer(2),Integer(0),Integer(0),Integer(0)]])
>>> PP.is_TCPP()
True

is_TSPP()[source]#

Return whether self is a totally symmetric plane partition.

A plane partition is totally symmetric if it is both symmetric and cyclically symmetric.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_TSPP()
False
sage: PP = PlanePartition([[3,3,3],[3,3,2],[3,2,1]])
sage: PP.is_TSPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_TSPP()
False
>>> PP = PlanePartition([[Integer(3),Integer(3),Integer(3)],[Integer(3),Integer(3),Integer(2)],[Integer(3),Integer(2),Integer(1)]])
>>> PP.is_TSPP()
True

is_TSSCPP()[source]#

Return whether self is a totally symmetric self-complementary plane partition.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.is_TSSCPP()
False
sage: PP = PlanePartition([[4,4,3,2],[4,3,2,1],[3,2,1,0],[2,1,0,0]])
sage: PP.is_TSSCPP()
True

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.is_TSSCPP()
False
>>> PP = PlanePartition([[Integer(4),Integer(4),Integer(3),Integer(2)],[Integer(4),Integer(3),Integer(2),Integer(1)],[Integer(3),Integer(2),Integer(1),Integer(0)],[Integer(2),Integer(1),Integer(0),Integer(0)]])
>>> PP.is_TSSCPP()
True

maximal_boxes()[source]#

Return the coordinates of the maximal boxes of self.

The maximal boxes of a plane partitions are the boxes that can be removed from a plane partition and still yield a valid plane partition.

EXAMPLES:

sage: sorted(PlanePartition([[3,2,1],[2,2],[2]]).maximal_boxes())
[[0, 0, 2], [0, 2, 0], [1, 1, 1], [2, 0, 1]]
sage: sorted(PlanePartition([[2,1],[1],[1]]).maximal_boxes())
[[0, 0, 1], [0, 1, 0], [2, 0, 0]]

>>> from sage.all import *
>>> sorted(PlanePartition([[Integer(3),Integer(2),Integer(1)],[Integer(2),Integer(2)],[Integer(2)]]).maximal_boxes())
[[0, 0, 2], [0, 2, 0], [1, 1, 1], [2, 0, 1]]
>>> sorted(PlanePartition([[Integer(2),Integer(1)],[Integer(1)],[Integer(1)]]).maximal_boxes())
[[0, 0, 1], [0, 1, 0], [2, 0, 0]]

number_of_boxes()[source]#

Return the number of boxes in the plane partition.

EXAMPLES:

sage: PP = PlanePartition([[3,1],[2]])
sage: PP.number_of_boxes()
6

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(3),Integer(1)],[Integer(2)]])
>>> PP.number_of_boxes()
6

plot(show_box=False, colors=None)[source]#

Return a plot of self.

INPUT:

• show_box – boolean (default: False); if True, also shows the visible tiles on the $$xy$$-, $$yz$$-, $$zx$$-planes

• colors – (default: ["white", "lightgray", "darkgray"]) list [A, B, C] of 3 strings representing colors

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.plot()                                                             # needs sage.plot
Graphics object consisting of 27 graphics primitives

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.plot()                                                             # needs sage.plot
Graphics object consisting of 27 graphics primitives

plot3d(colors=None)[source]#

Return a 3D-plot of self.

INPUT:

• colors – (default: ["white", "lightgray", "darkgray"]) list [A, B, C] of 3 strings representing colors

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.plot3d()                                                           # needs sage.plot
Graphics3d Object

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.plot3d()                                                           # needs sage.plot
Graphics3d Object

pp(show_box=False)[source]#

Return a pretty print of the plane partition.

INPUT:

• show_box – boolean (default: False); if True, also shows the visible tiles on the $$xy$$-, $$yz$$-, $$zx$$-planes

OUTPUT:

A pretty print of the plane partition.

EXAMPLES:

sage: PlanePartition([[4,3,3,1],[2,1,1],[1,1]]).pp()
__
/\_\
__/\/_/
__/\_\/\_\
/\_\/_/\/\_\
\/\_\_\/\/_/
\/_/\_\/_/
\/_/\_\
\/_/
sage: PlanePartition([[4,3,3,1],[2,1,1],[1,1]]).pp(True)
______
/_/_/\_\
/_/_/\/_/\
/_/\_\/\_\/\
/\_\/_/\/\_\/\
\/\_\_\/\/_/\/
\/_/\_\/_/\/
\_\/_/\_\/
\_\_\/_/

>>> from sage.all import *
>>> PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]]).pp()
__
/\_\
__/\/_/
__/\_\/\_\
/\_\/_/\/\_\
\/\_\_\/\/_/
\/_/\_\/_/
\/_/\_\
\/_/
>>> PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]]).pp(True)
______
/_/_/\_\
/_/_/\/_/\
/_/\_\/\_\/\
/\_\/_/\/\_\/\
\/\_\_\/\/_/\/
\/_/\_\/_/\/
\_\/_/\_\/
\_\_\/_/

to_order_ideal()[source]#

Return the order ideal corresponding to self.

Todo

As many families of symmetric plane partitions are in bijection with order ideals in an associated poset, this function could feasibly have options to send symmetric plane partitions to the associated order ideal in that poset, instead.

EXAMPLES:

sage: PlanePartition([[3,2,1],[2,2],[2]]).to_order_ideal()                  # needs sage.graphs sage.modules
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 0, 1)]
sage: PlanePartition([[2,1],[1],[1]]).to_order_ideal()                      # needs sage.graphs sage.modules
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (2, 0, 0)]

>>> from sage.all import *
>>> PlanePartition([[Integer(3),Integer(2),Integer(1)],[Integer(2),Integer(2)],[Integer(2)]]).to_order_ideal()                  # needs sage.graphs sage.modules
[(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 0), (0, 1, 1), (0, 2, 0),
(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1), (2, 0, 0), (2, 0, 1)]
>>> PlanePartition([[Integer(2),Integer(1)],[Integer(1)],[Integer(1)]]).to_order_ideal()                      # needs sage.graphs sage.modules
[(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 0, 0), (2, 0, 0)]

to_tableau()[source]#

Return the tableau class of self.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.to_tableau()
[[4, 3, 3, 1], [2, 1, 1], [1, 1]]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.to_tableau()
[[4, 3, 3, 1], [2, 1, 1], [1, 1]]

transpose(tableau_only=False)[source]#

Return the transpose of self.

If tableau_only is set to True, then only the tableau consisting of the projection of boxes size onto the $$xy$$-plane is returned instead of a PlanePartition. This will not necessarily have trailing rows or trailing zeros removed.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.transpose()
Plane partition [[4, 2, 1], [3, 1, 1], [3, 1], [1]]
sage: PP.transpose(True)
[[4, 2, 1], [3, 1, 1], [3, 1, 0], [1, 0, 0]]

sage: PPP = PlanePartitions([1, 2, 3])
sage: PP = PPP([[1, 1]])
sage: PT = PP.transpose(); PT
Plane partition [[1], [1]]
sage: PT.parent()
Plane partitions inside a 2 x 1 x 3 box

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.transpose()
Plane partition [[4, 2, 1], [3, 1, 1], [3, 1], [1]]
>>> PP.transpose(True)
[[4, 2, 1], [3, 1, 1], [3, 1, 0], [1, 0, 0]]

>>> PPP = PlanePartitions([Integer(1), Integer(2), Integer(3)])
>>> PP = PPP([[Integer(1), Integer(1)]])
>>> PT = PP.transpose(); PT
Plane partition [[1], [1]]
>>> PT.parent()
Plane partitions inside a 2 x 1 x 3 box

x_tableau(tableau=True)[source]#

Return the projection of self in the $$x$$ direction.

If tableau is set to False, then only the list of lists consisting of the projection of boxes size onto the $$yz$$-plane is returned instead of a Tableau object. This output will not have empty trailing rows or trailing zeros removed.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.x_tableau()
[[3, 2, 1, 1], [3, 1, 1, 0], [2, 1, 1, 0], [1, 0, 0, 0]]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.x_tableau()
[[3, 2, 1, 1], [3, 1, 1, 0], [2, 1, 1, 0], [1, 0, 0, 0]]

y_tableau(tableau=True)[source]#

Return the projection of self in the $$y$$ direction.

If tableau is set to False, then only the list of lists consisting of the projection of boxes size onto the $$xz$$-plane is returned instead of a Tableau object. This output will not have empty trailing rows or trailing zeros removed.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.y_tableau()
[[4, 3, 2], [3, 1, 0], [3, 0, 0], [1, 0, 0]]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.y_tableau()
[[4, 3, 2], [3, 1, 0], [3, 0, 0], [1, 0, 0]]

z_tableau(tableau=True)[source]#

Return the projection of self in the $$z$$ direction.

If tableau is set to False, then only the list of lists consisting of the projection of boxes size onto the $$xy$$-plane is returned instead of a Tableau object. This output will not have empty trailing rows or trailing zeros removed.

EXAMPLES:

sage: PP = PlanePartition([[4,3,3,1],[2,1,1],[1,1]])
sage: PP.z_tableau()
[[4, 3, 3, 1], [2, 1, 1, 0], [1, 1, 0, 0]]

>>> from sage.all import *
>>> PP = PlanePartition([[Integer(4),Integer(3),Integer(3),Integer(1)],[Integer(2),Integer(1),Integer(1)],[Integer(1),Integer(1)]])
>>> PP.z_tableau()
[[4, 3, 3, 1], [2, 1, 1, 0], [1, 1, 0, 0]]

class sage.combinat.plane_partition.PlanePartitions(box_size=None, symmetry=None, category=None)[source]#

Plane partitions.

PlanePartitions() returns the class of all plane partitions.

PlanePartitions(n) return the class of all plane partitions with precisely $$n$$ boxes.

PlanePartitions([a, b, c]) returns the class of plane partitions that fit inside an $$a \times b \times c$$ box.

PlanePartitions([a, b, c]) has the optional keyword symmetry, which restricts the plane partitions inside a box of the specified size satisfying certain symmetry conditions.

• symmetry='SPP' gives the class of symmetric plane partitions. which is all plane partitions fixed under reflection across the diagonal. Requires that $$a = b$$.

• symmetry='CSPP' gives the class of cyclic plane partitions, which is all plane partitions fixed under cyclic rotation of coordinates. Requires that $$a = b = c$$.

• symmetry='TSPP' gives the class of totally symmetric plane partitions, which is all plane partitions fixed under any interchanging of coordinates. Requires that $$a = b = c$$.

• symmetry='SCPP' gives the class of self-complementary plane partitions. which is all plane partitions that are equal to their own complement in the specified box. Requires at least one of $$a,b,c$$ be even.

• symmetry='TCPP' gives the class of transpose complement plane partitions, which is all plane partitions whose complement in the box of the specified size is equal to their transpose. Requires $$a = b$$ and at least one of $$a, b, c$$ be even.

• symmetry='SSCPP' gives the class of symmetric self-complementary plane partitions, which is all plane partitions that are both symmetric and self-complementary. Requires $$a = b$$ and at least one of $$a, b, c$$ be even.

• symmetry='CSTCPP' gives the class of cyclically symmetric transpose complement plane partitions, which is all plane partitions that are both symmetric and equal to the transpose of their complement. Requires $$a = b = c$$.

• symmetry='CSSCPP' gives the class of cyclically symmetric self-complementary plane partitions, which is all plane partitions that are both cyclically symmetric and self-complementary. Requires $$a = b = c$$ and all $$a, b, c$$ be even.

• symmetry='TSSCPP' gives the class of totally symmetric self-complementary plane partitions, which is all plane partitions that are totally symmetric and also self-complementary. Requires $$a = b = c$$ and all $$a, b, c$$ be even.

EXAMPLES:

If no arguments are passed, then the class of all plane partitions is returned:

sage: PlanePartitions()
Plane partitions
sage: [[2,1],[1]] in PlanePartitions()
True

>>> from sage.all import *
>>> PlanePartitions()
Plane partitions
>>> [[Integer(2),Integer(1)],[Integer(1)]] in PlanePartitions()
True


If an integer $$n$$ is passed, then the class of plane partitions of $$n$$ is returned:

sage: PlanePartitions(3)
Plane partitions of size 3
sage: PlanePartitions(3).list()
[Plane partition [[3]],
Plane partition [[2, 1]],
Plane partition [[1, 1, 1]],
Plane partition [[2], [1]],
Plane partition [[1, 1], [1]],
Plane partition [[1], [1], [1]]]

>>> from sage.all import *
>>> PlanePartitions(Integer(3))
Plane partitions of size 3
>>> PlanePartitions(Integer(3)).list()
[Plane partition [[3]],
Plane partition [[2, 1]],
Plane partition [[1, 1, 1]],
Plane partition [[2], [1]],
Plane partition [[1, 1], [1]],
Plane partition [[1], [1], [1]]]


If a three-element tuple or list $$[a,b,c]$$ is passed, then the class of all plane partitions that fit inside and $$a \times b \times c$$ box is returned:

sage: PlanePartitions([2,2,2])
Plane partitions inside a 2 x 2 x 2 box
sage: [[2,1],[1]] in PlanePartitions([2,2,2])
True

>>> from sage.all import *
>>> PlanePartitions([Integer(2),Integer(2),Integer(2)])
Plane partitions inside a 2 x 2 x 2 box
>>> [[Integer(2),Integer(1)],[Integer(1)]] in PlanePartitions([Integer(2),Integer(2),Integer(2)])
True


If an additional keyword symmetry is pass along with a three-element tuple or list $$[a, b,c ]$$, then the class of all plane partitions that fit inside an $$a \times b \times c$$ box with the specified symmetry is returned:

sage: PlanePartitions([2,2,2], symmetry='CSPP')
Cyclically symmetric plane partitions inside a 2 x 2 x 2 box
sage: [[2,1],[1]] in PlanePartitions([2,2,2], symmetry='CSPP')
True

>>> from sage.all import *
>>> PlanePartitions([Integer(2),Integer(2),Integer(2)], symmetry='CSPP')
Cyclically symmetric plane partitions inside a 2 x 2 x 2 box
>>> [[Integer(2),Integer(1)],[Integer(1)]] in PlanePartitions([Integer(2),Integer(2),Integer(2)], symmetry='CSPP')
True

Element[source]#

alias of PlanePartition

box()[source]#

Return the size of the box of the plane partition of self is contained in.

EXAMPLES:

sage: P = PlanePartitions([4,3,5])
sage: P.box()
(4, 3, 5)

sage: PP = PlanePartitions()
sage: PP.box() is None
True

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(3),Integer(5)])
>>> P.box()
(4, 3, 5)

>>> PP = PlanePartitions()
>>> PP.box() is None
True

symmetry()[source]#

Return the symmetry class of self.

EXAMPLES:

sage: PP = PlanePartitions([3,3,2], symmetry='SPP')
sage: PP.symmetry()
'SPP'
sage: PP = PlanePartitions()
sage: PP.symmetry() is None
True

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SPP')
>>> PP.symmetry()
'SPP'
>>> PP = PlanePartitions()
>>> PP.symmetry() is None
True

class sage.combinat.plane_partition.PlanePartitions_CSPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are cyclically symmetric.

cardinality()[source]#

Return the cardinality of self.

The number of cyclically symmetric plane partitions inside an $$a \times a \times a$$ box is equal to

$\left(\prod_{i=1}^{a} \frac{3i - 1}{3i - 2}\right) \left(\prod_{1 \leq i < j \leq a} \frac{i+j+a-1}{2i+j-1}\right).$

EXAMPLES:

sage: P = PlanePartitions([4,4,4], symmetry='CSPP')
sage: P.cardinality()
132

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(4),Integer(4)], symmetry='CSPP')
>>> P.cardinality()
132

from_antichain(acl)[source]#

Return the cyclically symmetric plane partition corresponding to an antichain in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='CSPP')
sage: A = [(0, 2, 2), (1, 1, 1)]
sage: PP.from_antichain(A)
Plane partition [[3, 3, 3], [3, 2, 1], [3, 1, 1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='CSPP')
>>> A = [(Integer(0), Integer(2), Integer(2)), (Integer(1), Integer(1), Integer(1))]
>>> PP.from_antichain(A)
Plane partition [[3, 3, 3], [3, 2, 1], [3, 1, 1]]

from_order_ideal(I)[source]#

Return the cylically symmetric plane partition corresponding to an order ideal in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='CSPP')
sage: I = [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1), (0, 1, 2),
....:      (1, 0, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2)]
sage: PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[3, 3, 3], [3, 3, 3], [3, 3, 2]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='CSPP')
>>> I = [(Integer(0), Integer(0), Integer(0)), (Integer(0), Integer(0), Integer(1)), (Integer(0), Integer(0), Integer(2)), (Integer(0), Integer(1), Integer(1)), (Integer(0), Integer(1), Integer(2)),
...      (Integer(1), Integer(0), Integer(2)), (Integer(0), Integer(2), Integer(2)), (Integer(1), Integer(1), Integer(1)), (Integer(1), Integer(1), Integer(2)), (Integer(1), Integer(2), Integer(2))]
>>> PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[3, 3, 3], [3, 3, 3], [3, 3, 2]]

random_element()[source]#

Return a uniformly random element of self.

ALGORITHM:

This uses the random_order_ideal() method and the natural bijection between cyclically symmetric plane partitions and order ideals in an associated poset.

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='CSPP')
sage: PP.random_element()  # random                                         # needs sage.graphs
Plane partition [[3, 2, 2], [3, 1], [1, 1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='CSPP')
>>> PP.random_element()  # random                                         # needs sage.graphs
Plane partition [[3, 2, 2], [3, 1], [1, 1]]

to_poset()[source]#

Return a partially ordered set whose order ideals are in bijection with cyclically symmetric plane partitions.

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='CSPP')
sage: PP.to_poset()                                                         # needs sage.graphs
Finite poset containing 11 elements
sage: PP.to_poset().order_ideals_lattice().cardinality() == PP.cardinality()            # needs sage.graphs
True

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='CSPP')
>>> PP.to_poset()                                                         # needs sage.graphs
Finite poset containing 11 elements
>>> PP.to_poset().order_ideals_lattice().cardinality() == PP.cardinality()            # needs sage.graphs
True

class sage.combinat.plane_partition.PlanePartitions_CSSCPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are cyclically symmetric self-complementary.

cardinality()[source]#

Return the cardinality of self.

The number of cyclically symmetric self-complementary plane partitions inside a $$2a \times 2a \times 2a$$ box is equal to

$\left( \prod_{i=0}^{a-1} \frac{(3i+1)!}{(a+i)!} \right)^2.$

EXAMPLES:

sage: P = PlanePartitions([6,6,6], symmetry='CSSCPP')
sage: P.cardinality()
49

>>> from sage.all import *
>>> P = PlanePartitions([Integer(6),Integer(6),Integer(6)], symmetry='CSSCPP')
>>> P.cardinality()
49

class sage.combinat.plane_partition.PlanePartitions_CSTCPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are cyclically symmetric and transpose-complement.

cardinality()[source]#

Return the cardinality of self.

The number of cyclically symmetric transpose complement plane partitions inside a $$2a \times 2a \times 2a$$ box is equal to

$\prod_{i=0}^{a-1} \frac{(3i+1)(6i)!(2i)!}{(4i+1)!(4i)!}.$

EXAMPLES:

sage: P = PlanePartitions([6,6,6], symmetry='CSTCPP')
sage: P.cardinality()
11

>>> from sage.all import *
>>> P = PlanePartitions([Integer(6),Integer(6),Integer(6)], symmetry='CSTCPP')
>>> P.cardinality()
11

class sage.combinat.plane_partition.PlanePartitions_SCPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are self-complementary.

cardinality()[source]#

Return the cardinality of self.

The number of self complementary plane partitions inside a $$2a \times 2b \times 2c$$ box is equal to

$\left(\prod_{i=1}^{r}\prod_{j=1}^{b} \frac{i + j + c - 1}{i + j - 1}\right)^2.$

The number of self complementary plane partitions inside an $$(2a+1) \times 2b \times 2c$$ box is equal to

$\left(\prod_{i=1}^{a} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1} \right) \left(\prod_{i=1}^{a+1} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1} \right).$

The number of self complementary plane partitions inside an $$(2a+1) \times (2b+1) \times 2c$$ box is equal to

$\left(\prod_{i=1}^{a+1} \prod_{j=1}^{b} \frac{i+j+c-1}{i+j-1} \right) \left(\prod_{i=1}^{a} \prod_{j=1}^{b+1} \frac{i+j+c-1}{i+j-1} \right).$

EXAMPLES:

sage: P = PlanePartitions([4,4,4], symmetry='SCPP')
sage: P.cardinality()
400

sage: P = PlanePartitions([5,4,4], symmetry='SCPP')
sage: P.cardinality()
1000
sage: P = PlanePartitions([4,5,4], symmetry='SCPP')
sage: P.cardinality()
1000
sage: P = PlanePartitions([4,4,5], symmetry='SCPP')
sage: P.cardinality()
1000

sage: P = PlanePartitions([5,5,4], symmetry='SCPP')
sage: P.cardinality()
2500
sage: P = PlanePartitions([5,4,5], symmetry='SCPP')
sage: P.cardinality()
2500
sage: P = PlanePartitions([4,5,5], symmetry='SCPP')
sage: P.cardinality()
2500

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(4),Integer(4)], symmetry='SCPP')
>>> P.cardinality()
400

>>> P = PlanePartitions([Integer(5),Integer(4),Integer(4)], symmetry='SCPP')
>>> P.cardinality()
1000
>>> P = PlanePartitions([Integer(4),Integer(5),Integer(4)], symmetry='SCPP')
>>> P.cardinality()
1000
>>> P = PlanePartitions([Integer(4),Integer(4),Integer(5)], symmetry='SCPP')
>>> P.cardinality()
1000

>>> P = PlanePartitions([Integer(5),Integer(5),Integer(4)], symmetry='SCPP')
>>> P.cardinality()
2500
>>> P = PlanePartitions([Integer(5),Integer(4),Integer(5)], symmetry='SCPP')
>>> P.cardinality()
2500
>>> P = PlanePartitions([Integer(4),Integer(5),Integer(5)], symmetry='SCPP')
>>> P.cardinality()
2500

class sage.combinat.plane_partition.PlanePartitions_SPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are symmetric.

cardinality()[source]#

Return the cardinality of self.

The number of symmetric plane partitions inside an $$a \times a \times b$$ box is equal to

$\left(\prod_{i=1}^{a} \frac{2i + b - 1}{2i - 1}\right) \left(\prod_{1 \leq i < j \leq a} \frac{i+j+b-1}{i+j-1}\right).$

EXAMPLES:

sage: P = PlanePartitions([3,3,2], symmetry='SPP')
sage: P.cardinality()
35

>>> from sage.all import *
>>> P = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SPP')
>>> P.cardinality()
35

from_antichain(A)[source]#

Return the symmetric plane partition corresponding to an antichain in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([3,3,2], symmetry='SPP')
sage: A = [(2, 2, 0), (1, 0, 1), (1, 1, 0)]
sage: PP.from_antichain(A)
Plane partition [[2, 2, 1], [2, 1, 1], [1, 1, 1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SPP')
>>> A = [(Integer(2), Integer(2), Integer(0)), (Integer(1), Integer(0), Integer(1)), (Integer(1), Integer(1), Integer(0))]
>>> PP.from_antichain(A)
Plane partition [[2, 2, 1], [2, 1, 1], [1, 1, 1]]

from_order_ideal(I)[source]#

Return the symmetric plane partition corresponding to an order ideal in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([3,3,2], symmetry='SPP')
sage: I = [(0, 0, 0), (1, 0, 0), (1, 1, 0), (2, 0, 0)]
sage: PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[1, 1, 1], [1, 1], [1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SPP')
>>> I = [(Integer(0), Integer(0), Integer(0)), (Integer(1), Integer(0), Integer(0)), (Integer(1), Integer(1), Integer(0)), (Integer(2), Integer(0), Integer(0))]
>>> PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[1, 1, 1], [1, 1], [1]]

random_element()[source]#

Return a uniformly random element of self.

ALGORITHM:

This uses the random_order_ideal() method and the natural bijection between symmetric plane partitions and order ideals in an associated poset.

EXAMPLES:

sage: PP = PlanePartitions([3,3,2], symmetry='SPP')
sage: PP.random_element()  # random                                         # needs sage.graphs
Plane partition [[2, 2, 2], [2, 2], [2]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SPP')
>>> PP.random_element()  # random                                         # needs sage.graphs
Plane partition [[2, 2, 2], [2, 2], [2]]

to_poset()[source]#

Return a poset whose order ideals are in bijection with symmetric plane partitions.

EXAMPLES:

sage: PP = PlanePartitions([3,3,2], symmetry='SPP')
sage: PP.to_poset()                                                         # needs sage.graphs
Finite poset containing 12 elements
sage: PP.to_poset().order_ideals_lattice().cardinality() == PP.cardinality()            # needs sage.graphs sage.modules sage.rings.finite_rings
True

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SPP')
>>> PP.to_poset()                                                         # needs sage.graphs
Finite poset containing 12 elements
>>> PP.to_poset().order_ideals_lattice().cardinality() == PP.cardinality()            # needs sage.graphs sage.modules sage.rings.finite_rings
True

class sage.combinat.plane_partition.PlanePartitions_SSCPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are symmetric self-complementary.

cardinality()[source]#

Return the cardinality of self.

The number of symmetric self-complementary plane partitions inside a $$2a \times 2a \times 2b$$ box is equal to

$\prod_{i=1}^a \prod_{j=1}^a \frac{i + j + b - 1}{i + j - 1}.$

The number of symmetric self-complementary plane partitions inside a $$(2a+1) \times (2a+1) \times 2b$$ box is equal to

$\prod_{i=1}^a \prod_{j=1}^{a+1} \frac{i + j + b - 1}{i + j - 1}.$

EXAMPLES:

sage: P = PlanePartitions([4,4,2], symmetry='SSCPP')
sage: P.cardinality()
6
sage: Q = PlanePartitions([3,3,2], symmetry='SSCPP')
sage: Q.cardinality()
3

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(4),Integer(2)], symmetry='SSCPP')
>>> P.cardinality()
6
>>> Q = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='SSCPP')
>>> Q.cardinality()
3

class sage.combinat.plane_partition.PlanePartitions_TCPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are transpose-complement.

cardinality()[source]#

Return the cardinality of self.

The number of transpose complement plane partitions inside an $$a \times a \times 2b$$ box is equal to

$\binom{b+1-1}{a-1} \prod_{1\leq i,j \leq a-2} \frac{i + j + 2b - 1}{i + j - 1}.$

EXAMPLES:

sage: P = PlanePartitions([3,3,2], symmetry='TCPP')
sage: P.cardinality()
5

>>> from sage.all import *
>>> P = PlanePartitions([Integer(3),Integer(3),Integer(2)], symmetry='TCPP')
>>> P.cardinality()
5

class sage.combinat.plane_partition.PlanePartitions_TSPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are totally symmetric.

cardinality()[source]#

Return the cardinality of self.

The number of totally symmetric plane partitions inside an $$a \times a \times a$$ box is equal to

$\prod_{1 \leq i \leq j \leq a} \frac{i+j+a-1}{i+2j-2}.$

EXAMPLES:

sage: P = PlanePartitions([4,4,4], symmetry='TSPP')
sage: P.cardinality()
66

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(4),Integer(4)], symmetry='TSPP')
>>> P.cardinality()
66

from_antichain(acl)[source]#

Return the totally symmetric plane partition corresponding to an antichain in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='TSPP')
sage: A = [(0, 0, 2), (0, 1, 1)]
sage: PP.from_antichain(A)
Plane partition [[3, 2, 1], [2, 1], [1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='TSPP')
>>> A = [(Integer(0), Integer(0), Integer(2)), (Integer(0), Integer(1), Integer(1))]
>>> PP.from_antichain(A)
Plane partition [[3, 2, 1], [2, 1], [1]]

from_order_ideal(I)[source]#

Return the totally symmetric plane partition corresponding to an order ideal in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='TSPP')
sage: I = [(0, 0, 0), (0, 0, 1), (0, 0, 2), (0, 1, 1)]
sage: PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[3, 2, 1], [2, 1], [1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='TSPP')
>>> I = [(Integer(0), Integer(0), Integer(0)), (Integer(0), Integer(0), Integer(1)), (Integer(0), Integer(0), Integer(2)), (Integer(0), Integer(1), Integer(1))]
>>> PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[3, 2, 1], [2, 1], [1]]

to_poset()[source]#

Return a poset whose order ideals are in bijection with totally symmetric plane partitions.

EXAMPLES:

sage: PP = PlanePartitions([3,3,3], symmetry='TSPP')
sage: PP.to_poset()                                                         # needs sage.graphs
Finite poset containing 10 elements
sage: (PP.to_poset().order_ideals_lattice().cardinality()                   # needs sage.graphs sage.modules sage.rings.finite_rings
....:     == PP.cardinality())
True

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(3),Integer(3),Integer(3)], symmetry='TSPP')
>>> PP.to_poset()                                                         # needs sage.graphs
Finite poset containing 10 elements
>>> (PP.to_poset().order_ideals_lattice().cardinality()                   # needs sage.graphs sage.modules sage.rings.finite_rings
...     == PP.cardinality())
True

class sage.combinat.plane_partition.PlanePartitions_TSSCPP(box_size)[source]#

Plane partitions that fit inside a box of a specified size that are totally symmetric self-complementary.

cardinality()[source]#

Return the cardinality of self.

The number of totally symmetric self-complementary plane partitions inside a $$2a \times 2a \times 2a$$ box is equal to

$\prod_{i=0}^{a-1} \frac{(3i+1)!}{(a+i)!}.$

EXAMPLES:

sage: P = PlanePartitions([6,6,6], symmetry='TSSCPP')
sage: P.cardinality()
7

>>> from sage.all import *
>>> P = PlanePartitions([Integer(6),Integer(6),Integer(6)], symmetry='TSSCPP')
>>> P.cardinality()
7

from_antichain(acl)[source]#

Return the totally symmetric self-complementary plane partition corresponding to an antichain in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([6,6,6], symmetry='TSSCPP')
sage: A = [(0, 0, 1), (1, 1, 0)]
sage: PP.from_antichain(A)
Plane partition [[6, 6, 6, 5, 5, 3], [6, 5, 5, 4, 3, 1], [6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1], [5, 3, 2, 1, 1], [3, 1, 1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(6),Integer(6),Integer(6)], symmetry='TSSCPP')
>>> A = [(Integer(0), Integer(0), Integer(1)), (Integer(1), Integer(1), Integer(0))]
>>> PP.from_antichain(A)
Plane partition [[6, 6, 6, 5, 5, 3], [6, 5, 5, 4, 3, 1], [6, 5, 4, 3, 2, 1],
[5, 4, 3, 2, 1], [5, 3, 2, 1, 1], [3, 1, 1]]

from_order_ideal(I)[source]#

Return the totally symmetric self-complementary plane partition corresponding to an order ideal in the poset given in to_poset().

EXAMPLES:

sage: PP = PlanePartitions([6,6,6], symmetry='TSSCPP')                      # needs sage.graphs
sage: I = [(0, 0, 0), (0, 1, 0), (1, 1, 0)]
sage: PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[6, 6, 6, 5, 5, 3], [6, 5, 5, 3, 3, 1], [6, 5, 5, 3, 3, 1],
[5, 3, 3, 1, 1], [5, 3, 3, 1, 1], [3, 1, 1]]

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(6),Integer(6),Integer(6)], symmetry='TSSCPP')                      # needs sage.graphs
>>> I = [(Integer(0), Integer(0), Integer(0)), (Integer(0), Integer(1), Integer(0)), (Integer(1), Integer(1), Integer(0))]
>>> PP.from_order_ideal(I)                                                # needs sage.graphs
Plane partition [[6, 6, 6, 5, 5, 3], [6, 5, 5, 3, 3, 1], [6, 5, 5, 3, 3, 1],
[5, 3, 3, 1, 1], [5, 3, 3, 1, 1], [3, 1, 1]]

to_poset()[source]#

Return a poset whose order ideals are in bijection with totally symmetric self-complementary plane partitions.

EXAMPLES:

sage: PP = PlanePartitions([6,6,6], symmetry='TSSCPP')
sage: PP.to_poset()                                                         # needs sage.graphs sage.modules
Finite poset containing 4 elements
sage: PP.to_poset().order_ideals_lattice().cardinality() == PP.cardinality()            # needs sage.graphs sage.modules
True

>>> from sage.all import *
>>> PP = PlanePartitions([Integer(6),Integer(6),Integer(6)], symmetry='TSSCPP')
>>> PP.to_poset()                                                         # needs sage.graphs sage.modules
Finite poset containing 4 elements
>>> PP.to_poset().order_ideals_lattice().cardinality() == PP.cardinality()            # needs sage.graphs sage.modules
True

class sage.combinat.plane_partition.PlanePartitions_all[source]#

All plane partitions.

an_element()[source]#

Return a particular element of the class.

class sage.combinat.plane_partition.PlanePartitions_box(box_size)[source]#

All plane partitions that fit inside a box of a specified size.

By convention, a plane partition in an $$a \times b \times c$$ box will have at most $$a$$ rows, of lengths at most $$b$$, with entries at most $$c$$.

cardinality()[source]#

Return the cardinality of self.

The number of plane partitions inside an $$a \times b \times c$$ box is equal to

$\prod_{i=1}^{a} \prod_{j=1}^{b} \prod_{k=1}^{c} \frac{i+j+k-1}{i+j+k-2}.$

EXAMPLES:

sage: P = PlanePartitions([4,3,5])
sage: P.cardinality()
116424

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(3),Integer(5)])
>>> P.cardinality()
116424

from_antichain(A)[source]#

Return the plane partition corresponding to an antichain in the poset given in to_poset().

EXAMPLES:

sage: A = [(1,0,1), (0,1,1), (1,1,0)]
sage: PlanePartitions([2,2,2]).from_antichain(A)
Plane partition [[2, 2], [2, 1]]

>>> from sage.all import *
>>> A = [(Integer(1),Integer(0),Integer(1)), (Integer(0),Integer(1),Integer(1)), (Integer(1),Integer(1),Integer(0))]
>>> PlanePartitions([Integer(2),Integer(2),Integer(2)]).from_antichain(A)
Plane partition [[2, 2], [2, 1]]

from_order_ideal(I)[source]#

Return the plane partition corresponding to an order ideal in the poset given in to_poset().

EXAMPLES:

sage: I = [(1, 0, 0), (1, 0, 1), (1, 1, 0), (0, 1, 0),
....:      (0, 0, 0), (0, 0, 1), (0, 1, 1)]
sage: PlanePartitions([2,2,2]).from_order_ideal(I)                          # needs sage.graphs sage.modules
Plane partition [[2, 2], [2, 1]]

>>> from sage.all import *
>>> I = [(Integer(1), Integer(0), Integer(0)), (Integer(1), Integer(0), Integer(1)), (Integer(1), Integer(1), Integer(0)), (Integer(0), Integer(1), Integer(0)),
...      (Integer(0), Integer(0), Integer(0)), (Integer(0), Integer(0), Integer(1)), (Integer(0), Integer(1), Integer(1))]
>>> PlanePartitions([Integer(2),Integer(2),Integer(2)]).from_order_ideal(I)                          # needs sage.graphs sage.modules
Plane partition [[2, 2], [2, 1]]

random_element()[source]#

Return a uniformly random plane partition inside a box.

ALGORITHM:

This uses the random_order_ideal() method and the natural bijection with plane partitions.

EXAMPLES:

sage: P = PlanePartitions([4,3,5])
sage: P.random_element()  # random                                          # needs sage.graphs sage.modules
Plane partition [[4, 3, 3], [4], [2]]

>>> from sage.all import *
>>> P = PlanePartitions([Integer(4),Integer(3),Integer(5)])
>>> P.random_element()  # random                                          # needs sage.graphs sage.modules
Plane partition [[4, 3, 3], [4], [2]]

to_poset()[source]#

Return the product of three chains poset, whose order ideals are naturally in bijection with plane partitions inside a box.

EXAMPLES:

sage: PlanePartitions([2,2,2]).to_poset()                                   # needs sage.graphs sage.modules
Finite lattice containing 8 elements

>>> from sage.all import *
>>> PlanePartitions([Integer(2),Integer(2),Integer(2)]).to_poset()                                   # needs sage.graphs sage.modules
Finite lattice containing 8 elements

class sage.combinat.plane_partition.PlanePartitions_n(n)[source]#

Plane partitions with a fixed number of boxes.

cardinality()[source]#

Return the number of plane partitions with n boxes.

Calculated using the recurrence relation

$PL(n) = \sum_{k=1}^n PL(n-k) \sigma_2(k),$

where $$\sigma_k(n)$$ is the sum of the $$k$$-th powers of divisors of $$n$$.

EXAMPLES:

sage: P = PlanePartitions(17)
sage: P.cardinality()
18334

>>> from sage.all import *
>>> P = PlanePartitions(Integer(17))
>>> P.cardinality()
18334