Cores#
A \(k\)-core is a partition from which no rim hook of size \(k\) can be removed. Alternatively, a \(k\)-core is an integer partition such that the Ferrers diagram for the partition contains no cells with a hook of size (a multiple of) \(k\).
Authors:
Anne Schilling and Mike Zabrocki (2011): initial version
Travis Scrimshaw (2012): Added latex output for Core class
- class sage.combinat.core.Core(parent, core)[source]#
Bases:
CombinatorialElement
A \(k\)-core is an integer partition from which no rim hook of size \(k\) can be removed.
EXAMPLES:
sage: c = Core([2,1],4); c [2, 1] sage: c = Core([3,1],4); c Traceback (most recent call last): ... ValueError: [3, 1] is not a 4-core
>>> from sage.all import * >>> c = Core([Integer(2),Integer(1)],Integer(4)); c [2, 1] >>> c = Core([Integer(3),Integer(1)],Integer(4)); c Traceback (most recent call last): ... ValueError: [3, 1] is not a 4-core
- affine_symmetric_group_action(w, transposition=False)[source]#
Return the (left) action of the affine symmetric group on
self
.INPUT:
w
is a tuple of integers \([w_1,\ldots,w_m]\) with \(0\le w_j<k\). If transposition is set to be True, then \(w = [w_0,w_1]\) is interpreted as a transposition \(t_{w_0, w_1}\) (see_transposition_to_reduced_word()
).
The output is the (left) action of the product of the corresponding simple transpositions on
self
, that is \(s_{w_1} \cdots s_{w_m}(self)\). Seeaffine_symmetric_group_simple_action()
.EXAMPLES:
sage: c = Core([4,2],3) sage: c.affine_symmetric_group_action([0,1,0,2,1]) [8, 6, 4, 2] sage: c.affine_symmetric_group_action([0,2], transposition=True) [4, 2, 1, 1] sage: c = Core([11,8,5,5,3,3,1,1,1],4) sage: c.affine_symmetric_group_action([2,5],transposition=True) [11, 8, 7, 6, 5, 4, 3, 2, 1]
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> c.affine_symmetric_group_action([Integer(0),Integer(1),Integer(0),Integer(2),Integer(1)]) [8, 6, 4, 2] >>> c.affine_symmetric_group_action([Integer(0),Integer(2)], transposition=True) [4, 2, 1, 1] >>> c = Core([Integer(11),Integer(8),Integer(5),Integer(5),Integer(3),Integer(3),Integer(1),Integer(1),Integer(1)],Integer(4)) >>> c.affine_symmetric_group_action([Integer(2),Integer(5)],transposition=True) [11, 8, 7, 6, 5, 4, 3, 2, 1]
- affine_symmetric_group_simple_action(i)[source]#
Return the action of the simple transposition \(s_i\) of the affine symmetric group on
self
.This gives the action of the affine symmetric group of type \(A_k^{(1)}\) on the \(k\)-core
self
. Ifself
has outside (resp. inside) corners of content \(i\) modulo \(k\), then these corners are added (resp. removed). Otherwise the action is trivial.EXAMPLES:
sage: c = Core([4,2],3) sage: c.affine_symmetric_group_simple_action(0) # needs sage.modules [3, 1] sage: c.affine_symmetric_group_simple_action(1) # needs sage.modules [5, 3, 1] sage: c.affine_symmetric_group_simple_action(2) # needs sage.modules [4, 2]
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> c.affine_symmetric_group_simple_action(Integer(0)) # needs sage.modules [3, 1] >>> c.affine_symmetric_group_simple_action(Integer(1)) # needs sage.modules [5, 3, 1] >>> c.affine_symmetric_group_simple_action(Integer(2)) # needs sage.modules [4, 2]
This action corresponds to the left action by the \(i\)-th simple reflection in the affine symmetric group:
sage: c = Core([4,2],3) sage: W = c.to_grassmannian().parent() # needs sage.modules sage: i = 0 sage: (c.affine_symmetric_group_simple_action(i).to_grassmannian() # needs sage.modules ....: == W.simple_reflection(i)*c.to_grassmannian()) True sage: i = 1 sage: (c.affine_symmetric_group_simple_action(i).to_grassmannian() # needs sage.modules ....: == W.simple_reflection(i)*c.to_grassmannian()) True
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> W = c.to_grassmannian().parent() # needs sage.modules >>> i = Integer(0) >>> (c.affine_symmetric_group_simple_action(i).to_grassmannian() # needs sage.modules ... == W.simple_reflection(i)*c.to_grassmannian()) True >>> i = Integer(1) >>> (c.affine_symmetric_group_simple_action(i).to_grassmannian() # needs sage.modules ... == W.simple_reflection(i)*c.to_grassmannian()) True
- contains(other)[source]#
Checks whether
self
containsother
.INPUT:
other
– another \(k\)-core or a list
OUTPUT: a boolean
This returns
True
if the Ferrers diagram ofself
contains the Ferrers diagram ofother
.EXAMPLES:
sage: c = Core([4,2],3) sage: x = Core([4,2,2,1,1],3) sage: x.contains(c) True sage: c.contains(x) False
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> x = Core([Integer(4),Integer(2),Integer(2),Integer(1),Integer(1)],Integer(3)) >>> x.contains(c) True >>> c.contains(x) False
- k()[source]#
Return \(k\) of the \(k\)-core
self
.EXAMPLES:
sage: c = Core([2,1],4) sage: c.k() 4
>>> from sage.all import * >>> c = Core([Integer(2),Integer(1)],Integer(4)) >>> c.k() 4
- length()[source]#
Return the length of
self
.The length of a \(k\)-core is the size of the corresponding \((k-1)\)-bounded partition which agrees with the length of the corresponding Grassmannian element, see
to_grassmannian()
.EXAMPLES:
sage: c = Core([4,2],3); c.length() 4 sage: c.to_grassmannian().length() # needs sage.modules 4 sage: Core([9,5,3,2,1,1], 5).length() 13
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)); c.length() 4 >>> c.to_grassmannian().length() # needs sage.modules 4 >>> Core([Integer(9),Integer(5),Integer(3),Integer(2),Integer(1),Integer(1)], Integer(5)).length() 13
- size()[source]#
Return the size of
self
as a partition.EXAMPLES:
sage: Core([2,1],4).size() 3 sage: Core([4,2],3).size() 6
>>> from sage.all import * >>> Core([Integer(2),Integer(1)],Integer(4)).size() 3 >>> Core([Integer(4),Integer(2)],Integer(3)).size() 6
- strong_covers()[source]#
Return a list of all elements that cover
self
in strong order.EXAMPLES:
sage: c = Core([1],3) sage: c.strong_covers() [[2], [1, 1]] sage: c = Core([4,2],3) sage: c.strong_covers() [[5, 3, 1], [4, 2, 1, 1]]
>>> from sage.all import * >>> c = Core([Integer(1)],Integer(3)) >>> c.strong_covers() [[2], [1, 1]] >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> c.strong_covers() [[5, 3, 1], [4, 2, 1, 1]]
- strong_down_list()[source]#
Return a list of all elements that are covered by
self
in strong order.EXAMPLES:
sage: c = Core([1],3) sage: c.strong_down_list() [[]] sage: c = Core([5,3,1],3) sage: c.strong_down_list() [[4, 2], [3, 1, 1]]
>>> from sage.all import * >>> c = Core([Integer(1)],Integer(3)) >>> c.strong_down_list() [[]] >>> c = Core([Integer(5),Integer(3),Integer(1)],Integer(3)) >>> c.strong_down_list() [[4, 2], [3, 1, 1]]
- strong_le(other)[source]#
Strong order (Bruhat) comparison on cores.
INPUT:
other
– another \(k\)-core
OUTPUT: a boolean
This returns whether
self
<=other
in Bruhat (or strong) order.EXAMPLES:
sage: c = Core([4,2],3) sage: x = Core([4,2,2,1,1],3) sage: c.strong_le(x) True sage: c.strong_le([4,2,2,1,1]) True sage: x = Core([4,1],4) sage: c.strong_le(x) Traceback (most recent call last): ... ValueError: the two cores do not have the same k
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> x = Core([Integer(4),Integer(2),Integer(2),Integer(1),Integer(1)],Integer(3)) >>> c.strong_le(x) True >>> c.strong_le([Integer(4),Integer(2),Integer(2),Integer(1),Integer(1)]) True >>> x = Core([Integer(4),Integer(1)],Integer(4)) >>> c.strong_le(x) Traceback (most recent call last): ... ValueError: the two cores do not have the same k
- to_bounded_partition()[source]#
Bijection between \(k\)-cores and \((k-1)\)-bounded partitions.
This maps the \(k\)-core
self
to the corresponding \((k-1)\)-bounded partition. This bijection is achieved by deleting all cells inself
of hook length greater than \(k\).EXAMPLES:
sage: gamma = Core([9,5,3,2,1,1], 5) sage: gamma.to_bounded_partition() [4, 3, 2, 2, 1, 1]
>>> from sage.all import * >>> gamma = Core([Integer(9),Integer(5),Integer(3),Integer(2),Integer(1),Integer(1)], Integer(5)) >>> gamma.to_bounded_partition() [4, 3, 2, 2, 1, 1]
- to_grassmannian()[source]#
Bijection between \(k\)-cores and Grassmannian elements in the affine Weyl group of type \(A_{k-1}^{(1)}\).
For further details, see the documentation of the method
from_kbounded_to_reduced_word()
andfrom_kbounded_to_grassmannian()
.EXAMPLES:
sage: c = Core([3,1,1],3) sage: w = c.to_grassmannian(); w # needs sage.modules [-1 1 1] [-2 2 1] [-2 1 2] sage: c.parent() 3-Cores of length 4 sage: w.parent() # needs sage.modules Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root space) sage: c = Core([],3) sage: c.to_grassmannian() # needs sage.modules [1 0 0] [0 1 0] [0 0 1]
>>> from sage.all import * >>> c = Core([Integer(3),Integer(1),Integer(1)],Integer(3)) >>> w = c.to_grassmannian(); w # needs sage.modules [-1 1 1] [-2 2 1] [-2 1 2] >>> c.parent() 3-Cores of length 4 >>> w.parent() # needs sage.modules Weyl Group of type ['A', 2, 1] (as a matrix group acting on the root space) >>> c = Core([],Integer(3)) >>> c.to_grassmannian() # needs sage.modules [1 0 0] [0 1 0] [0 0 1]
- to_partition()[source]#
Turn the core
self
into the partition identical toself
.EXAMPLES:
sage: mu = Core([2,1,1],3) sage: mu.to_partition() [2, 1, 1]
>>> from sage.all import * >>> mu = Core([Integer(2),Integer(1),Integer(1)],Integer(3)) >>> mu.to_partition() [2, 1, 1]
- weak_covers()[source]#
Return a list of all elements that cover
self
in weak order.EXAMPLES:
sage: c = Core([1],3) sage: c.weak_covers() # needs sage.modules [[1, 1], [2]] sage: c = Core([4,2],3) sage: c.weak_covers() # needs sage.modules [[5, 3, 1]]
>>> from sage.all import * >>> c = Core([Integer(1)],Integer(3)) >>> c.weak_covers() # needs sage.modules [[1, 1], [2]] >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> c.weak_covers() # needs sage.modules [[5, 3, 1]]
- weak_le(other)[source]#
Weak order comparison on cores.
INPUT:
other
– another \(k\)-core
OUTPUT: a boolean
This returns whether
self
<=other
in weak order.EXAMPLES:
sage: c = Core([4,2],3) sage: x = Core([5,3,1],3) sage: c.weak_le(x) # needs sage.modules True sage: c.weak_le([5,3,1]) # needs sage.modules True sage: x = Core([4,2,2,1,1],3) sage: c.weak_le(x) # needs sage.modules False sage: x = Core([5,3,1],6) sage: c.weak_le(x) Traceback (most recent call last): ... ValueError: the two cores do not have the same k
>>> from sage.all import * >>> c = Core([Integer(4),Integer(2)],Integer(3)) >>> x = Core([Integer(5),Integer(3),Integer(1)],Integer(3)) >>> c.weak_le(x) # needs sage.modules True >>> c.weak_le([Integer(5),Integer(3),Integer(1)]) # needs sage.modules True >>> x = Core([Integer(4),Integer(2),Integer(2),Integer(1),Integer(1)],Integer(3)) >>> c.weak_le(x) # needs sage.modules False >>> x = Core([Integer(5),Integer(3),Integer(1)],Integer(6)) >>> c.weak_le(x) Traceback (most recent call last): ... ValueError: the two cores do not have the same k
- sage.combinat.core.Cores(k, length=None, **kwargs)[source]#
A \(k\)-core is a partition from which no rim hook of size \(k\) can be removed. Alternatively, a \(k\)-core is an integer partition such that the Ferrers diagram for the partition contains no cells with a hook of size (a multiple of) \(k\).
The \(k\)-cores generally have two notions of size which are useful for different applications. One is the number of cells in the Ferrers diagram with hook less than \(k\), the other is the total number of cells of the Ferrers diagram. In the implementation in Sage, the first of notion is referred to as the
length
of the \(k\)-core and the second is thesize
of the \(k\)-core. The class of Cores requires that either the size or the length of the elements in the class is specified.EXAMPLES:
We create the set of the \(4\)-cores of length \(6\). Here the length of a \(k\)-core is the size of the corresponding \((k-1)\)-bounded partition, see also
length()
:sage: C = Cores(4, 6); C 4-Cores of length 6 sage: C.list() [[6, 3], [5, 2, 1], [4, 1, 1, 1], [4, 2, 2], [3, 3, 1, 1], [3, 2, 1, 1, 1], [2, 2, 2, 1, 1, 1]] sage: C.cardinality() 7 sage: C.an_element() [6, 3]
>>> from sage.all import * >>> C = Cores(Integer(4), Integer(6)); C 4-Cores of length 6 >>> C.list() [[6, 3], [5, 2, 1], [4, 1, 1, 1], [4, 2, 2], [3, 3, 1, 1], [3, 2, 1, 1, 1], [2, 2, 2, 1, 1, 1]] >>> C.cardinality() 7 >>> C.an_element() [6, 3]
We may also list the set of \(4\)-cores of size \(6\), where the size is the number of boxes in the core, see also
size()
:sage: C = Cores(4, size=6); C 4-Cores of size 6 sage: C.list() [[4, 1, 1], [3, 2, 1], [3, 1, 1, 1]] sage: C.cardinality() 3 sage: C.an_element() [4, 1, 1]
>>> from sage.all import * >>> C = Cores(Integer(4), size=Integer(6)); C 4-Cores of size 6 >>> C.list() [[4, 1, 1], [3, 2, 1], [3, 1, 1, 1]] >>> C.cardinality() 3 >>> C.an_element() [4, 1, 1]
- class sage.combinat.core.Cores_length(k, n)[source]#
Bases:
UniqueRepresentation
,Parent
The class of \(k\)-cores of length \(n\).
- from_partition(part)[source]#
Converts the partition
part
into a core (as the identity map).This is the inverse method to
to_partition()
.EXAMPLES:
sage: C = Cores(3,4) sage: c = C.from_partition([4,2]); c [4, 2] sage: mu = Partition([2,1,1]) sage: C = Cores(3,3) sage: C.from_partition(mu).to_partition() == mu True sage: mu = Partition([]) sage: C = Cores(3,0) sage: C.from_partition(mu).to_partition() == mu True
>>> from sage.all import * >>> C = Cores(Integer(3),Integer(4)) >>> c = C.from_partition([Integer(4),Integer(2)]); c [4, 2] >>> mu = Partition([Integer(2),Integer(1),Integer(1)]) >>> C = Cores(Integer(3),Integer(3)) >>> C.from_partition(mu).to_partition() == mu True >>> mu = Partition([]) >>> C = Cores(Integer(3),Integer(0)) >>> C.from_partition(mu).to_partition() == mu True
- class sage.combinat.core.Cores_size(k, n)[source]#
Bases:
UniqueRepresentation
,Parent
The class of \(k\)-cores of size \(n\).
- from_partition(part)[source]#
Convert the partition
part
into a core (as the identity map).This is the inverse method to
to_partition()
.EXAMPLES:
sage: C = Cores(3,size=4) sage: c = C.from_partition([2,1,1]); c [2, 1, 1] sage: mu = Partition([2,1,1]) sage: C = Cores(3,size=4) sage: C.from_partition(mu).to_partition() == mu True sage: mu = Partition([]) sage: C = Cores(3,size=0) sage: C.from_partition(mu).to_partition() == mu True
>>> from sage.all import * >>> C = Cores(Integer(3),size=Integer(4)) >>> c = C.from_partition([Integer(2),Integer(1),Integer(1)]); c [2, 1, 1] >>> mu = Partition([Integer(2),Integer(1),Integer(1)]) >>> C = Cores(Integer(3),size=Integer(4)) >>> C.from_partition(mu).to_partition() == mu True >>> mu = Partition([]) >>> C = Cores(Integer(3),size=Integer(0)) >>> C.from_partition(mu).to_partition() == mu True