Bijection classes for type \(A_n^{(1)}\)#
Part of the (internal) classes which run the bijection between rigged configurations and tensor products of Kirillov-Reshetikhin tableaux of type \(A_n^{(1)}\).
AUTHORS:
Travis Scrimshaw (2011-04-15): Initial version
- class sage.combinat.rigged_configurations.bij_type_A.KRTToRCBijectionTypeA(tp_krt)[source]#
Bases:
KRTToRCBijectionAbstract
Specific implementation of the bijection from KR tableaux to rigged configurations for type \(A_n^{(1)}\).
- next_state(val)[source]#
Build the next state for type \(A_n^{(1)}\).
EXAMPLES:
sage: KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', 4, 1], [[2,1]]) sage: from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA sage: bijection = KRTToRCBijectionTypeA(KRT(pathlist=[[4,3]])) sage: bijection.cur_path.insert(0, []) sage: bijection.cur_dims.insert(0, [0, 1]) sage: bijection.cur_path[0].insert(0, [3]) sage: bijection.next_state(3)
>>> from sage.all import * >>> KRT = crystals.TensorProductOfKirillovReshetikhinTableaux(['A', Integer(4), Integer(1)], [[Integer(2),Integer(1)]]) >>> from sage.combinat.rigged_configurations.bij_type_A import KRTToRCBijectionTypeA >>> bijection = KRTToRCBijectionTypeA(KRT(pathlist=[[Integer(4),Integer(3)]])) >>> bijection.cur_path.insert(Integer(0), []) >>> bijection.cur_dims.insert(Integer(0), [Integer(0), Integer(1)]) >>> bijection.cur_path[Integer(0)].insert(Integer(0), [Integer(3)]) >>> bijection.next_state(Integer(3))
- class sage.combinat.rigged_configurations.bij_type_A.RCToKRTBijectionTypeA(RC_element)[source]#
Bases:
RCToKRTBijectionAbstract
Specific implementation of the bijection from rigged configurations to tensor products of KR tableaux for type \(A_n^{(1)}\).
- next_state(height)[source]#
Build the next state for type \(A_n^{(1)}\).
EXAMPLES:
sage: RC = RiggedConfigurations(['A', 4, 1], [[2, 1]]) sage: from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA sage: bijection = RCToKRTBijectionTypeA(RC(partition_list=[[1],[1],[1],[1]])) sage: bijection.next_state(1) 5
>>> from sage.all import * >>> RC = RiggedConfigurations(['A', Integer(4), Integer(1)], [[Integer(2), Integer(1)]]) >>> from sage.combinat.rigged_configurations.bij_type_A import RCToKRTBijectionTypeA >>> bijection = RCToKRTBijectionTypeA(RC(partition_list=[[Integer(1)],[Integer(1)],[Integer(1)],[Integer(1)]])) >>> bijection.next_state(Integer(1)) 5