Word morphisms/substitutions#
This module implements morphisms over finite and infinite words.
AUTHORS:
Sébastien Labbé (2007-06-01): initial version
Sébastien Labbé (2008-07-01): merged into sage-words
Sébastien Labbé (2008-12-17): merged into sage
Sébastien Labbé (2009-02-03): words next generation
Sébastien Labbé (2009-11-20): allowing the choice of the datatype of the image. Doc improvements.
Stepan Starosta (2012-11-09): growing letters
EXAMPLES:
Creation of a morphism from a dictionary or a string:
sage: n = WordMorphism({0:[0,2,2,1],1:[0,2],2:[2,2,1]})
>>> from sage.all import *
>>> n = WordMorphism({Integer(0):[Integer(0),Integer(2),Integer(2),Integer(1)],Integer(1):[Integer(0),Integer(2)],Integer(2):[Integer(2),Integer(2),Integer(1)]})
sage: m = WordMorphism('x->xyxsxss,s->xyss,y->ys')
>>> from sage.all import *
>>> m = WordMorphism('x->xyxsxss,s->xyss,y->ys')
sage: n
WordMorphism: 0->0221, 1->02, 2->221
sage: m
WordMorphism: s->xyss, x->xyxsxss, y->ys
>>> from sage.all import *
>>> n
WordMorphism: 0->0221, 1->02, 2->221
>>> m
WordMorphism: s->xyss, x->xyxsxss, y->ys
The codomain may be specified:
sage: WordMorphism({0:[0,2,2,1],1:[0,2],2:[2,2,1]}, codomain=Words([0,1,2,3,4]))
WordMorphism: 0->0221, 1->02, 2->221
>>> from sage.all import *
>>> WordMorphism({Integer(0):[Integer(0),Integer(2),Integer(2),Integer(1)],Integer(1):[Integer(0),Integer(2)],Integer(2):[Integer(2),Integer(2),Integer(1)]}, codomain=Words([Integer(0),Integer(1),Integer(2),Integer(3),Integer(4)]))
WordMorphism: 0->0221, 1->02, 2->221
Power of a morphism:
sage: n^2
WordMorphism: 0->022122122102, 1->0221221, 2->22122102
>>> from sage.all import *
>>> n**Integer(2)
WordMorphism: 0->022122122102, 1->0221221, 2->22122102
Image under a morphism:
sage: m('y')
word: ys
sage: m('xxxsy')
word: xyxsxssxyxsxssxyxsxssxyssys
>>> from sage.all import *
>>> m('y')
word: ys
>>> m('xxxsy')
word: xyxsxssxyxsxssxyxsxssxyssys
Iterated image under a morphism:
sage: m('y', 3)
word: ysxyssxyxsxssysxyssxyss
>>> from sage.all import *
>>> m('y', Integer(3))
word: ysxyssxyxsxssysxyssxyss
See more examples in the documentation of the call method
(m.__call__?
).
Infinite fixed point of morphism:
sage: fix = m.fixed_point('x')
sage: fix
word: xyxsxssysxyxsxssxyssxyxsxssxyssxyssysxys...
sage: fix.length()
+Infinity
>>> from sage.all import *
>>> fix = m.fixed_point('x')
>>> fix
word: xyxsxssysxyxsxssxyssxyxsxssxyssxyssysxys...
>>> fix.length()
+Infinity
Incidence matrix:
sage: matrix(m) # needs sage.modules
[2 3 1]
[1 3 0]
[1 1 1]
>>> from sage.all import *
>>> matrix(m) # needs sage.modules
[2 3 1]
[1 3 0]
[1 1 1]
Many other functionalities…:
sage: m.is_identity()
False
sage: m.is_endomorphism()
True
>>> from sage.all import *
>>> m.is_identity()
False
>>> m.is_endomorphism()
True
- class sage.combinat.words.morphism.PeriodicPointIterator(m, cycle)[source]#
Bases:
object
(Lazy) constructor of the periodic points of a word morphism.
This class is mainly used in
WordMorphism.periodic_point
andWordMorphism.periodic_points
.EXAMPLES:
sage: from sage.combinat.words.morphism import PeriodicPointIterator sage: s = WordMorphism('a->bacca,b->cba,c->aab') sage: p = PeriodicPointIterator(s, ['a','b','c']) sage: p._cache[0] lazy list ['a', 'a', 'b', ...] sage: p._cache[1] lazy list ['b', 'a', 'c', ...] sage: p._cache[2] lazy list ['c', 'b', 'a', ...]
>>> from sage.all import * >>> from sage.combinat.words.morphism import PeriodicPointIterator >>> s = WordMorphism('a->bacca,b->cba,c->aab') >>> p = PeriodicPointIterator(s, ['a','b','c']) >>> p._cache[Integer(0)] lazy list ['a', 'a', 'b', ...] >>> p._cache[Integer(1)] lazy list ['b', 'a', 'c', ...] >>> p._cache[Integer(2)] lazy list ['c', 'b', 'a', ...]
- get_iterator(i)[source]#
Internal method.
EXAMPLES:
sage: from sage.combinat.words.morphism import PeriodicPointIterator sage: s = WordMorphism('a->bacca,b->cba,c->aab') sage: p = PeriodicPointIterator(s, ['a','b','c']) sage: p.get_iterator(0) <generator object ...get_iterator at ...>
>>> from sage.all import * >>> from sage.combinat.words.morphism import PeriodicPointIterator >>> s = WordMorphism('a->bacca,b->cba,c->aab') >>> p = PeriodicPointIterator(s, ['a','b','c']) >>> p.get_iterator(Integer(0)) <generator object ...get_iterator at ...>
- class sage.combinat.words.morphism.WordMorphism(data, domain=None, codomain=None)[source]#
Bases:
SageObject
WordMorphism class
INPUT:
data
– dict or str or an instance of WordMorphism, the map giving the image of lettersdomain
– (optional:None
) set of words over a given alphabet. IfNone
, the domain alphabet is computed fromdata
and is sorted.codomain
– (optional:None
) set of words over a given alphabet. IfNone
, the codomain alphabet is computed fromdata
and is sorted.
Note
When the domain or the codomain are not explicitly given, it is expected that the letters are comparable because the alphabets of the domain and of the codomain are sorted.
EXAMPLES:
From a dictionary:
sage: n = WordMorphism({0:[0,2,2,1],1:[0,2],2:[2,2,1]}) sage: n WordMorphism: 0->0221, 1->02, 2->221
>>> from sage.all import * >>> n = WordMorphism({Integer(0):[Integer(0),Integer(2),Integer(2),Integer(1)],Integer(1):[Integer(0),Integer(2)],Integer(2):[Integer(2),Integer(2),Integer(1)]}) >>> n WordMorphism: 0->0221, 1->02, 2->221
From a string with
'->'
as separation:sage: m = WordMorphism('x->xyxsxss,s->xyss,y->ys') sage: m WordMorphism: s->xyss, x->xyxsxss, y->ys sage: m.domain() Finite words over {'s', 'x', 'y'} sage: m.codomain() Finite words over {'s', 'x', 'y'}
>>> from sage.all import * >>> m = WordMorphism('x->xyxsxss,s->xyss,y->ys') >>> m WordMorphism: s->xyss, x->xyxsxss, y->ys >>> m.domain() Finite words over {'s', 'x', 'y'} >>> m.codomain() Finite words over {'s', 'x', 'y'}
Specifying the domain and codomain:
sage: W = FiniteWords([0,1,2]) sage: d = {0:[0,1], 1:[0,1,0], 2:[0]} sage: m = WordMorphism(d, domain=W, codomain=W) sage: m([0]).parent() Finite words over {0, 1, 2}
>>> from sage.all import * >>> W = FiniteWords([Integer(0),Integer(1),Integer(2)]) >>> d = {Integer(0):[Integer(0),Integer(1)], Integer(1):[Integer(0),Integer(1),Integer(0)], Integer(2):[Integer(0)]} >>> m = WordMorphism(d, domain=W, codomain=W) >>> m([Integer(0)]).parent() Finite words over {0, 1, 2}
When the alphabet is non-sortable, the domain and/or codomain must be explicitly given:
sage: W = FiniteWords(['a',6]) sage: d = {'a':['a',6,'a'],6:[6,6,6,'a']} sage: WordMorphism(d, domain=W, codomain=W) WordMorphism: 6->666a, a->a6a
>>> from sage.all import * >>> W = FiniteWords(['a',Integer(6)]) >>> d = {'a':['a',Integer(6),'a'],Integer(6):[Integer(6),Integer(6),Integer(6),'a']} >>> WordMorphism(d, domain=W, codomain=W) WordMorphism: 6->666a, a->a6a
- abelian_rotation_subspace()[source]#
Return the subspace on which the incidence matrix of
self
acts by roots of unity.EXAMPLES:
sage: # needs sage.modules sage: WordMorphism('0->1,1->0').abelian_rotation_subspace() Vector space of degree 2 and dimension 2 over Rational Field Basis matrix: [1 0] [0 1] sage: WordMorphism('0->01,1->10').abelian_rotation_subspace() Vector space of degree 2 and dimension 0 over Rational Field Basis matrix: [] sage: WordMorphism('0->01,1->1').abelian_rotation_subspace() Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [0 1] sage: WordMorphism('1->122,2->211').abelian_rotation_subspace() Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 -1] sage: WordMorphism('0->1,1->102,2->3,3->4,4->2').abelian_rotation_subspace() Vector space of degree 5 and dimension 3 over Rational Field Basis matrix: [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1]
>>> from sage.all import * >>> # needs sage.modules >>> WordMorphism('0->1,1->0').abelian_rotation_subspace() Vector space of degree 2 and dimension 2 over Rational Field Basis matrix: [1 0] [0 1] >>> WordMorphism('0->01,1->10').abelian_rotation_subspace() Vector space of degree 2 and dimension 0 over Rational Field Basis matrix: [] >>> WordMorphism('0->01,1->1').abelian_rotation_subspace() Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [0 1] >>> WordMorphism('1->122,2->211').abelian_rotation_subspace() Vector space of degree 2 and dimension 1 over Rational Field Basis matrix: [ 1 -1] >>> WordMorphism('0->1,1->102,2->3,3->4,4->2').abelian_rotation_subspace() Vector space of degree 5 and dimension 3 over Rational Field Basis matrix: [0 0 1 0 0] [0 0 0 1 0] [0 0 0 0 1]
The domain needs to be equal to the codomain:
sage: WordMorphism('0->1,1->',codomain=Words('01')).abelian_rotation_subspace() # needs sage.modules Vector space of degree 2 and dimension 0 over Rational Field Basis matrix: []
>>> from sage.all import * >>> WordMorphism('0->1,1->',codomain=Words('01')).abelian_rotation_subspace() # needs sage.modules Vector space of degree 2 and dimension 0 over Rational Field Basis matrix: []
- codomain()[source]#
Return the codomain of
self
.EXAMPLES:
sage: WordMorphism('a->ab,b->a').codomain() Finite words over {'a', 'b'} sage: WordMorphism('6->ab,y->5,0->asd').codomain() Finite words over {'5', 'a', 'b', 'd', 's'}
>>> from sage.all import * >>> WordMorphism('a->ab,b->a').codomain() Finite words over {'a', 'b'} >>> WordMorphism('6->ab,y->5,0->asd').codomain() Finite words over {'5', 'a', 'b', 'd', 's'}
- conjugate(pos)[source]#
Return the morphism where the image of the letter by
self
is conjugated of parameterpos
.INPUT:
pos
– integer
EXAMPLES:
sage: m = WordMorphism('a->abcde') sage: m.conjugate(0) == m True sage: m.conjugate(1) WordMorphism: a->bcdea sage: m.conjugate(3) WordMorphism: a->deabc sage: WordMorphism('').conjugate(4) WordMorphism: sage: m = WordMorphism('a->abcde,b->xyz') sage: m.conjugate(2) WordMorphism: a->cdeab, b->zxy
>>> from sage.all import * >>> m = WordMorphism('a->abcde') >>> m.conjugate(Integer(0)) == m True >>> m.conjugate(Integer(1)) WordMorphism: a->bcdea >>> m.conjugate(Integer(3)) WordMorphism: a->deabc >>> WordMorphism('').conjugate(Integer(4)) WordMorphism: >>> m = WordMorphism('a->abcde,b->xyz') >>> m.conjugate(Integer(2)) WordMorphism: a->cdeab, b->zxy
- domain()[source]#
Return domain of
self
.EXAMPLES:
sage: WordMorphism('a->ab,b->a').domain() Finite words over {'a', 'b'} sage: WordMorphism('b->ba,a->ab').domain() Finite words over {'a', 'b'} sage: WordMorphism('6->ab,y->5,0->asd').domain() Finite words over {'0', '6', 'y'}
>>> from sage.all import * >>> WordMorphism('a->ab,b->a').domain() Finite words over {'a', 'b'} >>> WordMorphism('b->ba,a->ab').domain() Finite words over {'a', 'b'} >>> WordMorphism('6->ab,y->5,0->asd').domain() Finite words over {'0', '6', 'y'}
- dual_map(k=1)[source]#
Return the dual map \(E_k^*\) of self (see [1]).
Note
It is actually implemented only for \(k=1\).
INPUT:
self
– unimodular endomorphism defined on integers1, 2, \ldots, d
k
– integer (default: 1)
OUTPUT:
an instance of E1Star - the dual map
EXAMPLES:
sage: sigma = WordMorphism({1: [2], 2: [3], 3: [1,2]}) sage: sigma.dual_map() # needs sage.modules E_1^*(1->2, 2->3, 3->12)
>>> from sage.all import * >>> sigma = WordMorphism({Integer(1): [Integer(2)], Integer(2): [Integer(3)], Integer(3): [Integer(1),Integer(2)]}) >>> sigma.dual_map() # needs sage.modules E_1^*(1->2, 2->3, 3->12)
sage: sigma.dual_map(k=2) Traceback (most recent call last): ... NotImplementedError: the dual map E_k^* is implemented only for k = 1 (not 2)
>>> from sage.all import * >>> sigma.dual_map(k=Integer(2)) Traceback (most recent call last): ... NotImplementedError: the dual map E_k^* is implemented only for k = 1 (not 2)
REFERENCES:
[1] Sano, Y., Arnoux, P. and Ito, S., Higher dimensional extensions of substitutions and their dual maps, Journal d’Analyse Mathématique 83 (2001), 183-206.
- extend_by(other)[source]#
Return
self
extended byother
.Let \(\varphi_1:A^*\rightarrow B^*\) and \(\varphi_2:C^*\rightarrow D^*\) be two morphisms. A morphism \(\mu:(A\cup C)^*\rightarrow (B\cup D)^*\) corresponds to \(\varphi_1\) extended by \(\varphi_2\) if \(\mu(a)=\varphi_1(a)\) if \(a\in A\) and \(\mu(a)=\varphi_2(a)\) otherwise.
INPUT:
other
– a WordMorphism.
OUTPUT:
WordMorphism
EXAMPLES:
sage: m = WordMorphism('a->ab,b->ba') sage: n = WordMorphism({'0':'1','1':'0','a':'5'}) sage: m.extend_by(n) WordMorphism: 0->1, 1->0, a->ab, b->ba sage: n.extend_by(m) WordMorphism: 0->1, 1->0, a->5, b->ba sage: m.extend_by(m) WordMorphism: a->ab, b->ba
>>> from sage.all import * >>> m = WordMorphism('a->ab,b->ba') >>> n = WordMorphism({'0':'1','1':'0','a':'5'}) >>> m.extend_by(n) WordMorphism: 0->1, 1->0, a->ab, b->ba >>> n.extend_by(m) WordMorphism: 0->1, 1->0, a->5, b->ba >>> m.extend_by(m) WordMorphism: a->ab, b->ba
- fixed_point(letter)[source]#
Return the fixed point of
self
beginning by the givenletter
.A fixed point of morphism \(\varphi\) is a word \(w\) such that \(\varphi(w) = w\).
INPUT:
self
– an endomorphism (or more generally a self-composable morphism), must be prolongable onletter
letter
– in the domain ofself
, the first letter of the fixed point.
OUTPUT:
word
– the fixed point ofself
beginning withletter
.
EXAMPLES:
sage: W = FiniteWords('abc')
>>> from sage.all import * >>> W = FiniteWords('abc')
Infinite fixed point:
sage: WordMorphism('a->ab,b->ba').fixed_point(letter='a') word: abbabaabbaababbabaababbaabbabaabbaababba... sage: WordMorphism('a->ab,b->a').fixed_point(letter='a') word: abaababaabaababaababaabaababaabaababaaba... sage: WordMorphism('a->ab,b->b,c->ba', codomain=W).fixed_point(letter='a') word: abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb...
>>> from sage.all import * >>> WordMorphism('a->ab,b->ba').fixed_point(letter='a') word: abbabaabbaababbabaababbaabbabaabbaababba... >>> WordMorphism('a->ab,b->a').fixed_point(letter='a') word: abaababaabaababaababaabaababaabaababaaba... >>> WordMorphism('a->ab,b->b,c->ba', codomain=W).fixed_point(letter='a') word: abbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb...
Infinite fixed point of an erasing morphism:
sage: WordMorphism('a->ab,b->,c->ba', codomain=W).fixed_point(letter='a') word: ab
>>> from sage.all import * >>> WordMorphism('a->ab,b->,c->ba', codomain=W).fixed_point(letter='a') word: ab
Finite fixed point:
sage: WordMorphism('a->ab,b->b,c->ba', codomain=W).fixed_point(letter='b') word: b sage: _.parent() Finite words over {'a', 'b', 'c'} sage: WordMorphism('a->ab,b->cc,c->', codomain=W).fixed_point(letter='a') word: abcc sage: _.parent() Finite words over {'a', 'b', 'c'} sage: m = WordMorphism('a->abc,b->,c->') sage: fp = m.fixed_point('a'); fp word: abc sage: m = WordMorphism('a->ba,b->') sage: m('ba') word: ba sage: m.fixed_point('a') #todo: not implemented word: ba
>>> from sage.all import * >>> WordMorphism('a->ab,b->b,c->ba', codomain=W).fixed_point(letter='b') word: b >>> _.parent() Finite words over {'a', 'b', 'c'} >>> WordMorphism('a->ab,b->cc,c->', codomain=W).fixed_point(letter='a') word: abcc >>> _.parent() Finite words over {'a', 'b', 'c'} >>> m = WordMorphism('a->abc,b->,c->') >>> fp = m.fixed_point('a'); fp word: abc >>> m = WordMorphism('a->ba,b->') >>> m('ba') word: ba >>> m.fixed_point('a') #todo: not implemented word: ba
Fixed point of a power of a morphism:
sage: m = WordMorphism('a->ba,b->ab') sage: (m^2).fixed_point(letter='a') word: abbabaabbaababbabaababbaabbabaabbaababba...
>>> from sage.all import * >>> m = WordMorphism('a->ba,b->ab') >>> (m**Integer(2)).fixed_point(letter='a') word: abbabaabbaababbabaababbaabbabaabbaababba...
With a self-composable but not endomorphism
sage: m = WordMorphism(‘a->cbc,b->bc,c->b’) sage: m.is_endomorphism() False sage: m.fixed_point(‘b’) word: bcbbcbcbbcbbcbcbbcbcbbcbbcbcbbcbbcbcbbcb…
- fixed_points()[source]#
Return the list of all fixed points of
self
.EXAMPLES:
sage: f = WordMorphism('a->ab,b->ba') sage: for w in f.fixed_points(): print(w) abbabaabbaababbabaababbaabbabaabbaababba... baababbaabbabaababbabaabbaababbaabbabaab... sage: f = WordMorphism('a->ab,b->c,c->a') sage: for w in f.fixed_points(): print(w) abcaababcabcaabcaababcaababcabcaababcabc... sage: f = WordMorphism('a->ab,b->cab,c->bcc') sage: for w in f.fixed_points(): print(w) abcabbccabcabcabbccbccabcabbccabcabbccab...
>>> from sage.all import * >>> f = WordMorphism('a->ab,b->ba') >>> for w in f.fixed_points(): print(w) abbabaabbaababbabaababbaabbabaabbaababba... baababbaabbabaababbabaabbaababbaabbabaab... >>> f = WordMorphism('a->ab,b->c,c->a') >>> for w in f.fixed_points(): print(w) abcaababcabcaabcaababcaababcabcaababcabc... >>> f = WordMorphism('a->ab,b->cab,c->bcc') >>> for w in f.fixed_points(): print(w) abcabbccabcabcabbccbccabcabbccabcabbccab...
This shows that issue Issue #13668 has been resolved:
sage: d = {1:[1,2],2:[2,3],3:[4],4:[5],5:[6],6:[7],7:[8],8:[9],9:[10],10:[1]} sage: s = WordMorphism(d) sage: s7 = s^7 sage: s7.fixed_points() [word: 12232342..., word: 2,3,4,5,6,7,8...] sage: s7r = s7.reversal() sage: s7r.periodic_point(2) word: 2,1,1,10,9,8,7,6,5,4,3,2,1,10,9,8,7,6,5,4,3,2,10,9,8,7,6,5,4,3,2,9,8,7,6,5,4,3,2,8,...
>>> from sage.all import * >>> d = {Integer(1):[Integer(1),Integer(2)],Integer(2):[Integer(2),Integer(3)],Integer(3):[Integer(4)],Integer(4):[Integer(5)],Integer(5):[Integer(6)],Integer(6):[Integer(7)],Integer(7):[Integer(8)],Integer(8):[Integer(9)],Integer(9):[Integer(10)],Integer(10):[Integer(1)]} >>> s = WordMorphism(d) >>> s7 = s**Integer(7) >>> s7.fixed_points() [word: 12232342..., word: 2,3,4,5,6,7,8...] >>> s7r = s7.reversal() >>> s7r.periodic_point(Integer(2)) word: 2,1,1,10,9,8,7,6,5,4,3,2,1,10,9,8,7,6,5,4,3,2,10,9,8,7,6,5,4,3,2,9,8,7,6,5,4,3,2,8,...
This shows that issue Issue #13668 has been resolved:
sage: s = "1->321331332133133,2->133321331332133133,3->2133133133321331332133133" sage: s = WordMorphism(s) sage: (s^2).fixed_points() []
>>> from sage.all import * >>> s = "1->321331332133133,2->133321331332133133,3->2133133133321331332133133" >>> s = WordMorphism(s) >>> (s**Integer(2)).fixed_points() []
- growing_letters()[source]#
Return the list of growing letters.
See
is_growing()
for more information.EXAMPLES:
sage: WordMorphism('0->01,1->10').growing_letters() ['0', '1'] sage: WordMorphism('0->01,1->1').growing_letters() ['0'] sage: WordMorphism('0->01,1->0,2->1',codomain=Words('012')).growing_letters() ['0', '1', '2'] sage: WordMorphism('a->b,b->a').growing_letters() [] sage: WordMorphism('a->b,b->c,c->d,d->c', codomain=Words('abcd')).growing_letters() []
>>> from sage.all import * >>> WordMorphism('0->01,1->10').growing_letters() ['0', '1'] >>> WordMorphism('0->01,1->1').growing_letters() ['0'] >>> WordMorphism('0->01,1->0,2->1',codomain=Words('012')).growing_letters() ['0', '1', '2'] >>> WordMorphism('a->b,b->a').growing_letters() [] >>> WordMorphism('a->b,b->c,c->d,d->c', codomain=Words('abcd')).growing_letters() []
- has_conjugate_in_classP(f=None)[source]#
Return
True
ifself
has a conjugate in class \(f\)-\(P\).DEFINITION : Let \(A\) be an alphabet. We say that a primitive substitution \(S\) is in the class P if there exists a palindrome \(p\) and for each \(b\in A\) a palindrome \(q_b\) such that \(S(b)=pq_b\) for all \(b\in A\). [1]
Let \(f\) be an involution on \(A\). We say that a morphism \(\varphi\) is in class \(f\)-\(P\) if there exists an \(f\)-palindrome \(p\) and for each \(\alpha \in A\) there exists an \(f\)-palindrome \(q_\alpha\) such that \(\varphi(\alpha)=pq_\alpha\). [2]
INPUT:
f
– involution (default: None) on the alphabet ofself
. It must be callable on letters as well as words (e.g. WordMorphism).
REFERENCES:
[1] Hof, A., O. Knill et B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys. 174 (1995) 149-159.
[2] Labbe, Sebastien. Proprietes combinatoires des \(f\)-palindromes, Memoire de maitrise en Mathematiques, Montreal, UQAM, 2008, 109 pages.
EXAMPLES:
sage: fibo = WordMorphism('a->ab,b->a') sage: fibo.has_conjugate_in_classP() True sage: (fibo^2).is_in_classP() False sage: (fibo^2).has_conjugate_in_classP() True
>>> from sage.all import * >>> fibo = WordMorphism('a->ab,b->a') >>> fibo.has_conjugate_in_classP() True >>> (fibo**Integer(2)).is_in_classP() False >>> (fibo**Integer(2)).has_conjugate_in_classP() True
- has_left_conjugate()[source]#
Return
True
if all the non empty images ofself
begins with the same letter.EXAMPLES:
sage: m = WordMorphism('a->abcde,b->xyz') sage: m.has_left_conjugate() False sage: WordMorphism('b->xyz').has_left_conjugate() True sage: WordMorphism('').has_left_conjugate() True sage: WordMorphism('a->,b->xyz').has_left_conjugate() True sage: WordMorphism('a->abbab,b->abb').has_left_conjugate() True sage: WordMorphism('a->abbab,b->abb,c->').has_left_conjugate() True
>>> from sage.all import * >>> m = WordMorphism('a->abcde,b->xyz') >>> m.has_left_conjugate() False >>> WordMorphism('b->xyz').has_left_conjugate() True >>> WordMorphism('').has_left_conjugate() True >>> WordMorphism('a->,b->xyz').has_left_conjugate() True >>> WordMorphism('a->abbab,b->abb').has_left_conjugate() True >>> WordMorphism('a->abbab,b->abb,c->').has_left_conjugate() True
- has_right_conjugate()[source]#
Return
True
if all the non empty images ofself
ends with the same letter.EXAMPLES:
sage: m = WordMorphism('a->abcde,b->xyz') sage: m.has_right_conjugate() False sage: WordMorphism('b->xyz').has_right_conjugate() True sage: WordMorphism('').has_right_conjugate() True sage: WordMorphism('a->,b->xyz').has_right_conjugate() True sage: WordMorphism('a->abbab,b->abb').has_right_conjugate() True sage: WordMorphism('a->abbab,b->abb,c->').has_right_conjugate() True
>>> from sage.all import * >>> m = WordMorphism('a->abcde,b->xyz') >>> m.has_right_conjugate() False >>> WordMorphism('b->xyz').has_right_conjugate() True >>> WordMorphism('').has_right_conjugate() True >>> WordMorphism('a->,b->xyz').has_right_conjugate() True >>> WordMorphism('a->abbab,b->abb').has_right_conjugate() True >>> WordMorphism('a->abbab,b->abb,c->').has_right_conjugate() True
- image(letter)[source]#
Return the image of a letter.
INPUT:
letter
– a letter in the domain alphabet
OUTPUT:
word
Note
The letter is assumed to be in the domain alphabet (no check done). Hence, this method is faster than the
__call__
method suitable for words input.EXAMPLES:
sage: m = WordMorphism('a->ab,b->ac,c->a') sage: m.image('b') word: ac
>>> from sage.all import * >>> m = WordMorphism('a->ab,b->ac,c->a') >>> m.image('b') word: ac
sage: s = WordMorphism({('a', 1):[('a', 1), ('a', 2)], ('a', 2):[('a', 1)]}) sage: s.image(('a',1)) word: ('a', 1),('a', 2)
>>> from sage.all import * >>> s = WordMorphism({('a', Integer(1)):[('a', Integer(1)), ('a', Integer(2))], ('a', Integer(2)):[('a', Integer(1))]}) >>> s.image(('a',Integer(1))) word: ('a', 1),('a', 2)
sage: s = WordMorphism({'b':[1,2], 'a':(2,3,4), 'z':[9,8,7]}) sage: s.image('b') word: 12 sage: s.image('a') word: 234 sage: s.image('z') word: 987
>>> from sage.all import * >>> s = WordMorphism({'b':[Integer(1),Integer(2)], 'a':(Integer(2),Integer(3),Integer(4)), 'z':[Integer(9),Integer(8),Integer(7)]}) >>> s.image('b') word: 12 >>> s.image('a') word: 234 >>> s.image('z') word: 987
- images()[source]#
Return the list of all the images of the letters of the alphabet under
self
.EXAMPLES:
sage: sorted(WordMorphism('a->ab,b->a').images()) [word: a, word: ab] sage: sorted(WordMorphism('6->ab,y->5,0->asd').images()) [word: 5, word: ab, word: asd]
>>> from sage.all import * >>> sorted(WordMorphism('a->ab,b->a').images()) [word: a, word: ab] >>> sorted(WordMorphism('6->ab,y->5,0->asd').images()) [word: 5, word: ab, word: asd]
- immortal_letters()[source]#
Return the list of immortal letters.
A letter \(a\) is immortal for the morphism \(s\) if the length of the iterates of \(| s^n(a) |\) is larger than zero as \(n\) goes to infinity.
Requires this morphism to be self-composable.
EXAMPLES:
sage: WordMorphism('a->a').immortal_letters() ['a'] sage: WordMorphism('a->b,b->a').immortal_letters() ['a', 'b'] sage: WordMorphism('a->abcd,b->cd,c->dd,d->').immortal_letters() ['a'] sage: WordMorphism('a->bc,b->cac,c->de,d->,e->').immortal_letters() ['a', 'b'] sage: WordMorphism('a->', domain=Words('a'), codomain=Words('a')).immortal_letters() [] sage: WordMorphism('a->').immortal_letters() []
>>> from sage.all import * >>> WordMorphism('a->a').immortal_letters() ['a'] >>> WordMorphism('a->b,b->a').immortal_letters() ['a', 'b'] >>> WordMorphism('a->abcd,b->cd,c->dd,d->').immortal_letters() ['a'] >>> WordMorphism('a->bc,b->cac,c->de,d->,e->').immortal_letters() ['a', 'b'] >>> WordMorphism('a->', domain=Words('a'), codomain=Words('a')).immortal_letters() [] >>> WordMorphism('a->').immortal_letters() []
- incidence_matrix()[source]#
Return the incidence matrix of the morphism. The order of the rows and column are given by the order defined on the alphabet of the domain and the codomain.
The matrix returned is over the integers. If a different ring is desired, use either the
change_ring
function or thematrix
function.EXAMPLES:
sage: m = WordMorphism('a->abc,b->a,c->c') sage: m.incidence_matrix() # needs sage.modules [1 1 0] [1 0 0] [1 0 1] sage: m = WordMorphism('a->abc,b->a,c->c,d->abbccccabca,e->abc') sage: m.incidence_matrix() # needs sage.modules [1 1 0 3 1] [1 0 0 3 1] [1 0 1 5 1]
>>> from sage.all import * >>> m = WordMorphism('a->abc,b->a,c->c') >>> m.incidence_matrix() # needs sage.modules [1 1 0] [1 0 0] [1 0 1] >>> m = WordMorphism('a->abc,b->a,c->c,d->abbccccabca,e->abc') >>> m.incidence_matrix() # needs sage.modules [1 1 0 3 1] [1 0 0 3 1] [1 0 1 5 1]
- infinite_repetitions_primitive_roots(w=None, allow_growing=None)[source]#
Return the set of primitive roots (up to conjugacy) of infinite repetitions from the language \(\{m^n(w) | n \ge 0\}\), where \(m\) is this morphism and \(w\) is a word inputted as a parameter.
Requires this morphism to be an endomorphism.
The word \(v^\omega\) is an infinite repetition (in other words, an infinite periodic factor) of a language, if \(v\) is a non-empty word and for each positive integer \(k\) the word \(v^k\) is a factor of some word from the language. It turns out that a language created by iterating a morphism has a finite number of primitive roots of infinite repetitions.
If \(v\) is a primitive root of an infinite repetition, then all its conjugations are also primitive roots of an infinite repetition. For simplicity’s sake this method returns only the lexicographically minimal one from each conjugacy class.
INPUT:
w
– finite iterable (default:self.domain().alphabet()
). Represents a word used to start the language.allow_growing
– boolean orNone
(default:None
). IfFalse
, return only the primitive roots that contain no growing letters. IfTrue
, return only the primitive roots that contain at least one growing letter. IfNone
, return both.
ALGORITHM:
The algorithm used is described in detail in [KS2015].
EXAMPLES:
sage: m = WordMorphism('a->aba,b->aba,c->cd,d->e,e->d') sage: inf_reps = m.infinite_repetitions_primitive_roots('ac') sage: sorted(inf_reps) [word: aab, word: de]
>>> from sage.all import * >>> m = WordMorphism('a->aba,b->aba,c->cd,d->e,e->d') >>> inf_reps = m.infinite_repetitions_primitive_roots('ac') >>> sorted(inf_reps) [word: aab, word: de]
allow_growing
parameter:sage: sorted(m.infinite_repetitions_primitive_roots('ac', True)) [word: aab] sage: sorted(m.infinite_repetitions_primitive_roots('ac', False)) [word: de]
>>> from sage.all import * >>> sorted(m.infinite_repetitions_primitive_roots('ac', True)) [word: aab] >>> sorted(m.infinite_repetitions_primitive_roots('ac', False)) [word: de]
Incomplete check that these words are indeed the primitive roots of infinite repetitions:
sage: SL = m._language_naive(10, Word('ac')) sage: all(x in SL for x in inf_reps) True sage: all(x^2 in SL for x in inf_reps) True sage: all(x^3 in SL for x in inf_reps) True
>>> from sage.all import * >>> SL = m._language_naive(Integer(10), Word('ac')) >>> all(x in SL for x in inf_reps) True >>> all(x**Integer(2) in SL for x in inf_reps) True >>> all(x**Integer(3) in SL for x in inf_reps) True
Large example:
sage: m = WordMorphism('a->1b5,b->fcg,c->dae,d->432,e->678,f->f,g->g,1->2,2->3,3->4,4->1,5->6,6->7,7->8,8->5') sage: sorted(m.infinite_repetitions_primitive_roots('a')) [word: 1432f2143f3214f4321f, word: 5678g8567g7856g6785g]
>>> from sage.all import * >>> m = WordMorphism('a->1b5,b->fcg,c->dae,d->432,e->678,f->f,g->g,1->2,2->3,3->4,4->1,5->6,6->7,7->8,8->5') >>> sorted(m.infinite_repetitions_primitive_roots('a')) [word: 1432f2143f3214f4321f, word: 5678g8567g7856g6785g]
- is_empty()[source]#
Return
True
if the cardinality of the domain is zero andFalse
otherwise.EXAMPLES:
sage: WordMorphism('').is_empty() True sage: WordMorphism('a->a').is_empty() False
>>> from sage.all import * >>> WordMorphism('').is_empty() True >>> WordMorphism('a->a').is_empty() False
- is_endomorphism()[source]#
Return whether
self
is an endomorphism, that is if the domain coincide with the codomain.EXAMPLES:
sage: WordMorphism('a->ab,b->a').is_endomorphism() True sage: WordMorphism('6->ab,y->5,0->asd').is_endomorphism() False sage: WordMorphism('a->a,b->aa,c->aaa').is_endomorphism() False sage: Wabc = Words('abc') sage: m = WordMorphism('a->a,b->aa,c->aaa',codomain = Wabc) sage: m.is_endomorphism() True
>>> from sage.all import * >>> WordMorphism('a->ab,b->a').is_endomorphism() True >>> WordMorphism('6->ab,y->5,0->asd').is_endomorphism() False >>> WordMorphism('a->a,b->aa,c->aaa').is_endomorphism() False >>> Wabc = Words('abc') >>> m = WordMorphism('a->a,b->aa,c->aaa',codomain = Wabc) >>> m.is_endomorphism() True
We check that Issue #8674 is fixed:
sage: P = WordPaths('abcd') # needs sage.modules sage: m = WordMorphism('a->adab,b->ab,c->cbcd,d->cd', # needs sage.modules ....: domain=P, codomain=P) sage: m.is_endomorphism() # needs sage.modules True
>>> from sage.all import * >>> P = WordPaths('abcd') # needs sage.modules >>> m = WordMorphism('a->adab,b->ab,c->cbcd,d->cd', # needs sage.modules ... domain=P, codomain=P) >>> m.is_endomorphism() # needs sage.modules True
- is_erasing()[source]#
Return
True
ifself
is an erasing morphism, i.e. the image of a letter is the empty word.EXAMPLES:
sage: WordMorphism('a->ab,b->a').is_erasing() False sage: WordMorphism('6->ab,y->5,0->asd').is_erasing() False sage: WordMorphism('6->ab,y->5,0->asd,7->').is_erasing() True sage: WordMorphism('').is_erasing() False
>>> from sage.all import * >>> WordMorphism('a->ab,b->a').is_erasing() False >>> WordMorphism('6->ab,y->5,0->asd').is_erasing() False >>> WordMorphism('6->ab,y->5,0->asd,7->').is_erasing() True >>> WordMorphism('').is_erasing() False
- is_growing(letter=None)[source]#
Return
True
ifletter
is a growing letter.A letter \(a\) is growing for the morphism \(s\) if the length of the iterates of \(| s^n(a) |\) tend to infinity as \(n\) goes to infinity.
INPUT:
letter
–None
or a letter in the domain ofself
Note
If letter is
None
, this returnsTrue
ifself
is everywhere growing, i.e., all letters are growing letters (see [CassNic10]), and thatself
must be an endomorphism.EXAMPLES:
sage: WordMorphism('0->01,1->1').is_growing('0') True sage: WordMorphism('0->01,1->1').is_growing('1') False sage: WordMorphism('0->01,1->10').is_growing() True sage: WordMorphism('0->1,1->2,2->01').is_growing() True sage: WordMorphism('0->01,1->1').is_growing() False
>>> from sage.all import * >>> WordMorphism('0->01,1->1').is_growing('0') True >>> WordMorphism('0->01,1->1').is_growing('1') False >>> WordMorphism('0->01,1->10').is_growing() True >>> WordMorphism('0->1,1->2,2->01').is_growing() True >>> WordMorphism('0->01,1->1').is_growing() False
The domain needs to be equal to the codomain:
sage: WordMorphism('0->01,1->0,2->1',codomain=Words('012')).is_growing() True
>>> from sage.all import * >>> WordMorphism('0->01,1->0,2->1',codomain=Words('012')).is_growing() True
Test of erasing morphisms:
sage: WordMorphism('0->01,1->').is_growing('0') False sage: m = WordMorphism('a->bc,b->bcc,c->',codomain=Words('abc')) sage: m.is_growing('a') False sage: m.is_growing('b') False sage: m.is_growing('c') False
>>> from sage.all import * >>> WordMorphism('0->01,1->').is_growing('0') False >>> m = WordMorphism('a->bc,b->bcc,c->',codomain=Words('abc')) >>> m.is_growing('a') False >>> m.is_growing('b') False >>> m.is_growing('c') False
REFERENCES:
[CassNic10]Cassaigne J., Nicolas F. Factor complexity. Combinatorics, automata and number theory, 163–247, Encyclopedia Math. Appl., 135, Cambridge Univ. Press, Cambridge, 2010.
- is_identity()[source]#
Return
True
ifself
is the identity morphism.EXAMPLES:
sage: m = WordMorphism('a->a,b->b,c->c,d->e') sage: m.is_identity() False sage: WordMorphism('a->a,b->b,c->c').is_identity() True sage: WordMorphism('a->a,b->b,c->cb').is_identity() False sage: m = WordMorphism('a->b,b->c,c->a') sage: (m^2).is_identity() False sage: (m^3).is_identity() True sage: (m^4).is_identity() False sage: WordMorphism('').is_identity() True sage: WordMorphism({0:[0],1:[1]}).is_identity() True
>>> from sage.all import * >>> m = WordMorphism('a->a,b->b,c->c,d->e') >>> m.is_identity() False >>> WordMorphism('a->a,b->b,c->c').is_identity() True >>> WordMorphism('a->a,b->b,c->cb').is_identity() False >>> m = WordMorphism('a->b,b->c,c->a') >>> (m**Integer(2)).is_identity() False >>> (m**Integer(3)).is_identity() True >>> (m**Integer(4)).is_identity() False >>> WordMorphism('').is_identity() True >>> WordMorphism({Integer(0):[Integer(0)],Integer(1):[Integer(1)]}).is_identity() True
We check that Issue #8618 is fixed:
sage: t = WordMorphism({'a1':['a2'], 'a2':['a1']}) sage: (t*t).is_identity() True
>>> from sage.all import * >>> t = WordMorphism({'a1':['a2'], 'a2':['a1']}) >>> (t*t).is_identity() True
- is_in_classP(f=None)[source]#
Return
True
ifself
is in class \(P\) (or \(f\)-\(P\)).DEFINITION : Let \(A\) be an alphabet. We say that a primitive substitution \(S\) is in the class P if there exists a palindrome \(p\) and for each \(b\in A\) a palindrome \(q_b\) such that \(S(b)=pq_b\) for all \(b\in A\). [1]
Let \(f\) be an involution on \(A\). “We say that a morphism \(\varphi\) is in class \(f\)-\(P\) if there exists an \(f\)-palindrome \(p\) and for each \(\alpha \in A\) there exists an \(f\)-palindrome \(q_\alpha\) such that \(\varphi(\alpha)=pq_\alpha\). [2]
INPUT:
f
– involution (default: None) on the alphabet ofself
. It must be callable on letters as well as words (e.g. WordMorphism).
REFERENCES:
[1] Hof, A., O. Knill et B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys. 174 (1995) 149-159.
[2] Labbe, Sebastien. Proprietes combinatoires des \(f\)-palindromes, Memoire de maitrise en Mathematiques, Montreal, UQAM, 2008, 109 pages.
EXAMPLES:
sage: WordMorphism('a->bbaba,b->bba').is_in_classP() True sage: tm = WordMorphism('a->ab,b->ba') sage: tm.is_in_classP() False sage: f = WordMorphism('a->b,b->a') sage: tm.is_in_classP(f=f) True sage: (tm^2).is_in_classP() True sage: (tm^2).is_in_classP(f=f) False sage: fibo = WordMorphism('a->ab,b->a') sage: fibo.is_in_classP() True sage: fibo.is_in_classP(f=f) False sage: (fibo^2).is_in_classP() False sage: f = WordMorphism('a->b,b->a,c->c') sage: WordMorphism('a->acbcc,b->acbab,c->acbba').is_in_classP(f) True
>>> from sage.all import * >>> WordMorphism('a->bbaba,b->bba').is_in_classP() True >>> tm = WordMorphism('a->ab,b->ba') >>> tm.is_in_classP() False >>> f = WordMorphism('a->b,b->a') >>> tm.is_in_classP(f=f) True >>> (tm**Integer(2)).is_in_classP() True >>> (tm**Integer(2)).is_in_classP(f=f) False >>> fibo = WordMorphism('a->ab,b->a') >>> fibo.is_in_classP() True >>> fibo.is_in_classP(f=f) False >>> (fibo**Integer(2)).is_in_classP() False >>> f = WordMorphism('a->b,b->a,c->c') >>> WordMorphism('a->acbcc,b->acbab,c->acbba').is_in_classP(f) True
- is_injective()[source]#
Return whether this morphism is injective.
ALGORITHM:
Uses a version of Wikipedia article Sardinas–Patterson_algorithm. Time complexity is on average quadratic with regards to the size of the morphism.
EXAMPLES:
sage: WordMorphism('a->0,b->10,c->110,d->111').is_injective() True sage: WordMorphism('a->00,b->01,c->012,d->20001').is_injective() False
>>> from sage.all import * >>> WordMorphism('a->0,b->10,c->110,d->111').is_injective() True >>> WordMorphism('a->00,b->01,c->012,d->20001').is_injective() False
- is_involution()[source]#
Return
True
ifself
is an involution, i.e. its square is the identity.INPUT:
self
– an endomorphism
EXAMPLES:
sage: WordMorphism('a->b,b->a').is_involution() True sage: WordMorphism('a->b,b->ba').is_involution() False sage: WordMorphism({0:[1],1:[0]}).is_involution() True
>>> from sage.all import * >>> WordMorphism('a->b,b->a').is_involution() True >>> WordMorphism('a->b,b->ba').is_involution() False >>> WordMorphism({Integer(0):[Integer(1)],Integer(1):[Integer(0)]}).is_involution() True
- is_primitive()[source]#
Return
True
ifself
is primitive.A morphism \(\varphi\) is primitive if there exists an positive integer \(k\) such that for all \(\alpha\in\Sigma\), \(\varphi^k(\alpha)\) contains all the letters of \(\Sigma\).
INPUT:
self
– an endomorphism
ALGORITHM:
Exercices 8.7.8, p.281 in [1]: (c) Let \(y(M)\) be the least integer \(e\) such that \(M^e\) has all positive entries. Prove that, for all primitive matrices \(M\), we have \(y(M) \leq (d-1)^2 + 1\). (d) Prove that the bound \(y(M)\leq (d-1)^2+1\) is best possible.
EXAMPLES:
sage: tm = WordMorphism('a->ab,b->ba') sage: tm.is_primitive() # needs sage.modules True sage: fibo = WordMorphism('a->ab,b->a') sage: fibo.is_primitive() # needs sage.modules True sage: m = WordMorphism('a->bb,b->aa') sage: m.is_primitive() # needs sage.modules False sage: f = WordMorphism({0:[1],1:[0]}) sage: f.is_primitive() # needs sage.modules False
>>> from sage.all import * >>> tm = WordMorphism('a->ab,b->ba') >>> tm.is_primitive() # needs sage.modules True >>> fibo = WordMorphism('a->ab,b->a') >>> fibo.is_primitive() # needs sage.modules True >>> m = WordMorphism('a->bb,b->aa') >>> m.is_primitive() # needs sage.modules False >>> f = WordMorphism({Integer(0):[Integer(1)],Integer(1):[Integer(0)]}) >>> f.is_primitive() # needs sage.modules False
sage: s = WordMorphism('a->b,b->c,c->ab') sage: s.is_primitive() # needs sage.modules True sage: s = WordMorphism('a->b,b->c,c->d,d->e,e->f,f->g,g->h,h->ab') sage: s.is_primitive() # needs sage.modules True
>>> from sage.all import * >>> s = WordMorphism('a->b,b->c,c->ab') >>> s.is_primitive() # needs sage.modules True >>> s = WordMorphism('a->b,b->c,c->d,d->e,e->f,f->g,g->h,h->ab') >>> s.is_primitive() # needs sage.modules True
REFERENCES:
[1] Jean-Paul Allouche and Jeffrey Shallit, Automatic Sequences: Theory, Applications, Generalizations, Cambridge University Press, 2003.
- is_prolongable(letter)[source]#
Return
True
ifself
is prolongable onletter
.A morphism \(\varphi\) is prolongable on a letter \(a\) if \(a\) is a prefix of \(\varphi(a)\).
INPUT:
self
– its codomain must be an instance of Wordsletter
– a letter in the domain alphabet
OUTPUT:
Boolean
EXAMPLES:
sage: WordMorphism('a->ab,b->a').is_prolongable(letter='a') True sage: WordMorphism('a->ab,b->a').is_prolongable(letter='b') False sage: WordMorphism('a->ba,b->ab').is_prolongable(letter='b') False sage: (WordMorphism('a->ba,b->ab')^2).is_prolongable(letter='b') True sage: WordMorphism('a->ba,b->').is_prolongable(letter='b') False sage: WordMorphism('a->bb,b->aac').is_prolongable(letter='a') False
>>> from sage.all import * >>> WordMorphism('a->ab,b->a').is_prolongable(letter='a') True >>> WordMorphism('a->ab,b->a').is_prolongable(letter='b') False >>> WordMorphism('a->ba,b->ab').is_prolongable(letter='b') False >>> (WordMorphism('a->ba,b->ab')**Integer(2)).is_prolongable(letter='b') True >>> WordMorphism('a->ba,b->').is_prolongable(letter='b') False >>> WordMorphism('a->bb,b->aac').is_prolongable(letter='a') False
We check that Issue #8595 is fixed:
sage: s = WordMorphism({('a', 1) : [('a', 1), ('a', 2)], ('a', 2) : [('a', 1)]}) sage: s.is_prolongable(('a',1)) True
>>> from sage.all import * >>> s = WordMorphism({('a', Integer(1)) : [('a', Integer(1)), ('a', Integer(2))], ('a', Integer(2)) : [('a', Integer(1))]}) >>> s.is_prolongable(('a',Integer(1))) True
- is_pushy(w=None)[source]#
Return whether the language \(\{m^n(w) | n \ge 0\}\) is pushy, where \(m\) is this morphism and \(w\) is a word inputted as a parameter.
Requires this morphism to be an endomorphism.
A language created by iterating a morphism is pushy, if its words contain an infinite number of factors containing no growing letters. It turns out that this is equivalent to having at least one infinite repetition containing no growing letters.
See
infinite_repetitions_primitive_roots()
andis_growing()
.INPUT:
w
– finite iterable (default:self.domain().alphabet()
). Represents a word used to start the language.
EXAMPLES:
sage: WordMorphism('a->abca,b->bc,c->').is_pushy() False sage: WordMorphism('a->abc,b->,c->bcb').is_pushy() True
>>> from sage.all import * >>> WordMorphism('a->abca,b->bc,c->').is_pushy() False >>> WordMorphism('a->abc,b->,c->bcb').is_pushy() True
- is_repetitive(w=None)[source]#
Return whether the language \(\{m^n(w) | n \ge 0\}\) is repetitive, where \(m\) is this morphism and \(w\) is a word inputted as a parameter.
Requires this morphism to be an endomorphism.
A language is repetitive, if for each positive integer \(k\) there exists a word \(u\) such that \(u^k\) is a factor of some word of the language.
It turns out that for languages created by iterating a morphism this is equivalent to having at least one infinite repetition (this property is also known as strong repetitiveness).
See
infinite_repetitions_primitive_roots()
.INPUT:
w
– finite iterable (default:self.domain().alphabet()
). Represents a word used to start the language.
EXAMPLES:
This method can be used to check whether a purely morphic word is not k-power free for all positive integers k. For example, the language containing just the Thue-Morse word and its prefixes is not repetitive, since the Thue-Morse word is cube-free:
sage: WordMorphism('a->ab,b->ba').is_repetitive('a') False
>>> from sage.all import * >>> WordMorphism('a->ab,b->ba').is_repetitive('a') False
Similarly, the Hanoi word is square-free:
sage: WordMorphism('a->aC,A->ac,b->cB,B->cb,c->bA,C->ba').is_repetitive('a') False
>>> from sage.all import * >>> WordMorphism('a->aC,A->ac,b->cB,B->cb,c->bA,C->ba').is_repetitive('a') False
However, this method solves a more general problem, as it can be called on any morphism \(m\) and with any word \(w\):
sage: WordMorphism('a->c,b->cda,c->a,d->abc').is_repetitive('bd') True
>>> from sage.all import * >>> WordMorphism('a->c,b->cda,c->a,d->abc').is_repetitive('bd') True
- is_self_composable()[source]#
Return whether the codomain of
self
is contained in the domain.EXAMPLES:
sage: f = WordMorphism('a->a,b->a') sage: f.is_endomorphism() False sage: f.is_self_composable() True
>>> from sage.all import * >>> f = WordMorphism('a->a,b->a') >>> f.is_endomorphism() False >>> f.is_self_composable() True
- is_unboundedly_repetitive(w=None)[source]#
Return whether the language \(\{m^n(w) | n \ge 0\}\) is unboundedly repetitive, where \(m\) is this morphism and \(w\) is a word inputted as a parameter.
Requires this morphism to be an endomorphism.
A language created by iterating a morphism is unboundedly repetitive, if it has at least one infinite repetition containing at least one growing letter.
See
infinite_repetitions_primitive_roots()
andis_growing()
.INPUT:
w
– finite iterable (default:self.domain().alphabet()
). Represents a word used to start the language.
EXAMPLES:
sage: WordMorphism('a->abca,b->bc,c->').is_unboundedly_repetitive() True sage: WordMorphism('a->abc,b->,c->bcb').is_unboundedly_repetitive() False
>>> from sage.all import * >>> WordMorphism('a->abca,b->bc,c->').is_unboundedly_repetitive() True >>> WordMorphism('a->abc,b->,c->bcb').is_unboundedly_repetitive() False
- is_uniform(k=None)[source]#
Return
True
ifself
is a \(k\)-uniform morphism.Let \(k\) be a positive integer. A morphism \(\phi\) is called \(k\)-uniform if for every letter \(\alpha\), we have \(|\phi(\alpha)| = k\). In other words, all images have length \(k\). A morphism is called uniform if it is \(k\)-uniform for some positive integer \(k\).
INPUT:
k
– a positive integer orNone
. If set to a positive integer, then the function returnTrue
ifself
is \(k\)-uniform. If set toNone
, then the function returnTrue
ifself
is uniform.
EXAMPLES:
sage: phi = WordMorphism('a->ab,b->a') sage: phi.is_uniform() False sage: phi.is_uniform(k=1) False sage: tau = WordMorphism('a->ab,b->ba') sage: tau.is_uniform() True sage: tau.is_uniform(k=1) False sage: tau.is_uniform(k=2) True
>>> from sage.all import * >>> phi = WordMorphism('a->ab,b->a') >>> phi.is_uniform() False >>> phi.is_uniform(k=Integer(1)) False >>> tau = WordMorphism('a->ab,b->ba') >>> tau.is_uniform() True >>> tau.is_uniform(k=Integer(1)) False >>> tau.is_uniform(k=Integer(2)) True
- language(n, u=None)[source]#
Return the words of length
n
in the language generated by this substitution.Given a non-erasing substitution \(s\) and a word \(u\) the DOL-language generated by \(s\) and \(u\) is the union of the factors of \(s^n(u)\) where \(n\) is a non-negative integer.
INPUT:
n
– non-negative integer; length of the words in the languageu
– a word orNone
(default:None
); if set toNone
some letter of the alphabet is used
OUTPUT: a Python set
EXAMPLES:
The fibonacci morphism:
sage: s = WordMorphism({0: [0,1], 1: [0]}) sage: sorted(s.language(3)) # needs sage.modules [word: 001, word: 010, word: 100, word: 101] sage: len(s.language(1000)) # needs sage.modules 1001 sage: all(len(s.language(n)) == n+1 for n in range(100)) # needs sage.modules True
>>> from sage.all import * >>> s = WordMorphism({Integer(0): [Integer(0),Integer(1)], Integer(1): [Integer(0)]}) >>> sorted(s.language(Integer(3))) # needs sage.modules [word: 001, word: 010, word: 100, word: 101] >>> len(s.language(Integer(1000))) # needs sage.modules 1001 >>> all(len(s.language(n)) == n+Integer(1) for n in range(Integer(100))) # needs sage.modules True
A growing but non-primitive example. The DOL-languages generated by 0 and 2 are different:
sage: s = WordMorphism({0: [0,1], 1: [0], 2: [2,0,2]}) sage: u = s.fixed_point(0) sage: A0 = u[:200].factor_set(5) # needs sage.modules sage: B0 = s.language(5, [0]) # needs sage.modules sage: set(A0) == B0 # needs sage.modules True sage: v = s.fixed_point(2) sage: A2 = v[:200].factor_set(5) # needs sage.modules sage: B2 = s.language(5, [2]) # needs sage.modules sage: set(A2) == B2 # needs sage.modules True sage: len(A0), len(A2) # needs sage.modules (6, 20)
>>> from sage.all import * >>> s = WordMorphism({Integer(0): [Integer(0),Integer(1)], Integer(1): [Integer(0)], Integer(2): [Integer(2),Integer(0),Integer(2)]}) >>> u = s.fixed_point(Integer(0)) >>> A0 = u[:Integer(200)].factor_set(Integer(5)) # needs sage.modules >>> B0 = s.language(Integer(5), [Integer(0)]) # needs sage.modules >>> set(A0) == B0 # needs sage.modules True >>> v = s.fixed_point(Integer(2)) >>> A2 = v[:Integer(200)].factor_set(Integer(5)) # needs sage.modules >>> B2 = s.language(Integer(5), [Integer(2)]) # needs sage.modules >>> set(A2) == B2 # needs sage.modules True >>> len(A0), len(A2) # needs sage.modules (6, 20)
The Chacon transformation (non-primitive):
sage: s = WordMorphism({0: [0,0,1,0], 1:[1]}) sage: sorted(s.language(10)) # needs sage.modules [word: 0001000101, word: 0001010010, ... word: 1010010001, word: 1010010100]
>>> from sage.all import * >>> s = WordMorphism({Integer(0): [Integer(0),Integer(0),Integer(1),Integer(0)], Integer(1):[Integer(1)]}) >>> sorted(s.language(Integer(10))) # needs sage.modules [word: 0001000101, word: 0001010010, ... word: 1010010001, word: 1010010100]
- latex_layout(layout=None)[source]#
Get or set the actual latex layout (oneliner vs array).
INPUT:
layout
– string (default:None
), can take one of the following values:None
– Returns the actual latex layout. By default, the layout is'array'
'oneliner'
– Set the layout to'oneliner'
'array'
– Set the layout to'array'
EXAMPLES:
sage: s = WordMorphism('a->ab,b->ba') sage: s.latex_layout() 'array' sage: s.latex_layout('oneliner') sage: s.latex_layout() 'oneliner'
>>> from sage.all import * >>> s = WordMorphism('a->ab,b->ba') >>> s.latex_layout() 'array' >>> s.latex_layout('oneliner') >>> s.latex_layout() 'oneliner'
- letter_growth_types()[source]#
Return the mortal, polynomial and exponential growing letters.
The growth of \(| s^n(a) |\) as \(n\) goes to \(\infty\) is always of the form \(\alpha^n n^\beta\) (where \(\alpha\) is a Perron number and \(\beta\) an integer).
Without doing any linear algebra three cases can be differentiated: mortal (ultimately empty or \(\alpha=0\)); polynomial (\(\alpha=1\)); exponential (\(\alpha > 1\)). This is what is done in this method.
It requires this morphism to be an endomorphism.
OUTPUT:
The output is a 3-tuple of lists (mortal, polynomial, exponential) where:
mortal
: list of mortal letterspolynomial
: a list of lists wherepolynomial[i]
is the list of letters with growth \(n^i\).exponential
: list of at least exponentionally growing letters
EXAMPLES:
sage: s = WordMorphism('a->abc,b->bc,c->c') sage: mortal, poly, expo = s.letter_growth_types() sage: mortal [] sage: poly [['c'], ['b'], ['a']] sage: expo []
>>> from sage.all import * >>> s = WordMorphism('a->abc,b->bc,c->c') >>> mortal, poly, expo = s.letter_growth_types() >>> mortal [] >>> poly [['c'], ['b'], ['a']] >>> expo []
When three mortal letters (c, d, and e), and two letters (a, b) are not growing:
sage: s = WordMorphism('a->bc,b->cac,c->de,d->,e->') sage: s^20 WordMorphism: a->cacde, b->debcde, c->, d->, e-> sage: mortal, poly, expo = s.letter_growth_types() sage: mortal ['c', 'd', 'e'] sage: poly [['a', 'b']] sage: expo []
>>> from sage.all import * >>> s = WordMorphism('a->bc,b->cac,c->de,d->,e->') >>> s**Integer(20) WordMorphism: a->cacde, b->debcde, c->, d->, e-> >>> mortal, poly, expo = s.letter_growth_types() >>> mortal ['c', 'd', 'e'] >>> poly [['a', 'b']] >>> expo []
sage: s = WordMorphism('a->abcd,b->bc,c->c,d->a') sage: mortal, poly, expo = s.letter_growth_types() sage: mortal [] sage: poly [['c'], ['b']] sage: expo ['a', 'd']
>>> from sage.all import * >>> s = WordMorphism('a->abcd,b->bc,c->c,d->a') >>> mortal, poly, expo = s.letter_growth_types() >>> mortal [] >>> poly [['c'], ['b']] >>> expo ['a', 'd']
- list_of_conjugates()[source]#
Return the list of all the conjugate morphisms of
self
.DEFINITION:
Recall from Lothaire [1] (Section 2.3.4) that \(\varphi\) is right conjugate of \(\varphi'\), noted \(\varphi\triangleleft\varphi'\), if there exists \(u \in \Sigma^*\) such that
\[\varphi(\alpha)u = u\varphi'(\alpha),\]for all \(\alpha \in \Sigma\), or equivalently that \(\varphi(x)u = u\varphi'(x)\), for all words \(x \in \Sigma^*\). Clearly, this relation is not symmetric so that we say that two morphisms \(\varphi\) and \(\varphi'\) are conjugate, noted \(\varphi\bowtie\varphi'\), if \(\varphi\triangleleft\varphi'\) or \(\varphi'\triangleleft\varphi\). It is easy to see that conjugacy of morphisms is an equivalence relation.
REFERENCES:
[1] M. Lothaire, Algebraic Combinatorics on words, Cambridge University Press, 2002.
EXAMPLES:
sage: m = WordMorphism('a->abbab,b->abb') sage: m.list_of_conjugates() [WordMorphism: a->babba, b->bab, WordMorphism: a->abbab, b->abb, WordMorphism: a->bbaba, b->bba, WordMorphism: a->babab, b->bab, WordMorphism: a->ababb, b->abb, WordMorphism: a->babba, b->bba, WordMorphism: a->abbab, b->bab] sage: m = WordMorphism('a->aaa,b->aa') sage: m.list_of_conjugates() [WordMorphism: a->aaa, b->aa] sage: WordMorphism('').list_of_conjugates() [WordMorphism: ] sage: m = WordMorphism('a->aba,b->aba') sage: m.list_of_conjugates() [WordMorphism: a->baa, b->baa, WordMorphism: a->aab, b->aab, WordMorphism: a->aba, b->aba] sage: m = WordMorphism('a->abb,b->abbab,c->') sage: m.list_of_conjugates() [WordMorphism: a->bab, b->babba, c->, WordMorphism: a->abb, b->abbab, c->, WordMorphism: a->bba, b->bbaba, c->, WordMorphism: a->bab, b->babab, c->, WordMorphism: a->abb, b->ababb, c->, WordMorphism: a->bba, b->babba, c->, WordMorphism: a->bab, b->abbab, c->]
>>> from sage.all import * >>> m = WordMorphism('a->abbab,b->abb') >>> m.list_of_conjugates() [WordMorphism: a->babba, b->bab, WordMorphism: a->abbab, b->abb, WordMorphism: a->bbaba, b->bba, WordMorphism: a->babab, b->bab, WordMorphism: a->ababb, b->abb, WordMorphism: a->babba, b->bba, WordMorphism: a->abbab, b->bab] >>> m = WordMorphism('a->aaa,b->aa') >>> m.list_of_conjugates() [WordMorphism: a->aaa, b->aa] >>> WordMorphism('').list_of_conjugates() [WordMorphism: ] >>> m = WordMorphism('a->aba,b->aba') >>> m.list_of_conjugates() [WordMorphism: a->baa, b->baa, WordMorphism: a->aab, b->aab, WordMorphism: a->aba, b->aba] >>> m = WordMorphism('a->abb,b->abbab,c->') >>> m.list_of_conjugates() [WordMorphism: a->bab, b->babba, c->, WordMorphism: a->abb, b->abbab, c->, WordMorphism: a->bba, b->bbaba, c->, WordMorphism: a->bab, b->babab, c->, WordMorphism: a->abb, b->ababb, c->, WordMorphism: a->bba, b->babba, c->, WordMorphism: a->bab, b->abbab, c->]
- partition_of_domain_alphabet()[source]#
Return a partition of the domain alphabet.
Let \(\varphi:\Sigma^*\rightarrow\Sigma^*\) be an involution. There exists a triple of sets \((A, B, C)\) such that
\(A \cup B \cup C =\Sigma\);
\(A\), \(B\) and \(C\) are mutually disjoint and
\(\varphi(A)= B\), \(\varphi(B)= A\), \(\varphi(C)= C\).
These sets are not unique.
INPUT:
self
– An involution.
OUTPUT:
A tuple of three sets
EXAMPLES:
sage: m = WordMorphism('a->b,b->a') sage: m.partition_of_domain_alphabet() # random ordering ({'a'}, {'b'}, {}) sage: m = WordMorphism('a->b,b->a,c->c') sage: m.partition_of_domain_alphabet() # random ordering ({'a'}, {'b'}, {'c'}) sage: m = WordMorphism('a->a,b->b,c->c') sage: m.partition_of_domain_alphabet() # random ordering ({}, {}, {'a', 'c', 'b'}) sage: m = WordMorphism('A->T,T->A,C->G,G->C') sage: m.partition_of_domain_alphabet() # random ordering ({'A', 'C'}, {'T', 'G'}, {}) sage: I = WordMorphism({0:oo,oo:0,1:-1,-1:1,2:-2,-2:2,3:-3,-3:3}) sage: I.partition_of_domain_alphabet() # random ordering ({0, -1, -3, -2}, {1, 2, 3, +Infinity}, {})
>>> from sage.all import * >>> m = WordMorphism('a->b,b->a') >>> m.partition_of_domain_alphabet() # random ordering ({'a'}, {'b'}, {}) >>> m = WordMorphism('a->b,b->a,c->c') >>> m.partition_of_domain_alphabet() # random ordering ({'a'}, {'b'}, {'c'}) >>> m = WordMorphism('a->a,b->b,c->c') >>> m.partition_of_domain_alphabet() # random ordering ({}, {}, {'a', 'c', 'b'}) >>> m = WordMorphism('A->T,T->A,C->G,G->C') >>> m.partition_of_domain_alphabet() # random ordering ({'A', 'C'}, {'T', 'G'}, {}) >>> I = WordMorphism({Integer(0):oo,oo:Integer(0),Integer(1):-Integer(1),-Integer(1):Integer(1),Integer(2):-Integer(2),-Integer(2):Integer(2),Integer(3):-Integer(3),-Integer(3):Integer(3)}) >>> I.partition_of_domain_alphabet() # random ordering ({0, -1, -3, -2}, {1, 2, 3, +Infinity}, {})
- periodic_point(letter)[source]#
Return the periodic point of self that starts with
letter
.EXAMPLES:
sage: f = WordMorphism('a->bab,b->ab') sage: f.periodic_point('a') word: abbababbababbabababbababbabababbababbaba... sage: f.fixed_point('a') Traceback (most recent call last): ... TypeError: self must be prolongable on a
>>> from sage.all import * >>> f = WordMorphism('a->bab,b->ab') >>> f.periodic_point('a') word: abbababbababbabababbababbabababbababbaba... >>> f.fixed_point('a') Traceback (most recent call last): ... TypeError: self must be prolongable on a
Make sure that Issue #31759 is fixed:
sage: WordMorphism('a->b,b->a').periodic_point('a') word: a
>>> from sage.all import * >>> WordMorphism('a->b,b->a').periodic_point('a') word: a
- periodic_points()[source]#
Return the periodic points of
f
as a list of tuples where each tuple is a periodic orbit off
.EXAMPLES:
sage: f = WordMorphism('a->aba,b->baa') sage: for p in f.periodic_points(): ....: print("{} , {}".format(len(p), p[0])) 1 , ababaaababaaabaabaababaaababaaabaabaabab... 1 , baaabaabaababaaabaababaaabaababaaababaaa... sage: f = WordMorphism('a->bab,b->aa') sage: for p in f.periodic_points(): ....: print("{} , {}".format(len(p), p[0])) 2 , aababaaaababaababbabaababaababbabaababaa... sage: f.fixed_points() []
>>> from sage.all import * >>> f = WordMorphism('a->aba,b->baa') >>> for p in f.periodic_points(): ... print("{} , {}".format(len(p), p[Integer(0)])) 1 , ababaaababaaabaabaababaaababaaabaabaabab... 1 , baaabaabaababaaabaababaaabaababaaababaaa... >>> f = WordMorphism('a->bab,b->aa') >>> for p in f.periodic_points(): ... print("{} , {}".format(len(p), p[Integer(0)])) 2 , aababaaaababaababbabaababaababbabaababaa... >>> f.fixed_points() []
This shows that issue Issue #13668 has been resolved:
sage: d = {1:[1,2],2:[2,3],3:[4],4:[5],5:[6],6:[7],7:[8],8:[9],9:[10],10:[1]} sage: s = WordMorphism(d) sage: s7 = s^7 sage: s7r = s7.reversal() sage: for p in s7r.periodic_points(): p [word: 1,10,9,8,7,6,5,4,3,2,10,9,8,7,6,5,4,3,2,..., word: 8765432765432654325432432322176543265432..., word: 5,4,3,2,4,3,2,3,2,2,1,4,3,2,3,2,2,1,3,2,..., word: 2,1,1,10,9,8,7,6,5,4,3,2,1,10,9,8,7,6,5,..., word: 9876543287654327654326543254324323221876..., word: 6543254324323221543243232214323221322121..., word: 3,2,2,1,2,1,1,10,9,8,7,6,5,4,3,2,2,1,1,1..., word: 10,9,8,7,6,5,4,3,2,9,8,7,6,5,4,3,2,8,7,6..., word: 7654326543254324323221654325432432322154..., word: 4,3,2,3,2,2,1,3,2,2,1,2,1,1,10,9,8,7,6,5...]
>>> from sage.all import * >>> d = {Integer(1):[Integer(1),Integer(2)],Integer(2):[Integer(2),Integer(3)],Integer(3):[Integer(4)],Integer(4):[Integer(5)],Integer(5):[Integer(6)],Integer(6):[Integer(7)],Integer(7):[Integer(8)],Integer(8):[Integer(9)],Integer(9):[Integer(10)],Integer(10):[Integer(1)]} >>> s = WordMorphism(d) >>> s7 = s**Integer(7) >>> s7r = s7.reversal() >>> for p in s7r.periodic_points(): p [word: 1,10,9,8,7,6,5,4,3,2,10,9,8,7,6,5,4,3,2,..., word: 8765432765432654325432432322176543265432..., word: 5,4,3,2,4,3,2,3,2,2,1,4,3,2,3,2,2,1,3,2,..., word: 2,1,1,10,9,8,7,6,5,4,3,2,1,10,9,8,7,6,5,..., word: 9876543287654327654326543254324323221876..., word: 6543254324323221543243232214323221322121..., word: 3,2,2,1,2,1,1,10,9,8,7,6,5,4,3,2,2,1,1,1..., word: 10,9,8,7,6,5,4,3,2,9,8,7,6,5,4,3,2,8,7,6..., word: 7654326543254324323221654325432432322154..., word: 4,3,2,3,2,2,1,3,2,2,1,2,1,1,10,9,8,7,6,5...]
Make sure that Issue #31454 is fixed:
sage: WordMorphism('a->a,b->bb').periodic_points() [[word: bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb...]]
>>> from sage.all import * >>> WordMorphism('a->a,b->bb').periodic_points() [[word: bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb...]]
- pisot_eigenvector_left()[source]#
Return the left eigenvector of the incidence matrix associated to the largest eigenvalue (in absolute value).
Unicity of the result is guaranteed when the multiplicity of the largest eigenvalue is one, for example when self is a Pisot irreductible substitution.
A substitution is Pisot irreducible if the characteristic polynomial of its incidence matrix is irreducible over \(\QQ\) and has all roots, except one, of modulus strictly smaller than 1.
INPUT:
self
– a Pisot irreducible substitution.
EXAMPLES:
sage: m = WordMorphism('a->aaaabbc,b->aaabbc,c->aabc') sage: matrix(m) # needs sage.modules [4 3 2] [2 2 1] [1 1 1] sage: m.pisot_eigenvector_left() # needs sage.modules sage.rings.number_field (1, 0.8392867552141611?, 0.5436890126920763?)
>>> from sage.all import * >>> m = WordMorphism('a->aaaabbc,b->aaabbc,c->aabc') >>> matrix(m) # needs sage.modules [4 3 2] [2 2 1] [1 1 1] >>> m.pisot_eigenvector_left() # needs sage.modules sage.rings.number_field (1, 0.8392867552141611?, 0.5436890126920763?)
- pisot_eigenvector_right()[source]#
Return the right eigenvector of the incidence matrix associated to the largest eigenvalue (in absolute value).
Unicity of the result is guaranteed when the multiplicity of the largest eigenvalue is one, for example when self is a Pisot irreductible substitution.
A substitution is Pisot irreducible if the characteristic polynomial of its incidence matrix is irreducible over \(\QQ\) and has all roots, except one, of modulus strictly smaller than 1.
INPUT:
self
– a Pisot irreducible substitution.
EXAMPLES:
sage: m = WordMorphism('a->aaaabbc,b->aaabbc,c->aabc') sage: matrix(m) # needs sage.modules [4 3 2] [2 2 1] [1 1 1] sage: m.pisot_eigenvector_right() # needs sage.modules sage.rings.number_field (1, 0.5436890126920763?, 0.2955977425220848?)
>>> from sage.all import * >>> m = WordMorphism('a->aaaabbc,b->aaabbc,c->aabc') >>> matrix(m) # needs sage.modules [4 3 2] [2 2 1] [1 1 1] >>> m.pisot_eigenvector_right() # needs sage.modules sage.rings.number_field (1, 0.5436890126920763?, 0.2955977425220848?)
- rauzy_fractal_plot(n=None, exchange=False, eig=None, translate=None, prec=53, colormap='hsv', opacity=None, plot_origin=None, plot_basis=False, point_size=None)[source]#
Return a plot of the Rauzy fractal associated with a substitution.
The substitution does not have to be irreducible. The usual definition of a Rauzy fractal requires that its dominant eigenvalue is a Pisot number but the present method doesn’t require this, allowing to plot some interesting pictures in the non-Pisot case (see the examples below).
For more details about the definition of the fractal and the projection which is used, see Section 3.1 of [1].
Plots with less than 100,000 points take a few seconds, and several millions of points can be plotted in reasonable time.
Other ways to draw Rauzy fractals (and more generally projections of paths) can be found in
sage.combinat.words.paths.FiniteWordPath_all.plot_projection()
or insage.combinat.e_one_star()
.OUTPUT:
A Graphics object.
INPUT:
n
– integer (default:None
) The number of points used to plot the fractal. Default values:1000
for a 1D fractal,50000
for a 2D fractal,10000
for a 3D fractal.exchange
– boolean (default:False
). Plot the Rauzy fractal with domain exchange.eig
– a real element ofQQbar
of degree >= 2 (default:None
). The eigenvalue used to plot the fractal. It must be an eigenvalue ofself.incidence_matrix()
. The one used by default the maximal eigenvalue ofself.incidence_matrix()
(usually a Pisot number), but for substitutions with more than 3 letters other interesting choices are sometimes possible.translate
– a list of vectors ofRR^size_alphabet
, or a dictionary from the alphabet to lists of vectors (default:None
). Plot translated copies of the fractal. This option allows to plot tilings easily. The projection used for these vectors is the same as the projection used for the canonical basis to plot the fractal. If the input is a list, all the pieces will be translated and plotted. If the input is a dictionary, each piece will be translated and plotted accordingly to the vectors associated with each letter in the dictionary. Note: by default, the Rauzy fractal placed at the origin is not plotted with thetranslate
option; the vector(0,0,...,0)
has to be added manually.prec
– integer (default:53
). The number of bits used in the floating point representations of the points of the fractal.colormap
– color map or dictionary (default:'hsv'
). It can be one of the following:string
– a coloring map. For available coloring map names type:sorted(colormaps)
dict
– a dictionary of the alphabet mapped to colors.
opacity
– a dictionary from the alphabet to the real interval [0,1] (default:None
). If none is specified, all letters are plotted with opacity1
.plot_origin
– a couple(k,c)
(default:None
). If specified, mark the origin by a point of sizek
and colorc
.plot_basis
– boolean (default:False
). Plot the projection of the canonical basis with the fractal.point_size
– float (default:None
). The size of the points used to plot the fractal.
EXAMPLES:
The Rauzy fractal of the Tribonacci substitution:
sage: s = WordMorphism('1->12,2->13,3->1') sage: s.rauzy_fractal_plot() # long time # needs sage.plot Graphics object consisting of 3 graphics primitives
>>> from sage.all import * >>> s = WordMorphism('1->12,2->13,3->1') >>> s.rauzy_fractal_plot() # long time # needs sage.plot Graphics object consisting of 3 graphics primitives
The “Hokkaido” fractal. We tweak the plot using the plotting options to get a nice reusable picture, in which we mark the origin by a black dot:
sage: s = WordMorphism('a->ab,b->c,c->d,d->e,e->a') sage: G = s.rauzy_fractal_plot(n=100000, point_size=3, # not tested ....: plot_origin=(50,"black")) sage: G.show(figsize=10, axes=false) # not tested
>>> from sage.all import * >>> s = WordMorphism('a->ab,b->c,c->d,d->e,e->a') >>> G = s.rauzy_fractal_plot(n=Integer(100000), point_size=Integer(3), # not tested ... plot_origin=(Integer(50),"black")) >>> G.show(figsize=Integer(10), axes=false) # not tested
Another “Hokkaido” fractal and its domain exchange:
sage: s = WordMorphism({1:[2], 2:[4,3], 3:[4], 4:[5,3], 5:[6], 6:[1]}) sage: s.rauzy_fractal_plot() # not tested (> 1 second) sage: s.rauzy_fractal_plot(exchange=True) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism({Integer(1):[Integer(2)], Integer(2):[Integer(4),Integer(3)], Integer(3):[Integer(4)], Integer(4):[Integer(5),Integer(3)], Integer(5):[Integer(6)], Integer(6):[Integer(1)]}) >>> s.rauzy_fractal_plot() # not tested (> 1 second) >>> s.rauzy_fractal_plot(exchange=True) # not tested (> 1 second)
A three-dimensional Rauzy fractal:
sage: s = WordMorphism('1->12,2->13,3->14,4->1') sage: s.rauzy_fractal_plot() # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism('1->12,2->13,3->14,4->1') >>> s.rauzy_fractal_plot() # not tested (> 1 second)
A one-dimensional Rauzy fractal (very scattered):
sage: s = WordMorphism('1->2122,2->1') sage: s.rauzy_fractal_plot().show(figsize=20) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism('1->2122,2->1') >>> s.rauzy_fractal_plot().show(figsize=Integer(20)) # not tested (> 1 second)
A high resolution plot of a complicated fractal:
sage: s = WordMorphism('1->23,2->123,3->1122233') sage: G = s.rauzy_fractal_plot(n=300000) # not tested (> 1 second) sage: G.show(axes=false, figsize=20) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism('1->23,2->123,3->1122233') >>> G = s.rauzy_fractal_plot(n=Integer(300000)) # not tested (> 1 second) >>> G.show(axes=false, figsize=Integer(20)) # not tested (> 1 second)
A nice colorful animation of a domain exchange:
sage: s = WordMorphism('1->21,2->3,3->4,4->25,5->6,6->7,7->1') sage: L = [s.rauzy_fractal_plot(), # not tested (> 1 second) ....: s.rauzy_fractal_plot(exchange=True)] sage: animate(L, axes=false).show(delay=100) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism('1->21,2->3,3->4,4->25,5->6,6->7,7->1') >>> L = [s.rauzy_fractal_plot(), # not tested (> 1 second) ... s.rauzy_fractal_plot(exchange=True)] >>> animate(L, axes=false).show(delay=Integer(100)) # not tested (> 1 second)
Plotting with only one color:
sage: s = WordMorphism('1->12,2->31,3->1') sage: cm = {'1':'black', '2':'black', '3':'black'} sage: s.rauzy_fractal_plot(colormap=cm) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism('1->12,2->31,3->1') >>> cm = {'1':'black', '2':'black', '3':'black'} >>> s.rauzy_fractal_plot(colormap=cm) # not tested (> 1 second)
Different fractals can be obtained by choosing another (non-Pisot) eigenvalue:
sage: s = WordMorphism('1->12,2->3,3->45,4->5,5->6,6->7,7->8,8->1') sage: E = s.incidence_matrix().eigenvalues() # needs sage.modules sage: x = [x for x in E if -0.8 < x < -0.7][0] # needs sage.modules sage: s.rauzy_fractal_plot() # not tested (> 1 second) sage: s.rauzy_fractal_plot(eig=x) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism('1->12,2->3,3->45,4->5,5->6,6->7,7->8,8->1') >>> E = s.incidence_matrix().eigenvalues() # needs sage.modules >>> x = [x for x in E if -RealNumber('0.8') < x < -RealNumber('0.7')][Integer(0)] # needs sage.modules >>> s.rauzy_fractal_plot() # not tested (> 1 second) >>> s.rauzy_fractal_plot(eig=x) # not tested (> 1 second)
A Pisot reducible substitution with seemingly overlapping tiles:
sage: s = WordMorphism({1:[1,2], 2:[2,3], 3:[4], 4:[5], 5:[6], ....: 6:[7], 7:[8], 8:[9], 9:[10], 10:[1]}) sage: s.rauzy_fractal_plot() # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism({Integer(1):[Integer(1),Integer(2)], Integer(2):[Integer(2),Integer(3)], Integer(3):[Integer(4)], Integer(4):[Integer(5)], Integer(5):[Integer(6)], ... Integer(6):[Integer(7)], Integer(7):[Integer(8)], Integer(8):[Integer(9)], Integer(9):[Integer(10)], Integer(10):[Integer(1)]}) >>> s.rauzy_fractal_plot() # not tested (> 1 second)
A non-Pisot reducible substitution with a strange Rauzy fractal:
sage: s = WordMorphism({1:[3,2], 2:[3,3], 3:[4], 4:[1]}) sage: s.rauzy_fractal_plot() # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism({Integer(1):[Integer(3),Integer(2)], Integer(2):[Integer(3),Integer(3)], Integer(3):[Integer(4)], Integer(4):[Integer(1)]}) >>> s.rauzy_fractal_plot() # not tested (> 1 second)
A substitution with overlapping tiles. We use the options
colormap
andopacity
to study how the tiles overlap:sage: s = WordMorphism('1->213,2->4,3->5,4->1,5->21') sage: s.rauzy_fractal_plot() # not tested (> 1 second) sage: s.rauzy_fractal_plot(colormap={'1':'red', '4':'purple'}) # not tested (> 1 second) sage: s.rauzy_fractal_plot(n=150000, # not tested (> 1 second) ....: opacity={'1':0.1,'2':1,'3':0.1,'4':0.1,'5':0.1})
>>> from sage.all import * >>> s = WordMorphism('1->213,2->4,3->5,4->1,5->21') >>> s.rauzy_fractal_plot() # not tested (> 1 second) >>> s.rauzy_fractal_plot(colormap={'1':'red', '4':'purple'}) # not tested (> 1 second) >>> s.rauzy_fractal_plot(n=Integer(150000), # not tested (> 1 second) ... opacity={'1':RealNumber('0.1'),'2':Integer(1),'3':RealNumber('0.1'),'4':RealNumber('0.1'),'5':RealNumber('0.1')})
Funny experiments by playing with the precision of the float numbers used to plot the fractal:
sage: s = WordMorphism('1->12,2->13,3->1') sage: s.rauzy_fractal_plot(prec=6) # not tested sage: s.rauzy_fractal_plot(prec=9) # not tested sage: s.rauzy_fractal_plot(prec=15) # not tested sage: s.rauzy_fractal_plot(prec=19) # not tested sage: s.rauzy_fractal_plot(prec=25) # not tested
>>> from sage.all import * >>> s = WordMorphism('1->12,2->13,3->1') >>> s.rauzy_fractal_plot(prec=Integer(6)) # not tested >>> s.rauzy_fractal_plot(prec=Integer(9)) # not tested >>> s.rauzy_fractal_plot(prec=Integer(15)) # not tested >>> s.rauzy_fractal_plot(prec=Integer(19)) # not tested >>> s.rauzy_fractal_plot(prec=Integer(25)) # not tested
Using the
translate
option to plot periodic tilings:sage: s = WordMorphism('1->12,2->13,3->1') sage: s.rauzy_fractal_plot(n=10000, # not tested (> 1 second) ....: translate=[(0,0,0),(-1,0,1),(0,-1,1),(1,-1,0), ....: (1,0,-1),(0,1,-1),(-1,1,0)])
>>> from sage.all import * >>> s = WordMorphism('1->12,2->13,3->1') >>> s.rauzy_fractal_plot(n=Integer(10000), # not tested (> 1 second) ... translate=[(Integer(0),Integer(0),Integer(0)),(-Integer(1),Integer(0),Integer(1)),(Integer(0),-Integer(1),Integer(1)),(Integer(1),-Integer(1),Integer(0)), ... (Integer(1),Integer(0),-Integer(1)),(Integer(0),Integer(1),-Integer(1)),(-Integer(1),Integer(1),Integer(0))])
sage: t = WordMorphism("a->aC,b->d,C->de,d->a,e->ab") # substitution found by Julien Bernat sage: V = [vector((0,0,1,0,-1)), vector((0,0,1,-1,0))] # needs sage.modules sage: S = set(map(tuple, [i*V[0] + j*V[1] # needs sage.modules ....: for i in [-1,0,1] for j in [-1,0,1]])) sage: t.rauzy_fractal_plot(n=10000, # not tested (> 1 second) ....: translate=S, exchange=true)
>>> from sage.all import * >>> t = WordMorphism("a->aC,b->d,C->de,d->a,e->ab") # substitution found by Julien Bernat >>> V = [vector((Integer(0),Integer(0),Integer(1),Integer(0),-Integer(1))), vector((Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)))] # needs sage.modules >>> S = set(map(tuple, [i*V[Integer(0)] + j*V[Integer(1)] # needs sage.modules ... for i in [-Integer(1),Integer(0),Integer(1)] for j in [-Integer(1),Integer(0),Integer(1)]])) >>> t.rauzy_fractal_plot(n=Integer(10000), # not tested (> 1 second) ... translate=S, exchange=true)
Using the
translate
option to plot arbitrary tilings with the fractal pieces. This can be used for example to plot the self-replicating tiling of the Rauzy fractal:sage: s = WordMorphism({1:[1,2], 2:[3], 3:[4,3], 4:[5], 5:[6], 6:[1]}) sage: s.rauzy_fractal_plot() # not tested (> 1 second) sage: D = {1: [(0,0,0,0,0,0), (0,1,0,0,0,0)], ....: 3: [(0,0,0,0,0,0), (0,1,0,0,0,0)], 6: [(0,1,0,0,0,0)]} sage: s.rauzy_fractal_plot(n=30000, translate=D) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism({Integer(1):[Integer(1),Integer(2)], Integer(2):[Integer(3)], Integer(3):[Integer(4),Integer(3)], Integer(4):[Integer(5)], Integer(5):[Integer(6)], Integer(6):[Integer(1)]}) >>> s.rauzy_fractal_plot() # not tested (> 1 second) >>> D = {Integer(1): [(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)), (Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0))], ... Integer(3): [(Integer(0),Integer(0),Integer(0),Integer(0),Integer(0),Integer(0)), (Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0))], Integer(6): [(Integer(0),Integer(1),Integer(0),Integer(0),Integer(0),Integer(0))]} >>> s.rauzy_fractal_plot(n=Integer(30000), translate=D) # not tested (> 1 second)
Plot the projection of the canonical basis with the fractal:
sage: s = WordMorphism({1:[2,1], 2:[3], 3:[6,4], 4:[5,1], ....: 5:[6], 6:[7], 7:[8], 8:[9], 9:[1]}) sage: s.rauzy_fractal_plot(plot_basis=True) # not tested (> 1 second)
>>> from sage.all import * >>> s = WordMorphism({Integer(1):[Integer(2),Integer(1)], Integer(2):[Integer(3)], Integer(3):[Integer(6),Integer(4)], Integer(4):[Integer(5),Integer(1)], ... Integer(5):[Integer(6)], Integer(6):[Integer(7)], Integer(7):[Integer(8)], Integer(8):[Integer(9)], Integer(9):[Integer(1)]}) >>> s.rauzy_fractal_plot(plot_basis=True) # not tested (> 1 second)
REFERENCES:
[1] Valerie Berthe and Anne Siegel, Tilings associated with beta-numeration and substitutions, Integers 5 (3), 2005. http://www.integers-ejcnt.org/vol5-3.html
AUTHOR:
Timo Jolivet (2012-06-16)
- rauzy_fractal_points(n=None, exchange=False, eig=None, translate=None, prec=53)[source]#
Return a dictionary of list of points associated with the pieces of the Rauzy fractal of
self
.INPUT:
See the method
rauzy_fractal_plot()
for a description of the options and more examples.OUTPUT:
dictionary of list of points
EXAMPLES:
The Rauzy fractal of the Tribonacci substitution and the number of points in the piece of the fractal associated with
'1'
,'2'
and'3'
are respectively:sage: s = WordMorphism('1->12,2->13,3->1') sage: D = s.rauzy_fractal_points(n=100) # needs sage.modules sage: len(D['1']) # needs sage.modules 54 sage: len(D['2']) # needs sage.modules 30 sage: len(D['3']) # needs sage.modules 16
>>> from sage.all import * >>> s = WordMorphism('1->12,2->13,3->1') >>> D = s.rauzy_fractal_points(n=Integer(100)) # needs sage.modules >>> len(D['1']) # needs sage.modules 54 >>> len(D['2']) # needs sage.modules 30 >>> len(D['3']) # needs sage.modules 16
AUTHOR:
Timo Jolivet (2012-06-16)
- rauzy_fractal_projection(eig=None, prec=53)[source]#
Return a dictionary giving the projection of the canonical basis.
See the method
rauzy_fractal_plot()
for more details about the projection.INPUT:
eig
– a real element ofQQbar
of degree >= 2 (default:None
). The eigenvalue used for the projection. It must be an eigenvalue ofself.incidence_matrix()
. The one used by default is the maximal eigenvalue ofself.incidence_matrix()
(usually a Pisot number), but for substitutions with more than 3 letters other interesting choices are sometimes possible.prec
– integer (default:53
). The number of bits used in the floating point representations of the coordinates.
OUTPUT:
dictionary, letter -> vector, giving the projection
EXAMPLES:
The projection for the Rauzy fractal of the Tribonacci substitution is:
sage: s = WordMorphism('1->12,2->13,3->1') sage: s.rauzy_fractal_projection() # needs sage.modules {'1': (1.00000000000000, 0.000000000000000), '2': (-1.41964337760708, -0.606290729207199), '3': (-0.771844506346038, 1.11514250803994)}
>>> from sage.all import * >>> s = WordMorphism('1->12,2->13,3->1') >>> s.rauzy_fractal_projection() # needs sage.modules {'1': (1.00000000000000, 0.000000000000000), '2': (-1.41964337760708, -0.606290729207199), '3': (-0.771844506346038, 1.11514250803994)}
AUTHOR:
Timo Jolivet (2012-06-16)
- restrict_domain(alphabet)[source]#
Return a restriction of
self
to the given alphabet.INPUT:
alphabet
– an iterable
OUTPUT:
WordMorphism
EXAMPLES:
sage: m = WordMorphism('a->b,b->a') sage: m.restrict_domain('a') WordMorphism: a->b sage: m.restrict_domain('') WordMorphism: sage: m.restrict_domain('A') WordMorphism: sage: m.restrict_domain('Aa') WordMorphism: a->b
>>> from sage.all import * >>> m = WordMorphism('a->b,b->a') >>> m.restrict_domain('a') WordMorphism: a->b >>> m.restrict_domain('') WordMorphism: >>> m.restrict_domain('A') WordMorphism: >>> m.restrict_domain('Aa') WordMorphism: a->b
The input alphabet must be iterable:
sage: m.restrict_domain(66) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable
>>> from sage.all import * >>> m.restrict_domain(Integer(66)) Traceback (most recent call last): ... TypeError: 'sage.rings.integer.Integer' object is not iterable
- reversal()[source]#
Return the reversal of
self
.EXAMPLES:
sage: WordMorphism('6->ab,y->5,0->asd').reversal() WordMorphism: 0->dsa, 6->ba, y->5 sage: WordMorphism('a->ab,b->a').reversal() WordMorphism: a->ba, b->a
>>> from sage.all import * >>> WordMorphism('6->ab,y->5,0->asd').reversal() WordMorphism: 0->dsa, 6->ba, y->5 >>> WordMorphism('a->ab,b->a').reversal() WordMorphism: a->ba, b->a
- simplify_alphabet_size(Z=None)[source]#
If this morphism is simplifiable, return morphisms \(h\) and \(k\) such that this morphism is simplifiable with respect to \(h\) and \(k\), otherwise raise
ValueError
.This method is quite fast if this morphism is non-injective, but very slow if it is injective.
Let \(f: X^* \rightarrow Y^*\) be a morphism. Then \(f\) is simplifiable with respect to morphisms \(h: X^* \rightarrow Z^*\) and \(k: Z^* \rightarrow Y^*\), if \(f = k \circ h\) and \(|Z| < |X|\). If also \(Y \subseteq X\), then the morphism \(g: Z^* \rightarrow Z^* = h \circ k\) is a simplification of \(f\) (with respect to \(h\) and \(k\)).
Loosely speaking, a morphism is simplifiable if it contains “more letters than is needed”. Non-injectivity implies simplifiability. Simplification preserves some properties of the original morphism (e.g. repetitiveness).
For more information see Section 3 in [KO2000].
INPUT:
Z
– iterable (default:self.domain().alphabet()
), whose elements are used as an alphabet for the simplification.
EXAMPLES:
Example of a simplifiable (non-injective) morphism:
sage: f = WordMorphism('a->aca,b->badc,c->acab,d->adc') sage: h, k = f.simplify_alphabet_size('xyz'); h, k (WordMorphism: a->x, b->zy, c->xz, d->y, WordMorphism: x->aca, y->adc, z->b) sage: k * h == f True sage: g = h * k; g WordMorphism: x->xxzx, y->xyxz, z->zy
>>> from sage.all import * >>> f = WordMorphism('a->aca,b->badc,c->acab,d->adc') >>> h, k = f.simplify_alphabet_size('xyz'); h, k (WordMorphism: a->x, b->zy, c->xz, d->y, WordMorphism: x->aca, y->adc, z->b) >>> k * h == f True >>> g = h * k; g WordMorphism: x->xxzx, y->xyxz, z->zy
Example of a simplifiable (injective) morphism:
sage: f = WordMorphism('a->abcc,b->abcd,c->abdc,d->abdd') sage: h, k = f.simplify_alphabet_size('xyz'); h, k (WordMorphism: a->xyy, b->xyz, c->xzy, d->xzz, WordMorphism: x->ab, y->c, z->d) sage: k * h == f True sage: g = h * k; g WordMorphism: x->xyyxyz, y->xzy, z->xzz
>>> from sage.all import * >>> f = WordMorphism('a->abcc,b->abcd,c->abdc,d->abdd') >>> h, k = f.simplify_alphabet_size('xyz'); h, k (WordMorphism: a->xyy, b->xyz, c->xzy, d->xzz, WordMorphism: x->ab, y->c, z->d) >>> k * h == f True >>> g = h * k; g WordMorphism: x->xyyxyz, y->xzy, z->xzz
Example of a non-simplifiable morphism:
sage: WordMorphism('a->aa').simplify_alphabet_size() Traceback (most recent call last): ... ValueError: self (a->aa) is not simplifiable
>>> from sage.all import * >>> WordMorphism('a->aa').simplify_alphabet_size() Traceback (most recent call last): ... ValueError: self (a->aa) is not simplifiable
Example of an erasing morphism:
sage: f = WordMorphism('a->abc,b->cc,c->') sage: h, k = f.simplify_alphabet_size(); h, k (WordMorphism: a->a, b->b, c->, WordMorphism: a->abc, b->cc) sage: k * h == f True sage: g = h * k; g WordMorphism: a->ab, b->
>>> from sage.all import * >>> f = WordMorphism('a->abc,b->cc,c->') >>> h, k = f.simplify_alphabet_size(); h, k (WordMorphism: a->a, b->b, c->, WordMorphism: a->abc, b->cc) >>> k * h == f True >>> g = h * k; g WordMorphism: a->ab, b->
Example of a morphism, that is not an endomorphism:
sage: f = WordMorphism('a->xx,b->xy,c->yx,d->yy') sage: h, k = f.simplify_alphabet_size(NN); h, k (WordMorphism: a->00, b->01, c->10, d->11, WordMorphism: 0->x, 1->y) sage: k * h == f True sage: len(k.domain().alphabet()) < len(f.domain().alphabet()) True
>>> from sage.all import * >>> f = WordMorphism('a->xx,b->xy,c->yx,d->yy') >>> h, k = f.simplify_alphabet_size(NN); h, k (WordMorphism: a->00, b->01, c->10, d->11, WordMorphism: 0->x, 1->y) >>> k * h == f True >>> len(k.domain().alphabet()) < len(f.domain().alphabet()) True
- simplify_until_injective()[source]#
Return a quadruplet \((g, h, k, i)\), where \(g\) is an injective simplification of this morphism with respect to \(h\), \(k\) and \(i\).
Requires this morphism to be an endomorphism.
This methods basically calls
simplify_alphabet_size()
until the returned simplification is injective. If this morphism is already injective, a quadruplet \((g, h, k, i)\) is still returned, where \(g\) is this morphism, \(h\) and \(k\) are the identity morphisms and \(i\) is 0.Let \(f: X^* \rightarrow Y^*\) be a morphism and \(Y \subseteq X\). Then \(g: Z^* \rightarrow Z^*\) is an injective simplification of \(f\) with respect to morphisms \(h: X^* \rightarrow Z^*\) and \(k: Z^* \rightarrow Y^*\) and a positive integer \(i\), if \(g\) is injective, \(|Z| < |X|\), \(g^i = h \circ k\) and \(f^i = k \circ h\).
For more information see Section 4 in [KO2000].
EXAMPLES:
sage: f = WordMorphism('a->abc,b->a,c->bc') sage: g, h, k, i = f.simplify_until_injective(); g, h, k, i (WordMorphism: a->aa, WordMorphism: a->aa, b->a, c->a, WordMorphism: a->abc, 2) sage: g.is_injective() True sage: g**i == h * k True sage: f**i == k * h True
>>> from sage.all import * >>> f = WordMorphism('a->abc,b->a,c->bc') >>> g, h, k, i = f.simplify_until_injective(); g, h, k, i (WordMorphism: a->aa, WordMorphism: a->aa, b->a, c->a, WordMorphism: a->abc, 2) >>> g.is_injective() True >>> g**i == h * k True >>> f**i == k * h True
- sage.combinat.words.morphism.get_cycles(f, domain)[source]#
Return the list of cycles of the function
f
contained indomain
.INPUT:
f
– function.domain
– iterable, a subdomain of the domain of definition off
.
EXAMPLES:
sage: from sage.combinat.words.morphism import get_cycles sage: get_cycles(lambda i: (i+1)%3, [0,1,2]) [(0, 1, 2)] sage: get_cycles(lambda i: [0,0,0][i], [0,1,2]) [(0,)] sage: get_cycles(lambda i: [1,1,1][i], [0,1,2]) [(1,)] sage: get_cycles(lambda i: [2,3,0][i], [0,1,2]) [(0, 2)] sage: d = {'a': 'a', 'b': 'b'} sage: get_cycles(d.__getitem__, 'ba') [('b',), ('a',)]
>>> from sage.all import * >>> from sage.combinat.words.morphism import get_cycles >>> get_cycles(lambda i: (i+Integer(1))%Integer(3), [Integer(0),Integer(1),Integer(2)]) [(0, 1, 2)] >>> get_cycles(lambda i: [Integer(0),Integer(0),Integer(0)][i], [Integer(0),Integer(1),Integer(2)]) [(0,)] >>> get_cycles(lambda i: [Integer(1),Integer(1),Integer(1)][i], [Integer(0),Integer(1),Integer(2)]) [(1,)] >>> get_cycles(lambda i: [Integer(2),Integer(3),Integer(0)][i], [Integer(0),Integer(1),Integer(2)]) [(0, 2)] >>> d = {'a': 'a', 'b': 'b'} >>> get_cycles(d.__getitem__, 'ba') [('b',), ('a',)]