Hall-Littlewood Polynomials#

Notation used in the definitions follows mainly [Mac1995].

class sage.combinat.sf.hall_littlewood.HallLittlewood(Sym, t)[source]#

Bases: UniqueRepresentation

The family of Hall-Littlewood symmetric function bases.

The Hall-Littlewood symmetric functions are a family of symmetric functions that depend on a parameter \(t\).

INPUT:

By default the parameter for these functions is \(t\), and whatever the parameter is, it must be in the base ring.

EXAMPLES:

sage: SymmetricFunctions(QQ).hall_littlewood(1)
Hall-Littlewood polynomials with t=1 over Rational Field
sage: SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood()
Hall-Littlewood polynomials over Fraction Field of Univariate Polynomial Ring in t over Rational Field
>>> from sage.all import *
>>> SymmetricFunctions(QQ).hall_littlewood(Integer(1))
Hall-Littlewood polynomials with t=1 over Rational Field
>>> SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood()
Hall-Littlewood polynomials over Fraction Field of Univariate Polynomial Ring in t over Rational Field
P()[source]#

Return the algebra of symmetric functions in the Hall-Littlewood \(P\) basis. This is the same as the \(HL\) basis in John Stembridge’s SF examples file.

INPUT:

  • self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

The class of the Hall-Littlewood \(P\) basis.

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P(); HLP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood P basis
sage: SP = Sym.hall_littlewood(t=-1).P(); SP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood P with t=-1 basis
sage: s = Sym.schur()
sage: s(HLP([2,1]))
(-t^2-t)*s[1, 1, 1] + s[2, 1]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P(); HLP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood P basis
>>> SP = Sym.hall_littlewood(t=-Integer(1)).P(); SP
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood P with t=-1 basis
>>> s = Sym.schur()
>>> s(HLP([Integer(2),Integer(1)]))
(-t^2-t)*s[1, 1, 1] + s[2, 1]

The Hall-Littlewood polynomials in the \(P\) basis at \(t = 0\) are the Schur functions:

sage: Sym = SymmetricFunctions(QQ)
sage: HLP = Sym.hall_littlewood(t=0).P()
sage: s = Sym.schur()
sage: s(HLP([2,1])) == s([2,1])
True
>>> from sage.all import *
>>> Sym = SymmetricFunctions(QQ)
>>> HLP = Sym.hall_littlewood(t=Integer(0)).P()
>>> s = Sym.schur()
>>> s(HLP([Integer(2),Integer(1)])) == s([Integer(2),Integer(1)])
True

The Hall-Littlewood polynomials in the \(P\) basis at \(t = 1\) are the monomial symmetric functions:

sage: Sym = SymmetricFunctions(QQ)
sage: HLP = Sym.hall_littlewood(t=1).P()
sage: m = Sym.monomial()
sage: m(HLP([2,2,1])) == m([2,2,1])
True
>>> from sage.all import *
>>> Sym = SymmetricFunctions(QQ)
>>> HLP = Sym.hall_littlewood(t=Integer(1)).P()
>>> m = Sym.monomial()
>>> m(HLP([Integer(2),Integer(2),Integer(1)])) == m([Integer(2),Integer(2),Integer(1)])
True

We end with some examples of coercions between:

  1. Hall-Littlewood \(P\) basis.

  2. Hall-Littlewood polynomials in the \(Q\) basis

  3. Hall-Littlewood polynomials in the \(Q^\prime\) basis (via the Schurs)

  4. Classical symmetric functions

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP  = Sym.hall_littlewood().P()
sage: HLQ  = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.schur()
sage: p = Sym.power()
sage: HLP(HLQ([2])) # indirect doctest
(-t+1)*HLP[2]
sage: HLP(HLQp([2]))
t*HLP[1, 1] + HLP[2]
sage: HLP(s([2]))
t*HLP[1, 1] + HLP[2]
sage: HLP(p([2]))
(t-1)*HLP[1, 1] + HLP[2]
sage: s = HLQp.symmetric_function_ring().s()
sage: HLQp.transition_matrix(s,3)
[      1       0       0]
[      t       1       0]
[    t^3 t^2 + t       1]
sage: s.transition_matrix(HLP,3)
[      1       t     t^3]
[      0       1 t^2 + t]
[      0       0       1]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP  = Sym.hall_littlewood().P()
>>> HLQ  = Sym.hall_littlewood().Q()
>>> HLQp = Sym.hall_littlewood().Qp()
>>> s = Sym.schur()
>>> p = Sym.power()
>>> HLP(HLQ([Integer(2)])) # indirect doctest
(-t+1)*HLP[2]
>>> HLP(HLQp([Integer(2)]))
t*HLP[1, 1] + HLP[2]
>>> HLP(s([Integer(2)]))
t*HLP[1, 1] + HLP[2]
>>> HLP(p([Integer(2)]))
(t-1)*HLP[1, 1] + HLP[2]
>>> s = HLQp.symmetric_function_ring().s()
>>> HLQp.transition_matrix(s,Integer(3))
[      1       0       0]
[      t       1       0]
[    t^3 t^2 + t       1]
>>> s.transition_matrix(HLP,Integer(3))
[      1       t     t^3]
[      0       1 t^2 + t]
[      0       0       1]

The method sage.combinat.sf.sfa.SymmetricFunctionAlgebra_generic_Element.hl_creation_operator() is a creation operator for the \(Q\) basis:

sage: HLQp[1].hl_creation_operator([3]).hl_creation_operator([3])
HLQp[3, 3, 1]
>>> from sage.all import *
>>> HLQp[Integer(1)].hl_creation_operator([Integer(3)]).hl_creation_operator([Integer(3)])
HLQp[3, 3, 1]

Transitions between bases with the parameter \(t\) specialized:

sage: Sym = SymmetricFunctions(FractionField(QQ['y','z']))
sage: (y,z) = Sym.base_ring().gens()
sage: HLy = Sym.hall_littlewood(t=y)
sage: HLz = Sym.hall_littlewood(t=z)
sage: Qpy = HLy.Qp()
sage: Qpz = HLz.Qp()
sage: s = Sym.schur()
sage: s( Qpy[3,1] + z*Qpy[2,2] )
z*s[2, 2] + (y*z+1)*s[3, 1] + (y^2*z+y)*s[4]
sage: s( Qpy[3,1] + y*Qpz[2,2] )
y*s[2, 2] + (y*z+1)*s[3, 1] + (y*z^2+y)*s[4]
sage: s( Qpy[3,1] + y*Qpy[2,2] )
y*s[2, 2] + (y^2+1)*s[3, 1] + (y^3+y)*s[4]

sage: Qy = HLy.Q()
sage: Qz = HLz.Q()
sage: Py = HLy.P()
sage: Pz = HLz.P()
sage: Pz(Qpy[2,1])
(y*z^3+z^2+z)*HLP[1, 1, 1] + (y*z+1)*HLP[2, 1] + y*HLP[3]
sage: Pz(Qz[2,1])
(z^2-2*z+1)*HLP[2, 1]
sage: Qz(Py[2])
((-y+z)/(z^3-z^2-z+1))*HLQ[1, 1] + (1/(-z+1))*HLQ[2]
sage: Qy(Pz[2])
((y-z)/(y^3-y^2-y+1))*HLQ[1, 1] + (1/(-y+1))*HLQ[2]
sage: Qy.hall_littlewood_family() == HLy
True
sage: Qy.hall_littlewood_family() == HLz
False
sage: Qz.symmetric_function_ring() == Qy.symmetric_function_ring()
True

sage: Sym = SymmetricFunctions(FractionField(QQ['q']))
sage: q = Sym.base_ring().gen()
sage: HL = Sym.hall_littlewood(t=q)
sage: HLQp = HL.Qp()
sage: HLQ = HL.Q()
sage: HLP = HL.P()
sage: s = Sym.schur()
sage: s(HLQp[3,2].plethysm((1-q)*s[1]))/(1-q)^2
(-q^5-q^4)*s[1, 1, 1, 1, 1] + (q^3+q^2)*s[2, 1, 1, 1] - q*s[2, 2, 1] - q*s[3, 1, 1] + s[3, 2]
sage: s(HLP[3,2])
(-q^5-q^4)*s[1, 1, 1, 1, 1] + (q^3+q^2)*s[2, 1, 1, 1] - q*s[2, 2, 1] - q*s[3, 1, 1] + s[3, 2]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['y','z']))
>>> (y,z) = Sym.base_ring().gens()
>>> HLy = Sym.hall_littlewood(t=y)
>>> HLz = Sym.hall_littlewood(t=z)
>>> Qpy = HLy.Qp()
>>> Qpz = HLz.Qp()
>>> s = Sym.schur()
>>> s( Qpy[Integer(3),Integer(1)] + z*Qpy[Integer(2),Integer(2)] )
z*s[2, 2] + (y*z+1)*s[3, 1] + (y^2*z+y)*s[4]
>>> s( Qpy[Integer(3),Integer(1)] + y*Qpz[Integer(2),Integer(2)] )
y*s[2, 2] + (y*z+1)*s[3, 1] + (y*z^2+y)*s[4]
>>> s( Qpy[Integer(3),Integer(1)] + y*Qpy[Integer(2),Integer(2)] )
y*s[2, 2] + (y^2+1)*s[3, 1] + (y^3+y)*s[4]

>>> Qy = HLy.Q()
>>> Qz = HLz.Q()
>>> Py = HLy.P()
>>> Pz = HLz.P()
>>> Pz(Qpy[Integer(2),Integer(1)])
(y*z^3+z^2+z)*HLP[1, 1, 1] + (y*z+1)*HLP[2, 1] + y*HLP[3]
>>> Pz(Qz[Integer(2),Integer(1)])
(z^2-2*z+1)*HLP[2, 1]
>>> Qz(Py[Integer(2)])
((-y+z)/(z^3-z^2-z+1))*HLQ[1, 1] + (1/(-z+1))*HLQ[2]
>>> Qy(Pz[Integer(2)])
((y-z)/(y^3-y^2-y+1))*HLQ[1, 1] + (1/(-y+1))*HLQ[2]
>>> Qy.hall_littlewood_family() == HLy
True
>>> Qy.hall_littlewood_family() == HLz
False
>>> Qz.symmetric_function_ring() == Qy.symmetric_function_ring()
True

>>> Sym = SymmetricFunctions(FractionField(QQ['q']))
>>> q = Sym.base_ring().gen()
>>> HL = Sym.hall_littlewood(t=q)
>>> HLQp = HL.Qp()
>>> HLQ = HL.Q()
>>> HLP = HL.P()
>>> s = Sym.schur()
>>> s(HLQp[Integer(3),Integer(2)].plethysm((Integer(1)-q)*s[Integer(1)]))/(Integer(1)-q)**Integer(2)
(-q^5-q^4)*s[1, 1, 1, 1, 1] + (q^3+q^2)*s[2, 1, 1, 1] - q*s[2, 2, 1] - q*s[3, 1, 1] + s[3, 2]
>>> s(HLP[Integer(3),Integer(2)])
(-q^5-q^4)*s[1, 1, 1, 1, 1] + (q^3+q^2)*s[2, 1, 1, 1] - q*s[2, 2, 1] - q*s[3, 1, 1] + s[3, 2]

The \(P\) and \(Q\)-Schur at \(t=-1\) indexed by strict partitions are a basis for the space algebraically generated by the odd power sum symmetric functions:

sage: Sym = SymmetricFunctions(FractionField(QQ['q']))
sage: SP = Sym.hall_littlewood(t=-1).P()
sage: SQ = Sym.hall_littlewood(t=-1).Q()
sage: p = Sym.power()
sage: SP(SQ[3,2,1])
8*HLP[3, 2, 1]
sage: SP(SQ[2,2,1])
0
sage: p(SP[3,2,1])
1/45*p[1, 1, 1, 1, 1, 1] - 1/9*p[3, 1, 1, 1] - 1/9*p[3, 3] + 1/5*p[5, 1]
sage: SP(p[3,3])
-4*HLP[3, 2, 1] + 2*HLP[4, 2] - 2*HLP[5, 1] + HLP[6]
sage: SQ( SQ[1]*SQ[3] -2*(1-q)*SQ[4] )
HLQ[3, 1] + 2*q*HLQ[4]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['q']))
>>> SP = Sym.hall_littlewood(t=-Integer(1)).P()
>>> SQ = Sym.hall_littlewood(t=-Integer(1)).Q()
>>> p = Sym.power()
>>> SP(SQ[Integer(3),Integer(2),Integer(1)])
8*HLP[3, 2, 1]
>>> SP(SQ[Integer(2),Integer(2),Integer(1)])
0
>>> p(SP[Integer(3),Integer(2),Integer(1)])
1/45*p[1, 1, 1, 1, 1, 1] - 1/9*p[3, 1, 1, 1] - 1/9*p[3, 3] + 1/5*p[5, 1]
>>> SP(p[Integer(3),Integer(3)])
-4*HLP[3, 2, 1] + 2*HLP[4, 2] - 2*HLP[5, 1] + HLP[6]
>>> SQ( SQ[Integer(1)]*SQ[Integer(3)] -Integer(2)*(Integer(1)-q)*SQ[Integer(4)] )
HLQ[3, 1] + 2*q*HLQ[4]
Q()[source]#

Returns the algebra of symmetric functions in Hall-Littlewood \(Q\) basis. This is the same as the \(Q\) basis in John Stembridge’s SF examples file.

More extensive examples can be found in the documentation for the Hall-Littlewood \(P\) basis.

INPUT:

  • self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

  • returns the class of the Hall-Littlewood \(Q\) basis

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLQ = Sym.hall_littlewood().Q(); HLQ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood Q basis
sage: SQ = SymmetricFunctions(QQ).hall_littlewood(t=-1).Q(); SQ
Symmetric Functions over Rational Field in the Hall-Littlewood Q with t=-1 basis
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLQ = Sym.hall_littlewood().Q(); HLQ
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood Q basis
>>> SQ = SymmetricFunctions(QQ).hall_littlewood(t=-Integer(1)).Q(); SQ
Symmetric Functions over Rational Field in the Hall-Littlewood Q with t=-1 basis
Qp()[source]#

Returns the algebra of symmetric functions in Hall-Littlewood \(Q^\prime\) (Qp) basis. This is dual to the Hall-Littlewood \(P\) basis with respect to the standard scalar product.

More extensive examples can be found in the documentation for the Hall-Littlewood P basis.

INPUT:

  • self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

  • returns the class of the Hall-Littlewood \(Qp\)-basis

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLQp = Sym.hall_littlewood().Qp(); HLQp
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood Qp basis
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLQp = Sym.hall_littlewood().Qp(); HLQp
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field in the Hall-Littlewood Qp basis
base_ring()[source]#

Returns the base ring of the symmetric functions where the Hall-Littlewood symmetric functions live

INPUT:

  • self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

The base ring of the symmetric functions.

EXAMPLES:

sage: HL = SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood(t=1)
sage: HL.base_ring()
Fraction Field of Univariate Polynomial Ring in t over Rational Field
>>> from sage.all import *
>>> HL = SymmetricFunctions(QQ['t'].fraction_field()).hall_littlewood(t=Integer(1))
>>> HL.base_ring()
Fraction Field of Univariate Polynomial Ring in t over Rational Field
symmetric_function_ring()[source]#

The ring of symmetric functions associated to the class of Hall-Littlewood symmetric functions

INPUT:

  • self – a class of Hall-Littlewood symmetric function bases

OUTPUT:

  • returns the ring of symmetric functions

EXAMPLES:

sage: HL = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood()
sage: HL.symmetric_function_ring()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field
>>> from sage.all import *
>>> HL = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood()
>>> HL.symmetric_function_ring()
Symmetric Functions over Fraction Field of Univariate Polynomial Ring in t over Rational Field
class sage.combinat.sf.hall_littlewood.HallLittlewood_generic(hall_littlewood)[source]#

Bases: SymmetricFunctionAlgebra_generic

A class with methods for working with Hall-Littlewood symmetric functions which are common to all bases.

INPUT:

  • self – a Hall-Littlewood symmetric function basis

  • hall_littlewood – a class of Hall-Littlewood bases

class Element[source]#

Bases: SymmetricFunctionAlgebra_generic_Element

Methods for elements of a Hall-Littlewood basis that are common to all bases.

expand(n, alphabet='x')[source]#

Expands the symmetric function as a symmetric polynomial in n variables.

INPUT:

  • self – an element of a Hall-Littlewood basis

  • n – a positive integer

  • alphabet – a string representing a variable name (default: ‘x’)

OUTPUT:

  • returns a symmetric polynomial of self in n variables

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLP([2]).expand(2)
x0^2 + (-t + 1)*x0*x1 + x1^2
sage: HLQ([2]).expand(2)
(-t + 1)*x0^2 + (t^2 - 2*t + 1)*x0*x1 + (-t + 1)*x1^2
sage: HLQp([2]).expand(2)
x0^2 + x0*x1 + x1^2
sage: HLQp([2]).expand(2, 'y')
y0^2 + y0*y1 + y1^2
sage: HLQp([2]).expand(1)
x^2
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> HLQ = Sym.hall_littlewood().Q()
>>> HLQp = Sym.hall_littlewood().Qp()
>>> HLP([Integer(2)]).expand(Integer(2))
x0^2 + (-t + 1)*x0*x1 + x1^2
>>> HLQ([Integer(2)]).expand(Integer(2))
(-t + 1)*x0^2 + (t^2 - 2*t + 1)*x0*x1 + (-t + 1)*x1^2
>>> HLQp([Integer(2)]).expand(Integer(2))
x0^2 + x0*x1 + x1^2
>>> HLQp([Integer(2)]).expand(Integer(2), 'y')
y0^2 + y0*y1 + y1^2
>>> HLQp([Integer(2)]).expand(Integer(1))
x^2
scalar(x, zee=None)[source]#

Returns standard scalar product between self and x.

This is the default implementation that converts both self and x into Schur functions and performs the scalar product that basis.

The Hall-Littlewood \(P\) basis is dual to the \(Qp\) basis with respect to this scalar product.

INPUT:

  • self – an element of a Hall-Littlewood basis

  • x – another symmetric element of the symmetric functions

OUTPUT:

  • returns the scalar product between self and x

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLP([2]).scalar(HLQp([2]))
1
sage: HLP([2]).scalar(HLQp([1,1]))
0
sage: HLP([2]).scalar(HLQ([2]), lambda mu: mu.centralizer_size(t = HLP.t))
1
sage: HLP([2]).scalar(HLQ([1,1]), lambda mu: mu.centralizer_size(t = HLP.t))
0
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> HLQ = Sym.hall_littlewood().Q()
>>> HLQp = Sym.hall_littlewood().Qp()
>>> HLP([Integer(2)]).scalar(HLQp([Integer(2)]))
1
>>> HLP([Integer(2)]).scalar(HLQp([Integer(1),Integer(1)]))
0
>>> HLP([Integer(2)]).scalar(HLQ([Integer(2)]), lambda mu: mu.centralizer_size(t = HLP.t))
1
>>> HLP([Integer(2)]).scalar(HLQ([Integer(1),Integer(1)]), lambda mu: mu.centralizer_size(t = HLP.t))
0
scalar_hl(x, t=None)[source]#

Returns the Hall-Littlewood (with parameter t) scalar product of self and x.

The Hall-Littlewood scalar product is defined in Macdonald’s book [Mac1995]. The power sum basis is orthogonal and \(\langle p_\mu, p_\mu \rangle = z_\mu \prod_{i} 1/(1-t^{\mu_i})\)

The Hall-Littlewood \(P\) basis is dual to the \(Q\) basis with respect to this scalar product.

INPUT:

  • self – an element of a Hall-Littlewood basis

  • x – another symmetric element of the symmetric functions

  • t – an optional parameter, if this parameter is not specified then the value of the t from the basis is used in the calculation

OUTPUT:

  • returns the Hall-Littlewood scalar product between self and x

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLP([2]).scalar_hl(HLQ([2]))
1
sage: HLP([2]).scalar_hl(HLQ([1,1]))
0
sage: HLQ([2]).scalar_hl(HLQ([2]))
-t + 1
sage: HLQ([2]).scalar_hl(HLQ([1,1]))
0
sage: HLP([2]).scalar_hl(HLP([2]))
-1/(t - 1)
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> HLQ = Sym.hall_littlewood().Q()
>>> HLP([Integer(2)]).scalar_hl(HLQ([Integer(2)]))
1
>>> HLP([Integer(2)]).scalar_hl(HLQ([Integer(1),Integer(1)]))
0
>>> HLQ([Integer(2)]).scalar_hl(HLQ([Integer(2)]))
-t + 1
>>> HLQ([Integer(2)]).scalar_hl(HLQ([Integer(1),Integer(1)]))
0
>>> HLP([Integer(2)]).scalar_hl(HLP([Integer(2)]))
-1/(t - 1)
construction()[source]#

Return a pair (F, R), where F is a SymmetricFunctionsFunctor and \(R\) is a ring, such that F(R) returns self.

EXAMPLES:

sage: P = SymmetricFunctions(QQ).hall_littlewood(t=2).P()
sage: P.construction()
(SymmetricFunctionsFunctor[Hall-Littlewood P with t=2], Rational Field)
>>> from sage.all import *
>>> P = SymmetricFunctions(QQ).hall_littlewood(t=Integer(2)).P()
>>> P.construction()
(SymmetricFunctionsFunctor[Hall-Littlewood P with t=2], Rational Field)
hall_littlewood_family()[source]#

The family of Hall-Littlewood bases associated to self

INPUT:

  • self – a Hall-Littlewood symmetric function basis

OUTPUT:

  • returns the class of Hall-Littlewood bases

EXAMPLES:

sage: HLP = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood(1).P()
sage: HLP.hall_littlewood_family()
Hall-Littlewood polynomials with t=1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field
>>> from sage.all import *
>>> HLP = SymmetricFunctions(FractionField(QQ['t'])).hall_littlewood(Integer(1)).P()
>>> HLP.hall_littlewood_family()
Hall-Littlewood polynomials with t=1 over Fraction Field of Univariate Polynomial Ring in t over Rational Field
product(left, right)[source]#

Multiply an element of the Hall-Littlewood symmetric function basis self and another symmetric function

Convert to the Schur basis, do the multiplication there, and convert back to self basis.

INPUT:

  • self – a Hall-Littlewood symmetric function basis

  • left – an element of the basis self

  • right – another symmetric function

OUTPUT:

the product of left and right expanded in the basis self

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLP([2])^2 # indirect doctest
(t+1)*HLP[2, 2] + (-t+1)*HLP[3, 1] + HLP[4]

sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQ([2])^2 # indirect doctest
HLQ[2, 2] + (-t+1)*HLQ[3, 1] + (-t+1)*HLQ[4]

sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLQp([2])^2 # indirect doctest
HLQp[2, 2] + (-t+1)*HLQp[3, 1] + (-t+1)*HLQp[4]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> HLP([Integer(2)])**Integer(2) # indirect doctest
(t+1)*HLP[2, 2] + (-t+1)*HLP[3, 1] + HLP[4]

>>> HLQ = Sym.hall_littlewood().Q()
>>> HLQ([Integer(2)])**Integer(2) # indirect doctest
HLQ[2, 2] + (-t+1)*HLQ[3, 1] + (-t+1)*HLQ[4]

>>> HLQp = Sym.hall_littlewood().Qp()
>>> HLQp([Integer(2)])**Integer(2) # indirect doctest
HLQp[2, 2] + (-t+1)*HLQp[3, 1] + (-t+1)*HLQp[4]
transition_matrix(basis, n)[source]#

Returns the transitions matrix between self and basis for the homogeneous component of degree n.

INPUT:

  • self – a Hall-Littlewood symmetric function basis

  • basis – another symmetric function basis

  • n – a non-negative integer representing the degree

OUTPUT:

  • Returns a \(r \times r\) matrix of elements of the base ring of self where \(r\) is the number of partitions of n. The entry corresponding to row \(\mu\), column \(\nu\) is the coefficient of basis \((\nu)\) in self \((\mu)\)

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: s   = Sym.schur()
sage: HLP.transition_matrix(s, 4)
[             1             -t              0            t^2           -t^3]
[             0              1             -t             -t      t^3 + t^2]
[             0              0              1             -t            t^3]
[             0              0              0              1 -t^3 - t^2 - t]
[             0              0              0              0              1]
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQ.transition_matrix(s,3)
[                        -t + 1                        t^2 - t                     -t^3 + t^2]
[                             0                  t^2 - 2*t + 1           -t^4 + t^3 + t^2 - t]
[                             0                              0 -t^6 + t^5 + t^4 - t^2 - t + 1]
sage: HLQp = Sym.hall_littlewood().Qp()
sage: HLQp.transition_matrix(s,3)
[      1       0       0]
[      t       1       0]
[    t^3 t^2 + t       1]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> s   = Sym.schur()
>>> HLP.transition_matrix(s, Integer(4))
[             1             -t              0            t^2           -t^3]
[             0              1             -t             -t      t^3 + t^2]
[             0              0              1             -t            t^3]
[             0              0              0              1 -t^3 - t^2 - t]
[             0              0              0              0              1]
>>> HLQ = Sym.hall_littlewood().Q()
>>> HLQ.transition_matrix(s,Integer(3))
[                        -t + 1                        t^2 - t                     -t^3 + t^2]
[                             0                  t^2 - 2*t + 1           -t^4 + t^3 + t^2 - t]
[                             0                              0 -t^6 + t^5 + t^4 - t^2 - t + 1]
>>> HLQp = Sym.hall_littlewood().Qp()
>>> HLQp.transition_matrix(s,Integer(3))
[      1       0       0]
[      t       1       0]
[    t^3 t^2 + t       1]
class sage.combinat.sf.hall_littlewood.HallLittlewood_p(hall_littlewood)[source]#

Bases: HallLittlewood_generic

A class representing the Hall-Littlewood \(P\) basis of symmetric functions

class Element[source]#

Bases: Element

class sage.combinat.sf.hall_littlewood.HallLittlewood_q(hall_littlewood)[source]#

Bases: HallLittlewood_generic

The \(Q\) basis is defined as a normalization of the \(P\) basis.

INPUT:

  • self – an instance of the Hall-Littlewood \(P\) basis

  • hall_littlewood – a class for the family of Hall-Littlewood bases

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: Q = Sym.hall_littlewood().Q()
sage: TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
sage: TestSuite(Q).run(elements = [Q.t*Q[1,1]+Q[2], Q[1]+(1+Q.t)*Q[1,1]])  # long time (depends on previous)

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.schur(); p = Sym.power()
sage: HLQ( HLP([2,1]) + HLP([3]) )
(1/(t^2-2*t+1))*HLQ[2, 1] - (1/(t-1))*HLQ[3]
sage: HLQ(HLQp([2])) # indirect doctest
(t/(t^3-t^2-t+1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
sage: HLQ(s([2]))
(t/(t^3-t^2-t+1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
sage: HLQ(p([2]))
(1/(t^2-1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> Q = Sym.hall_littlewood().Q()
>>> TestSuite(Q).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
>>> TestSuite(Q).run(elements = [Q.t*Q[Integer(1),Integer(1)]+Q[Integer(2)], Q[Integer(1)]+(Integer(1)+Q.t)*Q[Integer(1),Integer(1)]])  # long time (depends on previous)

>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> HLQ = Sym.hall_littlewood().Q()
>>> HLQp = Sym.hall_littlewood().Qp()
>>> s = Sym.schur(); p = Sym.power()
>>> HLQ( HLP([Integer(2),Integer(1)]) + HLP([Integer(3)]) )
(1/(t^2-2*t+1))*HLQ[2, 1] - (1/(t-1))*HLQ[3]
>>> HLQ(HLQp([Integer(2)])) # indirect doctest
(t/(t^3-t^2-t+1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
>>> HLQ(s([Integer(2)]))
(t/(t^3-t^2-t+1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
>>> HLQ(p([Integer(2)]))
(1/(t^2-1))*HLQ[1, 1] - (1/(t-1))*HLQ[2]
class Element[source]#

Bases: Element

class sage.combinat.sf.hall_littlewood.HallLittlewood_qp(hall_littlewood)[source]#

Bases: HallLittlewood_generic

The Hall-Littlewood \(Qp\) basis is calculated through the symmetrica library (see the function HallLittlewood_qp._to_s()).

INPUT:

  • self – an instance of the Hall-Littlewood \(P\) basis

  • hall_littlewood – a class for the family of Hall-Littlewood bases

EXAMPLES:

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: Qp = Sym.hall_littlewood().Q()
sage: TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
sage: TestSuite(Qp).run(elements = [Qp.t*Qp[1,1]+Qp[2], Qp[1]+(1+Qp.t)*Qp[1,1]])  # long time (depends on previous)

sage: Sym = SymmetricFunctions(FractionField(QQ['t']))
sage: HLP = Sym.hall_littlewood().P()
sage: HLQ = Sym.hall_littlewood().Q()
sage: HLQp = Sym.hall_littlewood().Qp()
sage: s = Sym.schur(); p = Sym.power()
sage: HLQp(HLP([2])) # indirect doctest
-t*HLQp[1, 1] + (t^2+1)*HLQp[2]
sage: HLQp(s(HLQ([2]))) # work around bug reported in issue #12969
(t^2-t)*HLQp[1, 1] + (-t^3+t^2-t+1)*HLQp[2]
sage: HLQp(s([2]))
HLQp[2]
sage: HLQp(p([2]))
-HLQp[1, 1] + (t+1)*HLQp[2]
sage: s = HLQp.symmetric_function_ring().s()
sage: HLQp.transition_matrix(s,3)
[      1       0       0]
[      t       1       0]
[    t^3 t^2 + t       1]
sage: s.transition_matrix(HLP,3)
[      1       t     t^3]
[      0       1 t^2 + t]
[      0       0       1]
>>> from sage.all import *
>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> Qp = Sym.hall_littlewood().Q()
>>> TestSuite(Qp).run(skip=['_test_passociativity', '_test_distributivity', '_test_prod']) # products are too expensive, long time (3s on sage.math, 2012)
>>> TestSuite(Qp).run(elements = [Qp.t*Qp[Integer(1),Integer(1)]+Qp[Integer(2)], Qp[Integer(1)]+(Integer(1)+Qp.t)*Qp[Integer(1),Integer(1)]])  # long time (depends on previous)

>>> Sym = SymmetricFunctions(FractionField(QQ['t']))
>>> HLP = Sym.hall_littlewood().P()
>>> HLQ = Sym.hall_littlewood().Q()
>>> HLQp = Sym.hall_littlewood().Qp()
>>> s = Sym.schur(); p = Sym.power()
>>> HLQp(HLP([Integer(2)])) # indirect doctest
-t*HLQp[1, 1] + (t^2+1)*HLQp[2]
>>> HLQp(s(HLQ([Integer(2)]))) # work around bug reported in issue #12969
(t^2-t)*HLQp[1, 1] + (-t^3+t^2-t+1)*HLQp[2]
>>> HLQp(s([Integer(2)]))
HLQp[2]
>>> HLQp(p([Integer(2)]))
-HLQp[1, 1] + (t+1)*HLQp[2]
>>> s = HLQp.symmetric_function_ring().s()
>>> HLQp.transition_matrix(s,Integer(3))
[      1       0       0]
[      t       1       0]
[    t^3 t^2 + t       1]
>>> s.transition_matrix(HLP,Integer(3))
[      1       t     t^3]
[      0       1 t^2 + t]
[      0       0       1]
class Element[source]#

Bases: Element